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Abstract

Multilingual transformer language models
have recently attracted much attention from
researchers and are used in cross-lingual trans-
fer learning for many NLP tasks such as text
classification and named entity recognition.
However, similar methods for transfer learn-
ing from monolingual text to code-switched
text have not been extensively explored mainly
due to the following challenges: (1) Code-
switched corpus, unlike monolingual corpus,
consists of more than one language and existing
methods can’t be applied efficiently, (2) Code-
switched corpus is usually made of resource-
rich and low-resource languages and upon us-
ing multilingual pre-trained language models,
the final model might bias towards resource-
rich language. In this paper, we focus on
code-switched sentiment analysis where we
have a labelled resource-rich language dataset
and unlabelled code-switched data. We pro-
pose a framework that takes the distinction
between resource-rich and low-resource lan-
guage into account. Instead of training on the
entire code-switched corpus at once, we cre-
ate buckets based on the fraction of words in
the resource-rich language and progressively
train from resource-rich language dominated
samples to low-resource language dominated
samples. Extensive experiments across mul-
tiple language pairs demonstrate that progres-
sive training helps low-resource language dom-
inated samples.

1 Introduction

Code-switching is the phenomena where the
speaker alternates between two or more languages
in a conversation. The lack of annotated data and
diverse combinations of languages with which this
phenomenon can be observed, makes it difficult to
progress in NLP tasks on code-switched data. And
also, the prevalance of different languages is differ-
ent, making annotations expensive and difficult.

* Jingbo Shang is the corresponding author.

Original we teachers really need sar dard ki goli aftr taking class

Transliterated | we teachers really need % @< &1 T« aftr taking class
Translated we teachers really need headache pill after taking class

Figure 1: An example of code-switched text where
words in both the languages together represent the senti-
ment. A code-switched text generally contains phrases
from multiple languages in a single sentence. The text
in blue are words in Hindi that have been written in the
Latin script.

Intuitively, multilingual language models like
mBERT (Devlin et al., 2019) can be used for
code-switched text since a single model learns
multilingual representations. Although the idea
seems straightforward, there are multiple issues.
Firstly, mBERT performs differently on different
languages depending on their script, prevalence and
predominance. mBERT performs well in medium-
resource to high-resource languages, but is outper-
formed by non-contextual subword embeddings
in a low-resource setting (Heinzerling and Strube,
2019). Moreover, the performance is highly de-
pendent on the script Pires et al. (2019). Secondly,
pre-trained language models have only seen mono-
lingual sentences during the unsupervised pretrain-
ing, however code-switched text contains phrases
from both the languages in a single sentence as
shown in Figure 1, thus making it an entirely new
scenario for the language models. Thirdly, there is
difference in the languages based on the amount of
unsupervised corpus that is used during pretraining.
For e.g., mBERT is trained on the wikipedia corpus.
English has ~ 6.3 million articles, whereas Hindi
and Tamil have only ~ 140K articles each. This
may lead to under-representation of low-resource
langauges in the final model. Further, English has
been extensively studied by NLP community over
the years, making the supervised data and tools
more easily accessible. Thus, the model would be
able to easily learn patterns present in the resource-
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Text Sentiment

------------------------------------------------------------------

.. how sad are you .. -ve

.. ilove paris .. +ve

S

... brilliant bowling by ....
... plz 3T A frnd S ...

.... fixing # HIT &7 gift ...

Decreasing fraction of
English words

N
&7

.. 3T e Y AT T
T ... brilliant bowling by ... ... plz AT find I ...
l ... football game sucks ... ... mario Al T fav T ..
... awssmmm movie .... .... fixing 3 &SI &7 gift ...
B1 B2 B3

buckets

I
L __Divideinto i ...

___________________________________ [

Figure 2: A visualization of the progressive training strategy. The source labelled dataset .S in resource rich language
should be easily available. Using S, a classifier is trained, say m,;. Unlabelled code-switched dataset 7" is divided
into buckets using the fraction of English words as the metric. The leftmost bucket B1 has samples dominated by
resource-rich language and as we move towards right, the samples in the buckets are dominated by low-resource
language. m,, is used to generate pseudo-labels for unlabelled texts in bucket B1. We use texts from B1 along with
their pseudo-labels and the dataset .S to train a second text classifier m4. Then, m; is used to get the pseudo-labels
for texts in bucket B2. We keep repeating this until we obtain the final model which is used for predictions.

rich language segments and motivating us to at-
tempt transfer learning from English supervised
datasets to code-switched datasets.

