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Abstract

Many language tasks (e.g., Named Entity
Recognition, Part-of-Speech tagging, and Se-
mantic Role Labeling) are naturally framed as
sequence tagging problems. However, there
has been comparatively little work on inter-
pretability methods for sequence tagging mod-
els. In this paper, we extend influence functions
— which aim to trace predictions back to the
training points that informed them — to se-
quence tagging tasks. We define the influence
of a training instance segment as the effect that
perturbing the labels within this segment has
on a test segment level prediction. We provide
an efficient approximation to compute this, and
show that it tracks with the true segment in-
fluence, measured empirically. We show the
practical utility of segment influence by us-
ing the method to identify systematic annota-
tion errors in two named entity recognition cor-
pora. Code to reproduce our results is available
at https://github.com/successar/
Segment_Influence_Functions.

1 Introduction

Instance attribution methods aim to identify train-
ing examples that most informed a particular (test)
prediction. The influence of training point k on
test point i is typically formalized as the change
in loss that would be observed for point i if exam-
ple k was removed from the training set (Koh and
Liang, 2017). Heuristic alternatives have also been
developed to measure the importance of training
samples during prediction, such as retrieving train-
ing examples similar to a test item (Pezeshkpour
et al., 2021; Ilyas et al., 2022; Guo et al., 2021).

Influence functions can facilitate dataset debug-
ging by helping to surface training samples which
exhibit artifacts (Han et al., 2020). But on language
tasks, most work on identifying training samples
influential to a particular prediction has focused
on classification tasks (Koh and Liang, 2017; Han
et al., 2020; Pezeshkpour et al., 2021). It is not
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Figure 1: We propose and evaluate influence functions
for sequence tagging tasks, which retrieve snippets
(from token a to b) in train samples that most influ-
enced predictions for test tokens c through d. Here this
reveals a training example in which an ORG is problem-
atically marked as a LOC, leading to the observed error.

immediately clear how we can extend such meth-
ods to the structured prediction problems such as
named entity recognition (NER).

In this work we address this gap, presenting new
methods for characterizing token-level influence
for structured predictions (specifically sequence
tagging tasks), and evaluating their use across il-
lustrative datasets. More specifically, we focus
on NER, one of the most common sequence tag-
ging tasks. We extend influence functions to detect
important training examples, i.e., those that most
influenced the prediction of a specific entity, as
opposed to being most influential with respect to
the entire predicted label sequence. We call this
extension segment influence.

Segment influence can help one perform fine-
grained analysis of why specific segments of text
were incorrectly labeled (as opposed to the entire
sequence). Consider, for example, Figure 1. This
shows a common issue in the CoNLL NER dataset:
city names contained in soccer club titles tend to
be mislabeled as location, rather than organization.
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This in turn leads to similar mispredictions in the
test set. For the shown test example we can use
segment influence to ask which entities within the
training examples most informed the prediction
made for the entity ‘Manchester United’? In prin-
cipal, segment influence can directly recover the
entities responsible for this systematic mislabeling.

Our main contributions are as follows. (1) We
present a new method to approximately compute
token-level influence for outputs produced by se-
quence tagging models; (2) We evaluate whether
this approximation corresponds to exact influence
values in linear models, and whether the method
recovers intuitively correct training examples in
synthetically constructed cases, and; (3) We estab-
lish the practical utility of approximating structured
influence by using the method to identify system-
atic annotation errors in NER corpora.

2 Influence for Sequence Tagging

Consider a standard sequence tagging task in which
the aim is to estimate the parameters θ of function
fθ which assigns to each token xit ∈ V in an input
sequence xi (of length Ti) a label yit from a label
set Y . Denote the training dataset by D where
D = {(xi = {xit}Ti

t=1, yi = {yit}Ti
t=1)}.

Define fθ as a model that yields conditional
probability estimates for sequence label assign-
ments: pθ(yi|xi). Given parameter estimates θ̂,
we can make a prediction for a test instance xi
by selecting the most likely y under this model:
ŷi = argmaxypθ̂(y|xi). In structured prediction
tasks we assume that the label yit depends in part
on labels yi \ yit, given the input xi. In linear chain
sequence tagging, this dependence can be formal-
ized as a graphical model in which adjacent labels
are connected; the most common realization of
such a model is perhaps the Conditional Random
Field (CRF; Lafferty et al. 2001).

We typically estimate θ by minimizing the nega-
tive log-likelihood of the training dataset D.

argmin
θ

1

|D|
∑

(xi,yi)∈D
− log pθ(yi|xi) (1)

For brevity, we will also write the loss (nega-
tive log likelihood) of an example zi = (xi, yi)
as L(zi, θ) = − log pθ(yi|xi) and the over-
all loss over the training set by L(D, θ) =
1
|D|

∑
zi∈D L(zi, θ).

2.1 Background: Influence Functions in ML

Influence Functions (Koh and Liang, 2017) re-
trieve training samples zk deemed “influential” to
the prediction made for a specific test sample xi:
ŷi = fθ̂(xi). The exact influence of a training
example zk on a test example zi = (xi, yi) is de-
fined as the change in the loss on zi that would
be incurred under parameter estimates if the train-
ing sample zk were removed prior to training, i.e.,
L(zi, θ̂−zk)− L(zi, θ̂).

In practice this is prohibitively expensive to
compute. Koh and Liang (2017) proposed an
approximation. The idea is to measure the change
in the loss on zi observed when the loss associated
with train sample zk is slightly upweighted by some
ϵ. Explicitly computing the effect of such an ϵ-
perturbation is not feasible. Koh and Liang (2017)
provide an efficient mechanism to approximate
this (reproduced in Appendix A.1): I(zi, zk) =
−∇θL(zi, θ̂)[∇2

θL(D, θ̂)]−1∇θL(zk, θ̂), where
∇2

θL(D, θ̂) is the Hessian of the loss L(D, θ̂) over
the dataset with respect to θ.

Sequence tagging tasks by definition involve
multiple predictions (and labels) per instance, and
it is therefore natural to consider finer-grained in-
fluence. In particular, we would like to quantify the
effect of segments of labels for zk on a specific seg-
ment of the predicted output for zi. For example, if
we mispredict a particular entity within xi, we may
want to identify the train sample segment(s) most
responsible for this error, especially if the model
makes systematic errors that might be rectified by
cleaning D.

2.2 Segment Level Influence

We provide machinery to compute segment level in-
fluence. We want to quantify the impact of training
tokens xk[a,b] (with labels yk[a,b]), 1 ≤ a, b ≤ Tk

on the loss of a segment of test point zi. In NER,
these segments may correspond to entities.

2.2.1 Exact Segment Influence
We define the exact influence of a segment [a, b]
within training example zk on a segment [c, d] of a
test example zi = (xi, yi) as the change in loss that
would be observed for reference token labels in
segment [c, d] of zi, had we excluded the labels for
segment [a, b] within zk from the training data. To
make the above definition precise, we need to first
define how training is to be performed when only
partial annotations may be available for a given
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train example (i.e., where a segment has been “re-
moved”). We need also to formally define change
in loss for a segment of a test example.

Start with training under partial annotations.
Consider a training example zk = (xk =
{xk1, . . . , xkTk

}, yk = {yk1, . . . , ykTk
}). Assume

we did not have labels for segment [a, b] in yk,
i.e., labels {yka, . . . , ykb} were missing. Denote
such a partial label sequence by y

−[a,b]
k = yk \

{yka, . . . , ykb}. Let y[a,b]k = {yka, . . . , ykb}. A nat-
ural way to handle such cases is to marginalize over
all possible label assignments to the segment [a, b]
when computing the likelihood of this training ex-
ample (Tsuboi et al., 2008):

pθ(y
−[a,b]
k |xk) =∑

y′a∈Y
· · ·

∑

y′b∈Y
pθ(y

−[a,b]
k ∪ {y′a, ..., y′b}|xk) (2)

Denote the marginal loss of this partially
annotated sequence as ML(z−[a,b]

k , θ) =

− log pθ(y
−[a,b]
k |xk).

We can also write this marginal loss as the dif-
ference between the joint loss of yk and the condi-
tional loss of the segment y[a,b]k . This second form
is more intuitive when we move to approximate
exact influence values via ϵ-weighting.

log pθ(y
−[a,b]
k |xk) = log pθ(yk|xk)

− log pθ(y
[a,b]
k |y−[a,b]

k , xk)
(3)

ML(z−[a,b]
k , θ) = L(zk, θ)− CL(z[a,b]k , θ) (4)

where we have defined also the condi-
tional loss of the segment as CL(z[a,b]k , θ) =

− log pθ(y
[a,b]
k |y−[a,b]

k , xk).
Next we define the change in loss for a segment

of a test example zi = (xi, yi). We define the
loss for the segment [c, d] of the output yi as the
conditional loss of the segment [c, d]: CL(z[c,d]i , θ).

Given the above definitions, we can concretize
the notion of the exact influence as follows:

1. Retrain the model without the segment [a, b] of
training example zk:

θ̂[z
−[a,b]
k ] = argmin

θ

1

|D|
∑

zl∈D
L(zl, θ)

− 1

|D|(L(zk, θ)−ML(z−[a,b]
k , θ))

(5)

Comparing Equations 4 and 5, we see that remov-
ing the effect of segment [a, b] of zk amounts to

subtracting the conditional loss of the segment
CL(z−[a,b]

k , θ) from the original loss L(D, θ).