The main idea behind our paper can be sum-
marised as follows: When doing zero shot transfer
learning from a resource-rich language (LangA)
to code switched language (say LangA-LangB,
where LangB is a low-resource language com-
pared to LangA), the model is more likely to
be wrong when the instances are dominated by
LangB. Thus, instead of self-training on the en-
tire corpus at once, we propose to progressively
move from LangA-dominated instances to LangB-
dominated instances while transfer learning. As
illustrated in Figure 2, model trained on the an-
notated resource-rich language dataset is used to
generate pseudo-labels for code-switched data. Pro-
gressive training uses the resource-rich language
dataset and (unlabelled) resource-rich language
dominated code-switched samples together to gen-
erate better quality pseudo-labels for (unlabelled)
low-resource language dominated code-switched
samples. Lastly, annotated resource-rich language
dataset and pseudo-labelled code-switched data are
then used together for training which increases the
performance of the final model.

Our key contributions are summarized as:

* We propose a simple, novel training strategy that
demonstrates superior performance. Since our
hypothesis is based on the pretraining phase of
the multilingual language models, it can be com-
bined with any transfer learning method.

* We conduct experiments across multiple
language-pair datasets, showing efficiency of our
proposed method.

* We create probing experiments that verify our
hypothesis.

Reproducibility. Our code is publicly available on

github !

2 Related work

Multiple tasks like Language Identification, Named
Entity Recognition, Part-of-Speech, Sentiment
Analysis, Question Answering and NLI have been
studied in the code-switched setting. For sentiment
analysis, Vilares et al. (2015) showed that mul-
tilingual approaches can outperform pipelines of
monolingual models on code-switched data. Lal
et al. (2019) use CNN based network for the same.
Winata et al. (2019) use hierarchical meta embed-

"https://github.com/s1998/
progressiveTrainCodeSwitch
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dings to combine multilingual word, character and
sub-word embeddings for the NER task. Aguilar
and Solorio (2020) augment morphological clues to
language models and uses them for transfer learn-
ing from English to code-switched data with labels.
Samanta et al. (2019) uses translation API to create
synthetic code-switched text from English datasets
and use this for transfer learning from English
to code-switched text without labels in the code-
switched case. Qin et al. (2020) use synthetically
generated code-switched data to enhance zero-shot
cross-lingual transfer learning. Recently, Khanuja
et al. (2020) released the GLUECoS benchmark to
study the performance of multiple models for code-
switched tasks across two language pairs En-Es and
En-Hi. The benchmark contains 6 tasks, 11 datasets
and has 8 models for every task. Multilingual trans-
formers fine tuned with masked-language-model
objective on code-switched data can outperform
generic multilingual transformers. Results from
Khanuja et al. (2020) show that sentiment analy-
sis, question answering and NLI are significantly
harder than tasks like NER, POS and LID. In this
work, we focus on the sentiment analysis task in
the absence of labeled code-switched data using
multilingual transformer models, while taking into
account the distinction between resource-rich and
low-resource languages. Although our work seems
related to curriculum learning, it is distinct from
the existing work. Most of the work in curricu-
lum learning is in supervised setting (Zhang et al.,
2019; Xu et al., 2020) and our work focuses on
zero-shot setting, where no code-switched sam-
ple is annotated. Note that, this is also different
from semi-supervised setting because of distribu-
tion shifts between labeled resource-rich language
data and target unlabeled code-switched data.

3 Preliminaries

Our problem is a sentiment analysis problem where
we have a labelled resource-rich language dataset
and unlabelled code-switched data. From here
onwards, we refer the labelled resource-rich lan-
guage dataset as the source dataset and the un-
labelled code-switched dataset as target dataset.
Since code-switching often occurs in language
pairs that include English, we refer to English as
the resource-rich language. The source dataset,
say S, is in English and has the text-label pairs

{(Tsy,Ys1)s (TsyyYsy), - (Ts,,, Ys,, )} and the tar-
get dataset, say 7, is in code-switched form and

has texts {Zcs,, Tesys ---Tes, }» Where m is signif-
icantly greater than n. The objective is to learn
a sentiment classifier to detect sentiment of code-
switched data by leveraging labelled source dataset
and unlabelled target dataset.

4 Methodology

Our methodology can be broken down into three
main steps: (1) Source dataset pretraining, which
uses the resource-rich language labelled source
dataset S for training a text classifier. This classi-
fier is used to generate pseudo-labels for the target
dataset T'. (2) Bucket creation, which divides the
unlabelled data 7" into buckets based on the fraction
of words from resource-rich language. Some buck-
ets would contain samples that are more resource-
rich language dominated while others contain sam-
ples dominated by low-resource language. (3) Pro-
gressive training, where we initially train using S
and the samples dominated by resource-rich lan-
guage and gradually include the low-resource lan-
guage dominated instances while training. For rest
of the paper, pretraining refers to step 1 and train-
ing refers to the training in step 3. And, we also
use class ratio based instance selection to prevent
the model getting biased towards majority label.