2. Compute the difference between the conditional
loss of segment [c, d] of test example zi under new
parameter estimates θ̂[z−[a,b]

k ] and the original esti-
mates θ̂ trained using the objective in Equation 1:

Exact-Influence(z[a,b]k , z
[c,d]
i ) =

CL(z[c,d]i , θ̂[z
−[a,b]
k ])− CL(z[c,d]i , θ̂)

(6)

2.2.2 Approximating Segment Influence
Above we have derived a means to calculate exact
segment level influence values. But in practice re-
training the model (step 1) is not feasible. Here we
instead present an ϵ-upweighting method — anal-
ogous to the approximation to instance influence
(Koh and Liang, 2017) — for computing segment
influence. The idea is to compute the change in
model parameters if we incur a slight additional
penalty CL(z−[a,b]

k , θ) for the segment [a, b]:

θ̂ϵ[z
−[a,b]
k ] = argmin

θ

1

|D|
∑

zl∈D
L(zl, θ)

+ ϵ CL(z[a,b]k , θ)

(7)

A first order approximation to the difference in the
model parameters near ϵ = 0 is given by:

dθ̂ϵ[z
−[a,b]
k ]

dϵ

∣∣∣
ϵ=0

=

− [∇2
θL(D, θ̂)]−1∇θCL(z[a,b]k , θ̂)

(8)

We can apply the chain rule to measure the change
in the conditional loss over segment [c, d] of test
example zi due to this upweighting:

I(z[c,d]i , z
[a,b]
k ) =

d CL(z[c,d]i , θ̂ϵ[z
−[a,b]
k ])

dϵ

∣∣∣
ϵ=0

=

−∇θCL(z[c,d]i , θ̂)[∇2
θL(D, θ̂)]−1∇θCL(z[a,b]k , θ̂)

(9)

This definition provides us with an approxima-
tion to the exact influence defined in previous sec-
tion for a segment of a training example on a seg-
ment of a test example. Derivation showing all
the steps can be found in Appendix A.2. We have
assumed that we can take the gradient of the con-
ditional loss over a segment, which is possible for
a CRF tagger (derivation in Appendix B), but may
be non-trivial for other models.

826



3 Computational Challenges

The computation costs of even approximate in-
stance level influence can be prohibitive in practice,
especially with the large pretrained language mod-
els that now dominate NLP. Computing and storing
inverse Hessians of the loss has O(p3) and O(p2)
complexity where p is the number of parameters
in the model (commonly ∼100M-100B for deep
models). Even ignoring the Hessian, one still needs
the gradient with respect to each training example
in D; one could attempt to pre-compute these, but
storing the results requires O(|D|p) memory.

The alternative is therefore to recompute these
for each new test point zi. For segment level influ-
ence these costs are compounded because we need
influence with respect to every segment within a
training example, multiplying complexities by T 2,
where T is the average length of a training exam-
ple. Consequently, it is practically infeasible to
calculate segment influence per Equation 9.

Prior work by Pezeshkpour et al. (2021) showed
that for instance-level influence, considering a re-
stricted set of parameters (e.g., those in the classifi-
cation layer) when taking the gradient is reasonable
for influence in that this does not much affect the
induced rankings over train points with respect to
influence. Similarly, ignoring the Hessian term
does not significantly affect rankings by influence.
These two simplifications dramatically improve ef-
ficiency, and we adopt them here.

Consider a sequence tagging model built on top
of a deep encoder F , e.g., BERT (Devlin et al.,
2018). In the context of a linear chain CRF on top
of F , the standard score function for this model
is: s(yi, xi) =

∑Ti
t=1 y

⊤
it
WF (xi)t + y⊤

i(t−1)
T y

it
,

where T is a matrix of class transition scores and
y
it

is the one-hot representation of label yit. A
CRF layer consumes these scores and computes
the probability of a label sequence as p(yi|xi) =

es(yi,xi)∑
y′∈YTi

es(y
′,xi)

. In this work we consider the gra-

dient only with respect to the W and T parameters
above and not any parameters associated with F .

Further, we consider influence only with respect
to individual token outputs in training samples,
rather than every possible segment — i.e., we only
consider single-token segments. This further re-
duces the T 2 terms in our complexity to T .

4 Experimental Aims and Setup

We evaluate segment influence in terms of: (1)
Approximation validity, or how well the approxi-
mation proposed in Equation 9 corresponds to the
exact influence value (Equation 6), and, (2) Utility,
i.e., whether segment influence might help identify
problematic training examples for sequence tag-
ging tasks. In this paper we consider only NER
tasks, using the following datasets.
CoNLL (Tjong Kim Sang and De Meulder, 2003).
An NER dataset containing news stories from
Reuters, labeled with four entity types: PER,
LOC, ORG and MISC, and demarcated using
the beginning-inside-out (BIO) tagging scheme
(Ramshaw and Marcus, 1999). The dataset is di-
vided into train, validation, and test splits compris-
ing 879, 194, and 197 documents, respectively.
EBM-NLP (Nye et al., 2018). A corpus of anno-
tated medical article abstracts describing clinical
randomized controlled trials. ‘Entities’ here are
spans of tokens that describe the patient Population
enrolled, the Interventions compared, and the Out-
comes measured (‘PICO’ elements). This dataset
includes a test set of 191 abstracts labeled by med-
ical professionals, and a train/val set of 3836/958
abstracts labeled via Amazon Mechanical Turk.

For NER models we use a representative modern
transformer — BigBird Base (Zaheer et al., 2020)
— as our encoder F , using final layer hidden states
as contextualized token representations. Depen-
dencies between output labels are modeled using a
CRF. We provide training details in Appendix C.

In addition to segment and instance level influ-
ence we also evaluate — where applicable — seg-
ment nearest neighbor as an attribution method,
which works as follows. We retrieve from the train-
ing dataset segments that have the highest similarity
between their corresponding feature embeddings
(we again consider only single token segments here,
so we do not need to worry about embedding multi-
token segments). We consider both dot product
and cosine similarity and report the results for the
version that gives best performance for each exper-
iment.

5 Validating Segment Influence
In this first set of experiments we aim to (i) verify
that the proposed approximation correlates with the
exact influence (2.2.2), and, (ii) ascertain that for
synthetic tasks which we construct, segment influ-
ence returns the a priori expected training segment
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for given text examples (5.2). In the latter experi-
ments, we compare the fine-grained error analysis
afforded by segment influence to that made possi-
ble using instance-level attribution.

5.1 How Good is our Approximation?
How well does the approximation we have pro-
posed for segment influence correlate with the ex-
act value? The latter is in general intractable to
compute. As a practical means to validate our ap-
proximation we use a simple linear model trained
on the CoNLL corpus, which makes it feasible
(though still costly) to compute exact influence via
brute force. This allows us to compare the actual
segment influence to our approximation.

We subset our training set to a 1000 examples
and the validation set to 200 examples (given the
computational expense of model retraining). As
token-level features, we use GloVe word embed-
dings (Pennington et al., 2014) and additional syn-
tactical features (See Appendix C.1). We use the
L-BFGS optimizer available in PyTorch (Paszke
et al., 2019) to train this model, stopping when the
maximum absolute gradient value reaches 10−6.

We randomly sample 20 mispredicted validation
tokens. For each such token, we identify the 20
most influential tokens in the training set accord-
ing to their absolute approximated influence values.
We combine these 400 tokens together in a sin-
gle pool, remove these tokens sequentially prior to
training by subtracting their conditional loss (Equa-
tion 6), and retrain the model. We then take the
difference in the observed loss for each of the 20
validation token under the retrained and original
model.

Figure 2 plots the actual difference in the condi-
tional loss obtained for the sampled validation to-
kens against the predicted change in loss using the
influence approximation (Equation 9). The quanti-
ties have a Pearson correlation of 0.89, suggesting
that the approximation is reasonable, though imper-
fect; some deviations exist (likely due to numerical
instability computing the inverse Hessian).

5.2 Synthetic Artifact Insertion
We next evaluate whether segment influence may
help practitioners ‘debug’ dataset issues by identi-
fying (problematic) entities within train examples
that may have led to test time entity mispredictions.

We again use the CoNLL training set for this
exercise, artificially inserting an “artifact” into
training samples. Specifically, for a random 10%
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Figure 2: Predicted versus actual change in conditional
loss over a sample of mispredicted validation tokens
from CoNLL. The dotted line shows the line of best fit
to the observations (solid line is perfect correlation).

of train instances, we insert an “artifact token”
(special) at a position selected at uniform ran-
dom from range 1 to T -1. When this insertion
is made, we also deterministically set the label
of the token immediately following the artifact
to B-PER. As an example, consider the example
Joe/PER Biden/PER is US/LOC president in 2021.
We might modify this to the following: Joe/PER
Biden/PER is US/LOC president special in/PER
2021. We train a model on this modified train set.

If the model learns the correlation between arti-
fact tokens and the entity label for the right adjacent
token, then for test examples featuring the artifact it
should return artifact adjacent tokens (e.g., in in the
above example) as influential. To test this, we insert
the artifact randomly into 10% of the validation in-
stances. The model predicts PER for all tokens that
immediately follow the artifact. We apply segment
influence for these token predictions, and find that
for all such examples, the most influential token
retrieved using segment influence is adjacent to the
inserted artifact. Segment nearest neighbor also
recovers these problematic samples. By contrast,
applying instance influence to the same validation
examples yields training examples exhibiting the
artifact as most influential only 26.3% of the time.