4.1 Source Dataset Pretraining

Resource-rich languages have abundant resources
which includes labeled data. Intuitively, sentences
in T that are similar to positive sentiment sentences
in S would also be having positive sentiment (and
same for the negative sentiment). Therefore, we
can treat the predictions made on 7' by multilin-
gual model trained on .S as their respective pseudo-
labels. This would assign noisy pseudo-labels to
unlabeled dataset T". The source dataset pretraining
step is a text classification task. Let the model ob-
tained after pretraining on dataset S be called 7.
This model is used to generate the initial pseudo-
labels and to select the instances to be used for
progressive training.

4.2 Bucket Creation

Since progressive training aims to gradually
progress from training on resource-rich language
dominated samples to low-resource language dom-
inated samples, we divide the dataset 7" into buck-
ets based on fraction of words in resource-rich
language. This creates buckets that have more
resource-rich language dominated instances and
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Algorithm 1: Pseudocode for our progres-
sive training framework.

Input: Source dataset S, target dataset T’
Parameter: Selection fraction ¢, number of buckets &
Output: Predictions on target dataset 1"
Model my, € (mMBERT, MuRIL, IndicBERT)
Model my: <— mys trained on dataset S
// Bucketing step
T < ((feng(mi), Tir mpt(x;)) for T; in T)
T’ « reverse_sorted(T")
(B1, Ba, ..., B) <+ divide T" into k equal buckets
// Class ratio based instance selection
Xst = ¢
fori=0,1do
Xelass; < Samples in T predicted to be in
class 7 using mp
Xst = Xt U (6 most confident samples in
Xclass,;)
// Progressive training step
Model mg < mp¢
fori =11t kdo
Xsti — Xt N B;
T; + Ui (2, me—1(2)) for 2 in Xy4,.)
Model m; <— myp trained on S U T;
Return m(T)

also buckets that have more low-resource language
dominated instances as well. In Figure 2, we can
observe that the instances in the leftmost bucket are
dominated by the English, whereas the instances
in the rightmost bucket are dominated by Hindi.
More specifically, we define:

Neng (1)

Feng(®i) = 20000
where neng(x;) and n_words(x;) denotes the num-
ber of English words and total number of words
in the text x;. Then, we sort the texts in dataset T'
in decreasing order of fe,4(2;) and create & buck-
ets (By, ..., B) with equal number of texts in each
bucket. Thus, bucket By contains the instances
mostly dominated by English language and as we
move towards buckets with higher index, instances

would be dominated by the low-resource language.

4.3 Progressive Training

As the model m,; is obtained by fine-tuning on a
resource-rich language dataset .9, it is more likely
to perform better on resource-rich language dom-
inated instances. Therefore, we choose to start
progressive training from resource-rich language
dominated samples. However, note that the pseudo-
labels generated for dataset 1" are noisy, thus we
sample high confident resource-rich language domi-
nated samples to obtain better quality pseudo-labels
for the rest of the instances.

Firstly, we use m,y; to obtain all the high confi-
dence samples from dataset 1" to be used for pro-

gressive training and their respective pseudo-labels.
Among the samples to be used for progressive train-
ing, we select the samples from B and use them
along with S to train a second classifier which is
further used to generate pseudo-labels for the rest
of the samples to be used for progressive training.
Then we select samples from By and use them
along with samples from previous iterations (i.e.
samples selected from B and .S) to get a third clas-
sifier. We continue this process until we reach the
last bucket and use the model obtained at the last
iteration to make the final predictions.

More formally, we use my,; to select the most
confident § fraction of samples from the dataset
T, considering probability as the proxy for the
confidence. Let X; denote the ¢ fraction of sam-
ples with the highest probability of the majority
class to be used for progressive training. Let
Xst; = Xs N B;, where X, is the subset of
samples from bucket B; that would be used for
the progressive training. To train across k buckets,
we use k iterations. Let m; denote the model ob-
tained after training for iteration j and m refers
to model my;. Iteration j is trained using texts
((ngleti) U S). The true labels for texts in S are
available and for texts X, predictions obtained
using model m;_; are considered as their respec-
tive labels. The model obtained at the last iteration
i.e. my is used for final predictions.

4.4 Class ratio based instance selection

Datasets frequently have a significant amount of
class imbalance. Therefore, when selecting the
samples for progressive training, we often end up
selecting a very small amount or no samples from
the minority class which leads to very poor per-
formance. Hence, instead of selecting ¢§ fraction
of samples from the entire dataset 7', we select §
fraction of samples per class. Specifically, let X
and X_ denote the set of samples for which the
pseudo-labels are positive and negative sentiment
respectively. For progressive training, we choose §
fraction of most confident samples from X and ¢
fraction of most confident samples from X_.