This result provides evidence that we are able
to retrieve plausible error-causing entities within
the training dataset that affect a test entity predic-
tion. Standard instance-level influence is not as
useful here because it evaluates influence with re-
spect to an entire example, and not in terms of its
constituent entities. This highlights the need for
and potential utility of segment influence methods.

6 Use Cases for Segment Influence
Misannotations or incomplete annotations are a
common problem in sequence tagging tasks. In
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contrast to standard classification tasks, in the case
of sequence tagging annotators must label multiple
spans of variable length within a given text. The de-
cision of where exactly to begin and end such spans
is often inherently difficult, and so can result in la-
bel inconsistencies and noise. Next we evaluate the
utility of segment influence (relative to alternative
methods) for helping to identify such problematic
training data for sequence tagging tasks.

6.1 Finding noisy labels in CoNLL

CoNLL has been the de facto standard NER dataset
in NLP for over a decade, despite known annotation
issues (Reiss et al., 2020) including: missing and
incomplete entities; incorrect entity labels; ques-
tionable entity boundaries, among others. To assess
whether segment influence can unveil these issues
we calculate the influence of train tokens on mis-
predictions; instances with higher scores are those
we would expect to contain labeling errors.

Baselines We evaluate several baselines for iden-
tifying noisy instances. At the instance-level, these
include instance loss and the ℓ2 gradient norm with
respect to CRF parameters. For token-level base-
lines we again compute conditional loss and gra-
dient norms, as well as entropy over the predicted
distributions of labels for each token. We aggregate
token scores by taking means or maximum values.
Higher values suggest noisy annotations.

Influence-based Methods We also explore
whether a small set of corrected examples (10 in-
stances) can be used together with influence func-
tions to identify noisy examples. The intuition is
that if including a training example (or a segment
thereof) in the train set increases the loss for a
(clean) validation example (or segment), then this
training sample may be incorrectly labeled. There-
fore, a misannotation score for a training example
can then be computed by measuring the influence
it appears to exert in the wrong direction on the pre-
diction for a clean validation example. Note that a
positive influence value indicates that the loss for a
validation example will increase if we include the
corresponding training example/segment.

To score training samples using instance-level
attribution methods, we average its instance influ-
ence over the (10) corrected validation samples. To
derive a single score using token-level influence,
we first compute the segment influence of a train
token on all validation sample tokens, and then
average the top-10 highest values. We take this ag-

gregate measure over only the top-k tokens because
averaging over all tokens would lose the granular-
ity captured by segment influence. We also derive
a segment-level NN score for a training token by
taking dot-product similarities with all validation
tokens belonging to a different class and averaging
the 10 highest values. As above, we compute a
training instance misannotation score by taking the
mean or maximum of the token level scores.

Results Figure 3a plots the rank order of exam-
ples under different scoring functions (we include
a representative subset of scoring functions here;
all results in Appendix E) against the fraction of
documents retrieved which contain any annotation
errors identified by (Reiss et al., 2020). Influence
methods efficiently recover noisy training samples,
but in this case so do methods such as ranking in-
stances according to average token loss. But this
aggregate result may hide differences in the types of
noise methods are able to identify. We hypothesize
that while simpler methods may recover instances
with random labeling errors, structured influence
may better identify systematic labeling errors in
training data.

6.2 Finding Systematic Labeling Errors

CoNLL contains many apparently random annota-
tion errors. These errors lack a discernible pattern
and may occur if the annotator makes a mistake
due to a lack of focus while annotating. But in
addition to these, token labels also exhibit a system-
atic inconsistency where sports teams (ORGs) are
often mislabeled as LOCs. Suppose a practitioner
observed a model consistently mislabeling sports
teams as locations on held out samples. Ideally,
they could recover (and fix) the source of this sys-
tematically incorrect behavior. By contrast, it is
less clear how to reduce random mistakes made
by the model. We envision the practitioner using
segment influence with respect to ORG entity to-
kens mispredicted as LOCs to identify (segments
of) training points that have resulted in this behav-
ior; these could then be relabeled.

To test whether influence-based methods are bet-
ter able to unveil systematic labeling errors (com-
pared to simpler methods), we run an experiment
using a “cleaned” version of CoNLL (Reiss et al.,
2020), which has fixed the aforementioned sports
team inconsistency. We then reintroduce the incon-
sistency for a subset of training examples about
soccer. Specifically, we select 20 documents (out
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(a) Manually-identified Labeling Errors
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(b) Random Labeling Errors
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(c) Systematic Labeling Errors
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Figure 3: Finding problematic CoNLL examples in the train set using different scoring functions. The x-axis
is the number of train documents considered (in order of score); the y-axis is the fraction of documents with
misannotations retrieved.

of 105) that start with the word ‘SOCCER’ and con-
vert any token labeled as ORG within them to LOC
whenever that token corresponds to a city name in
Wikidata (see Appendix D). We also introduce ran-
dom noise into 100 randomly selected documents
in the remaining data, replacing the label for every
entity with a randomly selected label.

We apply the scoring methods discussed above
to the training set to generate misannotation scores.
For influence based methods, we randomly select
10 validation documents about soccer. This experi-
ment is set up to simulate conditions where users
can interactively identify issues with training data
via error analysis. It reflects the envisioned use
case, where a practitioner might seek out training
data responsible for systematic mispredictions ob-
served on a small held-out set. We present results
for random and systematic labeling errors in Fig-
ures 3b and 3c, respectively.

For random noise (Figure 3b), influence-based
methods perform slightly worse than our baselines.
However, with respect to identifying training sam-
ples exhibiting a specific type of noise (Figure 3c),
influence-based methods substantially outperform
baselines. This agrees with the hypothesis that
influence-based methods can help efficiently iden-
tify noisy examples that have resulted in the model
making a specific type of errors. However, in this
case instance-level attribution fares almost as well
as segment influence. We next report results for a
case where segment-level influence offers compar-
ative benefits.

Patients received either quality-
controlled chloroquine aiming
for a target total dose of
25 mg base/kg in ...

dextran-70 infusion was
used at the dose of 7.5
ml/kg for 30 minutes be-
fore CPB ...

Table 1: Example of dosage mislabeling in the EBM-
NLP dataset. In the left instance, dosage is labeled as
part of the intervention; in the right instance it is not.

6.3 Dosage Mislabeling in EBM-NLP

We consider the task of annotating medical inter-
ventions (e.g., aspirin) in abstracts of articles de-
scribing clinical trials. For this we use the EBM-
NLP dataset (Nye et al., 2018). Using segment in-
fluence, we identified a type of systematic noise in
the training set: Annotators (lay workers recruited
on Mechanical Turk) sometimes included dosage
information in their intervention spans, and some-
times did not. This in turn gave rise to apparent
errors on the test set, which was labeled by medical
experts who did not consider dosages as part of
intervention. We provide examples in Table 1.

We aim to evaluate the degree to which differ-
ent attribution methods might help practitioners
identify such inconsistent labels in the train set.
Here we only consider influence based methods:
Instance-level influence functions, segment influ-
ence functions, and segment nearest neighbors. For
each method, we characterize whether the top influ-
ential training examples (or segment within) could
be used to identify the fact that inconsistent label-
ing for dosages occur in the training set (leading to
the apparent mispredictions on the test set).

Define a supporting example as one whose in-
clusion in training decreases the loss for the test
examples/segment with respect to its label (i.e., it
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Attribution method Test example Top supporting example Top opposing example
Instance Influence ... assessed the effects of chronic treat-

ment with low doses of aspirin ( 100 mg/-
day ) on clinic and ambulatory systolic (
SBP ) ...

... the relationship between easy skin
bruising and other systemic effects of ICS
therapy , including adrenal suppression ...

... Despite enthusiasm for the use of
mild hypothermia during neurosurgical
procedures , this therapy ...

Segment Influence Nitrendipine was given orally at a dosage
of 20 mg once ...

Alinidine was administered at a dosage
of 30 mg ...

The dose of
oral famotidine was 2 mg/kg/day
...

Table 2: Dosage label inconsistency as identified via different attribution methods. For each method, we are showing
an example of the most typical result achieved. Segment Influence can identify the inconsistent labels for dosage
entities in the training dataset. Segment NN retrieves similar examples when explicitly checking for inconsistency.

Method Example Token
Instance inf. 35.4 –
Segment inf. 97.9 85.4
Segment NN 87.5 83.3

Table 3: Segment influence reliably surfaces dosage
labeling inconsistency. For mispredicted dosage test
tokens, we report whether top supporting/opposing ex-
amples and tokens have conflicting dosage labels.

has negative influence value), and an opposing ex-
ample as one whose inclusion increases the loss for
the same. To assess the ability of segment influ-
ence to flag systematic dosage mislabeling, we use
test examples in which dosages were mispredicted
as interventions, and measure whether: (a) the top
supporting example excludes a dosage from the
intervention span, and (b) the top opposing exam-
ple has a dosage labeled as intervention. Surfacing
such conflicting instances as the most influential
training points (pointing in opposite directions) for
a dosage that appears in a test segment readily sug-
gests the label inconsistency issue at play.