The pseudo-code for algorithm is in Algorithm 1.

S Experiments

We describe the details relevant to the experiments
in this section and also elaborate on the probing
tasks.
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5.1 Datasets

For source dataset pretraining, we use the English
Twitter dataset from SemEval 2017 Task 4 (Rosen-
thal et al., 2017). We use three code-switched
datasets for our experiments : Hindi-English (Pa-
tra et al., 2018), Spanish-English (Vilares et al.,
2016), and Tamil-English (Chakravarthi et al.,
2016). Hindi-English, Spanish-English are col-
lected from Twitter and the Tamil-English is col-
lected from YouTube comments. The statistics of
the dataset can be found in Table 1. Two out of
the three datasets have a class imbalance, the max-
imum being in the case of Tamil-English where
the positive class is ~5x of the negative class. We
upsample the minority class to create a balanced
dataset.

Most of the sentences in the datasets are writ-
ten in the Roman script. The words in Hindi and
Tamil are converted into the Devanagari script. We
use the processed dataset provided by Khanuja
et al. (2020) for Hindi-English and Spanish-English
datasets. The processed version of Hindi-English
dataset has the Hindi words in Devanagari script.
Since we deal with low-resource languages for
which tools might not be well developed, we use
heuristics to detect the words in English. For
Spanish-English and Tamil-English datasets, we
use the Brown corpus from NLTK ? to detect the
English words in the sentence. Words that are not
present in the corpus are considered of another lan-
guage. For the Tamil-English dataset, we use the
Al4Bharat Transliteration python library 3 to get
the transliterations.

Table 1: Statistics of datasets. SemEval2017 is a su-
pervised English dataset and the rest are code-switched
datasets.

Dataset Total Positive Negative
SemEval2017 27608 19799 7809
Spanish-English 914 489 425
Hindi-English 6190 3589 2601
Tamil-English 10097 8484 1613

5.2 Model training

In all the experiments we use multilingual-bert-
base-cased (mBERT) classifier. The supervised
English dataset has a 80-20 train-validation split.
Following Wang et al. (2021), ¢ is set to 0.5. We

Zhttps://www.nltk.org/
3https://pypi.org/project/ai4bharat-transliteration/

observe that in most datasets, the number of spikes
in the distribution plot of fe,4(x;) is either 1 or
2. For example, we observe there are only two
spikes for the Hindi-English dataset in Figure 7 in
Appendix A.2. Therefore, we set k=2. We train the
classifier in both pre-training and training phase for
4 epochs. During pretraining with supervised En-
glish dataset, we choose the best weights using the
validation set. While training, we use the weights
obtained after fourth epoch. For final evaluation,
we use the model obtained from the last iteration.
Additional details about the hyper-parameters can
be found in Appendix A.1.

In the rest of the paper, we refer to the model
pretrained on the resource-rich language source
dataset as model m,;, the model trained on source
dataset along with bucket By as m1, and the model
trained on source dataset along with the buckets B,
and By as mg. mg is used for final predictions.

5.3 Evaluation

As the datasets are significantly skewed between
the two classes, we choose to report micro, macro
and weighted f1 scores as done in Mekala and
Shang (2020). For code-switched datasets, we
use all the samples without labels during the self-
training. The final score is obtained using the pre-
dictions made by model ms on all the samples and
their true labels. For each dataset, we run the ex-
periment with 5 seeds and report the mean and
standard deviation.

5.4 Baselines

We consider four baselines as described below:

* Deep Embedding for Clustering (DEC) (Xie
et al., 2016) has been used in WeSTClass (Meng
et al., 2018) for self-training using unlabeled doc-
uments after pretraining on generated pseudo
documents. We adapt DEC similarly to our set-
ting, by pretraining on S and self-training using
DEC objective only on T'.

* No Progressive Training (No-PT) initially trains
the model on the source dataset .S. As done in
(Wang et al., 2021), it selects J fraction of the
code-switched data with pseudo-labels and trains
a classifier on selected samples and the source
dataset .S without any progressive training.

* Unsupervised Self-Training (Unsup-ST) (Gupta
et al., 2021) starts with a pretrained sentiment
analysis model and then self-trains using code-
switched dataset. We use the default version
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Table 2: Model performance on the Spanish-English, Hindi-English & Tamil-English dataset using mBERT. For
Tamil-English dataset, the - Ratio method increases the F1 score of positive class (which is the majority class) by
~ 2% but F1 score of negative class drops by ~ 9%. Thus, we observe a performance improvement in weighted F1
score and micro F1 score but a decrease in macro F1 score.