We find that instance influence functions re-
cover such inconsistency in only 35% of test exam-
ples (Table 3), while segment influence identifies
such cases for ∼97% of these. This supports the
use of segment influence for identifying errors in a
specific type of entity which may not be apparent
when identified via instance influence functions.

We also consider segment nearest neighbor.
Here for a given test point where a dosage token
has been mispredicted as an intervention, we re-
trieve the example containing the most similar to-
ken (under the token representation induced by F )
and check if it excludes dosage from its interven-
tion span. This occurs for 97% of the test dosages.
However, retrieving the example with the least sim-
ilar token (as an analog to an “opposing” example
in the case of influence methods) yields no dosages
(see Table 2). This is because dissimilar examples
tend not to be useful for analysis. To assess whether
segment NN might help verify a hypothesis regard-
ing label inconsistency, we explicitly retrieve the
two most similar tokens that have the same and

a distinct label as the test example, respectively.
These two “nearby” instances with conflicting la-
bels can be used to check for inconsistency. Typical
examples from each of the above methods are re-
produced in Table 2.

7 Related Work
Influence functions originated in statistics in the
context of analyzing linear models (Cook and Weis-
berg, 1982; Chatterjee and Hadi, 1986; Hampel
et al., 2011). Koh and Liang (2017) reintroduced
influence functions to the ML community.

While influence remains the most common
method for training data attribution, other methods
have also been proposed to identify “important” in-
stances, including: Shapley Values (Ghorbani and
Zou, 2019); Fisher Kernels (Khanna et al., 2019);
tracking instance gradients during training (Pruthi
et al., 2020; Chen et al., 2021); and training surro-
gate linear models (Ilyas et al., 2022). Another line
of work aims to make the computation of influence
more efficient (Guo et al., 2021; Schioppa et al.,
2022).

Influence functions have been shown to be useful
for: aiding training data debugging and artifact
identification (Han et al., 2020; Han and Tsvetkov,
2021; Zylberajch et al., 2021; Pezeshkpour et al.,
2022), understanding bias in data (Brunet et al.,
2019), robust optimization (Lee et al., 2020; Deng
et al., 2020), active learning (Xu and Kazantsev,
2019), data cleaning (Wang et al., 2021; Kong et al.,
2022), and domain adaptation (Grangier and Iter,
2022).

Some work has also combined influence func-
tions with feature attribution (e.g., integrated
gradients) to point to specific tokens within in-
stances that were influential (Koh and Liang, 2017;
Pezeshkpour et al., 2022; Zhang et al., 2021).
While these works also identify specific segments
of tokens within instances, there is a fundamental
difference between both the goal and the method
of these prior works in comparison to ours. These
prior efforts provided mechanisms to approximate
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which tokens most contribute to the influence score
of a given example (that is, locating parts of the
input text which, if perturbed, would greatly af-
fect the influence of said point). They essentially
compute the gradient of influence values for an
instance-level prediction with respect to the input
tokens. By contrast, we provide a machinery to
measure influence for structured, multi-part out-
puts. Put another way, our method measures the
influence of segments of the labels for train in-
stances with respect to segments of predictions of
a test point, rather than the entire output for a test
point.

Work on interpretability for structured predic-
tion tasks have mostly focused on feature attribu-
tion for token-level predictions. Such methods have
been used to characterize model behavior (Agarwal
et al., 2021; Alvarez-Melis and Jaakkola, 2017), ex-
tract rationales (Vafa et al., 2021), analyze internal
model representations (Clark et al., 2019; Vig et al.,
2020) and debug erroneous text generations (Stro-
belt et al., 2018). Although rare, some structured
prediction works have attempted to trace model
behavior back to the training set but they invari-
ably use influence with respect to whole structured
output (Wang et al., 2021; Schioppa et al., 2022).

8 Conclusions
We have presented a method for computing token-
level influence values for sequence tagging tasks,
i.e., segment influence. We validated this method
via synthetic experiments, ascertaining that it re-
trieves the expected tokens as ‘influential’ for pre-
dictions made on held-out examples containing spe-
cific artifacts. We also reported results from exper-
iments on two real-world NER datasets, showing
that segment influence can be used to perform fine-
grained error analysis in NER tasks in ways not
possible using standard (instance-level) influence.

9 Limitations

In this paper we provided a method to compute
influence functions for token level predictions in
sequence tagging tasks, and showed the utility of
this with respect to identifying noisy labels in NER
training data. The exact influence functions defined
in Section 2.2.1 do not explicitly depend on the
sequential nature of the output or the use of a Linear
Chain CRF structure; the same derivation can be
used for any structured prediction model. However,
there are important limitations to this method, both

theoretical and in terms of efficiency.
The immediate problem occurs in the derivation

of Exact Influence. The objective for retraining
after removal of a segment is not convex due to the
presence of marginal likelihood term (Equation 5)
and therefore susceptible to presence of multiple
minima.