Methods Spanish-English Hindi-English Tamil-English
Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 ~ Macro-F1 Micro-F1 Weighted-F1

Supervised 71.1 71.5 71.6 4.7 74.9 75.1 62.7 84.3 82.8
DEC 75.7+04 753403 75.5+0.5 66.0+0.5 67.9+0.7 67.1+0.4 51.7+0.9 7784038 75.5+ 0.6
No-PT 76.2+0.6 76.3+£0.6 76.3+ 0.6 67.1£0.8 69.2+0.3 68.4 +£0.6 53.3+04 78.6+0.6 76.7+0.2
ZS 76.1+0.7 76.240.7 76.0+0.7 63.8+0.9 67.4+0.3 65.6 +0.7 52.7+0.6 79.14+0.1 76.3+0.2
Unsup-ST ~ 73.9+1.7 743+1.6 T41+1.7 66.6 £1.5 66.7+1.4 66.8 £ 1.3 49.8+21 69.2+5.3 69.8 £ 8.4
Ours 774+08 775+08 775+08 678+08 699+05 691+07 531+04 80.5+0.2 77.5+0.1

- Source 76.5+0.7 76.7+0.6 76.6 £ 0.7 67.2+0.5 68.7+0.4 68.3+0.4 52.7+0.7 79.24+1.0 76.8 £ 0.6

- Ratio 77.1+£0.7  77.3£0.6 77.2+0.6 64.7+£0.5 684+0.2 66.5 £ 0.4 499+03 833+01 77.7+0.1

which doesn’t require human annotations. We
use the model m,; to initiate the self-training for
fair comparison.

Zero shot (ZS) (Pires et al., 2019) denotes the
zero shot performance when the model is pre-
trained on monolingual resource-rich language
dataset S.

We also compare with two ablation versions of
our method, denoted by - Source and - Ratio. -
Source uses only the code-switched dataset with
its corresponding pseudo-labels without the source
dataset S for training. - Ratio chooses the most
confident samples for training without taking the
class ratio into account.

We also report the performance in the supervised
setting, denoted by Supervised. For each dataset,
we train the model only on dataset I" but use true
labels to do the same. This is the possible upper
bound.

5.5 Performance comparison

The results for all the three datasets are reported
in Table 2. In almost all the cases, we observe
a performance improvement using our method as
compared to the baselines, maximum improvement
being upto ~ 1.2% in the case of Spanish-English.
The comparison between ZS and our method shows
the necessity of target code-switched dataset and
the comparison between No-PT and our method
shows that progressive training has a positive im-
pact. In most cases, the final performance is within
~ 10% of the supervised setting. We believe our
improvements are significant since the baselines
are close to the supervised model in terms of the
performance and yet our progressive training strat-
egy makes a significant improvement. We report
the statistical significance test results between our
method and other baselines in Table 8 in Appendix

A.4. In all the cases, we observe the p-value to be
less than 0.001. The progressively trained model
for Spanish-English does better than its correspond-
ing supervised setting, outperforming it by ~ 6%.
We hypothesize, this is because of having a large
number of instances in the source dataset .S, the
progressively trained model has access to more in-
formation and successfully leveraged it to improve
the performance on target code-switched dataset.
The comparison between our method and its ab-
lated version - Source demonstrates the impor-
tance of source dataset while training the classi-
fier. We can note that our proposed method is effi-
ciently transferring the relevant information from
the source dataset to the code-switched dataset,
thereby improving the performance. On compar-
ing our method with - Ratio, we observe that us-
ing class ratio based instance selection improves
the performance in two out of three cases. For
the Tamil-English dataset, we observe that the
weighted & micro F1 score are higher for - Ra-
tio method but the macro F1 score is poor. This is
because the F1 score of the positive class increases
by ~ 2% but F1 score of negative class drops by
~ 9% when using - Ratio method instead of ours.
Since the datatset is skewed in the favor of the pos-
itive class, this lead to a higher weighted and micro
F1 score.

5.6 Performance comparison across buckets

In Figure 3, we plot the performance obtained by
No-PT and our method on both buckets. Since
our method aims at improving the performance of
low-resource language dominated instances, we
expect our model mo to perform better on bucket
B and we observe the same. As shown in Figure 3,
in most of the cases, our method performs better
than the baseline on bucket By. For bucket B,
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we observe a minor improvement in the case of
Spanish-English, whereas it stays similar for other
datasets. Detailed qualitative analysis is present in
Appendix A.S.

Spanish-English Hindi-English Tamil-English
g R
S 0.80
2
— 0.75
=
= 0.70
o
=
0T L NPT « NoPT + No-PT
§ 060 - Ours -« Ours A - Ours

By By By B2 By By
Buckets Buckets Buckets

Figure 3: Model performance comparison across buck-
ets. B; contains English dominated instances and By
contains low resource language dominated instances.
Values are reported across 5 runs. Points on the same
vertical line are from the same run i.e. both No-PT and
our model were initialized with same initial weights.

5.7 Probing task : Out-Of-Distribution (OOD)
detection

As previously mentioned, our proposed frame-
work is based on two main hypotheses: (1.) A
transformer model trained on resource-rich lan-
guage dataset is more likely to be correct/robust
on resource-rich language dominated samples com-
pared to the low-resource language dominated sam-
ples, (2.) The models obtained using the progres-
sive training framework is more likely to be cor-
rect/robust on the low-resource dominated samples
compared to the models self-trained on the entire
code-switched corpus at once. To confirm our hy-
potheses, we perform a probing task where we
compute the fraction of the samples that are OOD.
More specifically, we ask two questions: a) Is the
fraction of OOD samples same for both the buck-
ets for model my;? b) Is there a change in OOD
fraction for bucket By if we use model m; instead
of model my;? The first question helps in verify-
ing the first part of the hypothesis and the second
question helps in verifying the second part of the
hypothesis.

Since the source dataset S is in English and the
target dataset 7' is code-switched, the entire dataset
T might be considered as out-of-distribution. How-
ever, transformer models are considered robust and
can generalise well to OOD data (Hendrycks et al.,
2020). Determining if a sample is OOD is diffi-
cult until we know more about the difference in the
datasets. However, model probability can be used
as a proxy. We use the method based on model’s
softmax probability output similar to Hendrycks
and Gimpel (2017) to do OOD detection. Higher

the probability of the predicted class, more is the
confidence of the model, thus less likely the sample
is out of distribution.

For a given model trained on a dataset, a thresh-
old p,, is determined using the development set (or
the unseen set of samples) to detect OOD samples.
Pq 18 the probability value such that only « fraction
of samples from the development set (or the unseen
set of samples) have probability of the predicted
class less than p,. For example, if o = 10%, 90%
of samples in the development set have probability
of predicted class greater than p,. If a new sample
from another dataset (or bucket) has probability of
predicted class less than p,,, we would consider it to
be OOD. Using p,, we can determine the fraction
of samples from the new set that are OOD. Since,
there is no method to know the exact value of « to
be used, we report OOD using three values of «
: 0.01, 0.05 and 0.10. For model m,,;, we use the
development split from the dataset S to determine
the value of p,, and for model m1, we use the set
of samples from bucket B; that are not used in self-
training (i.e. By — X4, ) to determine p,. Based
on the value of «, we conduct two experiments and
answer our two questions.

S
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N o8

Spanish-English

Hindi-English

Tamil-English
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=029,
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w00 oo o s .

o o o
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Figure 4: Figure showing bucketwise OOD for different
datasets using the model m,,;. In most cases, samples
in By are more OOD compared to samples in By across
different values of . Values are reported across 5 runs,
points on the same vertical line are from the same run
i.e. once a model m,,; has been trained, the same model
is used to evaluate the fraction of OOD data in both the
buckets.

Is the fraction of OOD samples same for both
the buckets for model m,;? In the first experi-
ment, we consider the model trained on the source
dataset and try to find the fraction of OOD samples
in both the buckets. Since the first bucket contains
more resource-rich language dominated samples,
we expect a lesser fraction of samples to be out-
of-distribution compared to the second bucket. In
Figure 4, we plot the bucketwise OOD for different
datasets. We observe that lesser fraction of samples
from first bucket are OOD in all the datasets except
Spanish-English. This shows that instances domi-
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Table 3: Performance using multiple multilingual models. First three rows denote performance without using
progressive training and the last row denotes the performance when the model with best performance is used with

progressive training.

Model Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
mBERT 76.2+06 76.3+0.6 76.3+0.6 67.1+0.8 69.2+0.3 68.4+ 0.6 53.3+04 78.6+0.6 76.7+0.2
MuRIL - - - 770+£04 7T77+03 T77.7T+04 542+02 642£04 68.8 £0.3
IndicBERT - - - 73.5+05 74.5+£0.3 743+04 546+0.1 68.0+0.6 71.3+0.4
Ours + Best 77.4+08 775+08 775+08 770+04 77.6+04 77.6+£0.4 53.1+04 80.5+02 775+0.1

Table 4: Model performance on the three datasets for different number of buckets (k) using mBERT.

Buckets Spanish-English Hindi-English Tamil-English

Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
k=2 774+08 775+08 775+08 678+08 699+05 69.1+07 531+04 805+02 77.5+0.1
k=3 76.1+£0.7 76.2+0.7 76.2+£0.7 67.2+£06 69.4+0.5 68.6 £ 0.6 53.1+£0.2 79.9+04 77.2+0.1
k=4 76.6+1.6 76.7+1.7 76.7+£1.6 67.6£04 69.7£0.3 68.9£0.4 529+04 806+07 775403

nated by resource-rich language are less likely to
be out-of-distribution for the classifier trained on S
compared to instances dominated by low-resource
language, thus providing empirical evidence in sup-
port of the first part of our hypothesis. We also
report the zero-shot performance in Appendix A.3
i.e. we use the classifier trained on source dataset
for inference with no training on target dataset. For
all the datasets, we observe zero-shot model per-
forms better on B; compared to Bs, thus further

bolstering our hypothesis.
Spanish-English Hindi-English

Mpt < Mpt Mpt
my - om com

°

Tamil-English

I -~
= & >

Fraction of OOD
data in bucket B2

- v ” - -

e
i

0l 005 001 01 005 0.01 0.1 0.05 001

a o o

Figure 5: Figure showing model wise OOD for bucket
B5 across multiple datasets. We compare two models,
mye and my . In all the cases, we observe that samples
in By are more OOD for model m,,; compared to m;
across different values of o. Values are reported for 5
runs and points on the same vertical line are from the
same run i.e. both m,, and m; were initialized with
same initial weights.

Is there a change in OOD fraction for bucket
Bs if we use model m instead of model 1,,;?

In the second experiment, we compare the frac-
tion of OOD data in bucket By for the models 1
and m.

In Figure 5, we observe a lesser fractions of sam-
ples in bucket B2 are OOD for model m; compared
to model m,;. This is expected since the model
m1 has seen samples with low-resource language
words while training, thus providing empirical evi-

dence in the support of our proposed training strat-
egy. Although, the samples from B would still
have noisy labels, we expect them to be more accu-
rate when predicted by m than ;.

5.8 Comparison with other multilingual
models

Recently, multiple multilingual transformer models
have been proposed. We experiment with MuRIL
(Khanuja et al., 2021) and IndicBERT (Kakwani
et al., 2020). Firstly, we obtain the performance
of three language models: mBERT, MuRIL, and
IndicBERT without progressive training on all
datasets and we use progressive training on top of
the best performing model corresponding to each
dataset and verify whether it further improves the
performance. The F1 scores are reported in Table
3. We observe that performance either increases or
stays very competitive in all the cases, thus showing
our method is capable of improving performance
even when used with the best multilingual model
for the task.

5.9 Hyper-parameter sensitivity analysis

There are two hyper-parameters in our experiments:
the number of buckets (k) and the ratio of samples
selected for self-training (9). We vary k from 2 to
4 to study the effect of the number of buckets on
the performance and the F1-scores are reported in
Table 4. Our method is fairly robust to the values
of k. For almost all values of k, our method does
better than the baselines. As mentioned earlier,
the number of spikes in the distribution plot of
feng 1s 1 or 2 for all the datasets. In presence
of more number of spikes, higher value of k is
recommended. For studying the effect of hyper-
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Figure 6: F1 score using different values of parameter §
for the three datasets (Spanish-English, Hindi-English
and Tamil-English). The plots represent macro, micro
and weighted F1 score (left-to-right).

parameter 9§, we plot macro, micro, and weighted
F1 scores across multiple values of § in Figure 6.
With low 9, there wouldn’t be enough sentences
for self-training to help whereas with high J, the
samples would be too noisy. Thus, a value in the
middle i.e. 0.4-0.6 should be reasonable choice.

6 Conclusion and Future work

In this paper, we propose progressive training
framework that takes distinction between low-
resource and resource-rich language into account
while doing zero-shot transfer learning for code-
switched sentiment analysis. We show that our
framework improves performance across multiple
datasets. Further, we also create probing tasks to
provide empirical evidence in support of our hy-
pothesis. In future, we want to extend the frame-
work to other tasks like question-answering and
natural language inference.

7 Limitations

A key potential limitation of the current framework
is that if the number of samples in buckets are very
disproportionate, the progressive learning might
not result in significant improvement.

8 Ethical consideration

This paper proposes a progressive training frame-
work to transfer knowledge from resource-rich lan-
guage data to low-resource code-switched data. We
work on sentiment classification task which is a
standard NLP problem. Based on our experiments,
we don’t see any major ethical concerns with our
work.
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A Appendix

A.1 Additional hyper-parameter details

The batch size is 64, sequence length is 128 and
learning rate is 5e-5. These hyperparameters are
same for all the models used during pre-training
and training. Every iteration takes approximately
~1-2 seconds and ~12 GB of memory on a GPU.

A.2 Statistics related to the buckets

We report the average value and standard deviation
of the fenq across the buckets in Table 5. We report
the number of instances selected for self-training
across the buckets in Table 6. We plot the distribu-
tion of fe,4 in Figure 7.

Table 5: Average value and standard deviation of f.,4
for both the buckets By and Bs.

Dataset By By
Spanish-English | 0.79 +0.08 | 0.44 + 0.14
Hindi-English | 0.79 +0.21 | 0.14 £0.13
Tamil-English | 0.51 £0.16 | 0.13 £ 0.09

Table 6: Number of samples selected from each bucket
B1 and B2 for progressive training.

Dataset By By

Spanish-English | 265 | 191
Hindi-English | 2047 | 1048
Tamil-English | 2877 | 2169
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Figure 7: Distribution of fe,q(z) vs number of sam-
ples for the Spanish-English, Hindi-English and Tamil-
English datasets (left-to-right). For Hindi-English, we
can observe two spikes in the graph showing some sam-
ples are heavily dominated by English and some sam-
ples are heavily dominated by Hindi. For the other two
datasets, we observe the progression to be more gradual.

A.3 Results of the zero-shot model on buckets

We report the results of the zero-shot model on both
the buckets in Table 7. As expected, in all the cases
the model performs better on B; compared to Bs.

A.4 Statistical Significance Results

Table 7: Bucketwise results of the zero-shot model.
Macro, Micro and Wtd refer to Macro-F1, Micro-F1
and Weighted-F1 scores respectively.

B1 BQ
Dataset Macro Micro Wtd Macro Micro Wtd

Spanish-English ~ 79.2 796 797 718 733 738
Hindi-English 73.9 776 769  56.0 58.0 562
Tamil-English 54.6 834 816 506 770 728

Table 8: We perform paired t-test between our method
and baselines. The p-value obtained by performing the
test between our methods and baselines for all three
datasets is reported in the table.

Dataset No-PT DCE - Source | - Ratio
Spanish-English | 5.11e713 | 2.09¢7¢ | 8.28¢7% | 8.82¢7%
Hindi-English | 2.76e75 | 4.37¢=% | 3.49¢=* | 6.85¢712
Tamil-English | 1.87e=* | 3.72¢716 | 3.71e73 | 3.40e~7

A.5 Qualitative analysis

As discussed previously, on the low-resource lan-
guage dominated bucket, our model is correct more
often than the No-PT baseline. We focus on sam-
ples from bucket Bs for qualitative analysis. For
the sample, "fixing me saja hone ka gift", the Hindi
word "saja" refers to punishment which is negative
in sentiment whereas the word "gift" is positive
in sentiment. Thus, the contextual information in
the Hindi combined with that of the English is nec-
essary to make correct prediction. For the sample
"Mera bharat mahan, padhega India tabhi badhega
India", the model has to identify Hindi words "ma-
han" & "badhega" to make the correct predictions.

We also do the qualitative analysis by looking
at predictions of samples between successive iter-
ations. In Table 9, we randomly choose samples
which are predicted incorrectly by model 7, but
are predicted correctly by model m;. Out of 8 sam-
ples, 6 samples had sentiment specifically present
in the Hindi words. In Table 10, we randomly
choose samples which are predicted incorrectly by
model m; but are predicted correctly by model mo.
Out of 8 samples, 4 samples had sentiment specif-
ically present in the Hindi words and 2 samples
required understanding both the Hindi and English
words simultaneously. The blue highlighted words
are relevant to determining the sentiment of the
sentence.
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Table 9: Instances where model m,,; was incorrect but
model m learnt the correct label.

Bucket Text

Label

0

yes we teachers really need sar
dard ki goli aftr taking class

negative

0

they are promising moon right
now to get the cm post .

. waade aise hone chahiye jo
janta k welfare k liye ho . . .
free wahi baantna chahta hai jo
desperate ho kisi tarah ek baar
bas kursi mil jaye .

negative

0000 ! grandfather bas ab nahi
kitna natak karoge

negative

i agree with this cartoon .
bahut achcha doston .

positive

seriously maza boht ata tha ,
, , mere pass mast collection
hota tha

positive

school mein milne wale lad-
doo kitni khushi dete they :d

positive

guddu itni paas se tv dekhega
toh aankhe button ho jayengi !

negative

arun lal ki commentary yaad
aa gayi . . usse zyada manhoos
koi nahi .

negative

Table 10: Instances where model m was incorrect but
model ms learnt the correct label.

Bucket Text Label

0 Osm party salman bhai apka positive
gift

0 mat dekho brothers and sisters negative
, dekha nahi jayega

0 Ap late ho ap ne apne comet- negative
ment pori nai ki

0 looks like "kaho na pyaar hai’ negative
phase ended for modi #aap-
sweep #aapkidilli #delhide-
cides

1 comment krne se jyada sabke positive
padhne me maja aata h

1 guddu tumhara hi school aisa  positive
hoga yaar . mera school n
mere teacher to ache h

1 sir kya msg krtte kartte mar jau  negative

1 Hum bhuke mur rahe hai sir negative
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