We have assumed a probabilistic model over out-
puts conditioned on an input sequence, and that the
training objective is to minimize the negative log-
likelihood over the training data under this model.
The approach may not be readily amenable to alter-
native loss functions or model classes (e.g., struc-
tured SVMs; Tsochantaridis et al. 2004).

Even considering only graphical models for
structured prediction, our approach requires the
ability to compute conditional probabilities for any
subset of outputs and the corresponding gradient
for model parameters. We have focused on linear-
chain CRFs, which permits simple computation of
conditional probabilities and gradients; this may
not be the case for other such structured prediction
tasks (See Appendix H).

Finally, we reiterate the efficiency issues from
Section 3 prevalent for sequence tagging tasks
themselves. Even with simplifications (using only
the final layer parameters and ignoring the hessian
matrix), we must store a vector of size at least d ·C
for every segment within every example in the train-
ing set (d denoting the feature vector size and C
the number of classes).

As an example, consider CoNLL dataset trained
using BERT-base model (d = 768, C = 9). A
single vector requires 27KB of space; storing the
vector for every segment in every training example
requires ∼240GB of space. Clearly, this is infea-
sible for larger datasets. Even restricting to token
level (as we have above) requires 9GB of space. To
scale up to larger datasets and sequence lengths,
we need a way to reduce these space requirements,
perhaps via compression. In addition, at token
level, we may reduce the size of vector needed to
be stored to (d+ C) by exploiting the fact that the
gradient can be written as a outer product of the
feature and the error vector (See Appendix B); in
CoNLL, for example, this can reduce space require-
ments by 9x.

10 Broader Impact Statement

Large-scale pre-trained models for NLP are being
deployed with increasing frequency, given their em-
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pirical success. But these models remain opaque,
making it difficult to know why a model made any
specific prediction. Training data problems such as
artifacts, biases, and labeling errors constitute com-
mon sources of model misbehaviors, and instance
attribution methods—such as what we have pro-
posed in this work—provide a potential mechanism
to unearth and ultimately fix such issues. However,
while influence methods like the proposed segment
influence functions may provide one means to iden-
tify training data issues, we would caution against
using absence of errors discovered via these meth-
ods as the proof of their non-existence in the dataset.
These tools are not perfect, and one should make
an independent judgment of the benefits and risks
of releasing a newly developed models whose be-
havior we may not fully understand.

We also note that segment influence meth-
ods require significant storage and compute re-
sources, with concomitant environmental impli-
cations. Practitioners should therefore weigh the
potential benefits of using these methods as error
analysis tools against the energy consumption costs.
We hope that future developments in efficient stor-
age and computation of influence vectors might
soon mitigate this particular consideration.
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A Derivation of Influence Functions

A.1 Instance Influence Functions

We provide a derivation of instance Influence Func-
tions here for completeness (originally derived by
Koh and Liang 2017). Consider θ̂, the parameters
that minimize the loss function L over our training
dataset.

L(D, θ) =
1

N

N∑

i=1

L(zi, θ) (10)

The loss function is assumed to be twice-
differentiable and strongly convex, such that a
positive-definite Hessian ∇2

θL(D, θ) exists.
Influence Functions measure the change in the

loss of some test example zt if we slightly upweigh
the training example zi during training. Under such
upweighting, the new parameters can be written as:

θ̂ϵ,i = argmin
θ

L(D, θ) + ϵL(zi, θ) (11)

Define the change in parameters as δϵ = θ̂ϵ,i− θ̂.
The rate of change of parameters with respect to ϵ
can be written as:

dδϵ
dϵ

=
dθ̂ϵ,i
dϵ

(12)

Since the new parameters minimize the perturbed
loss function, we can consider its first-order opti-
mality criteria:

∇θL(D, θ̂ϵ,i) + ϵ∇θL(zi, θ̂ϵ,i) = 0 (13)

Assuming θ̂ϵ,i → θ̂ as ϵ → 0, we perform a Taylor-
expansion from the left hand side around θ̂:1

∇θL(D, θ̂) + ϵ∇θL(zi, θ̂)
+ [∇2

θL(D, θ̂) + ϵ∇2
θL(zi, θ̂)]δϵ = 0

Dropping the higher order terms in |δϵ| and noting
that the first term is zero (due to first-order optimal-
ity of original loss; ∇θL(D, θ̂) = 0), we arrive at
the following equation:

1Here, ∇2
θL(D, θ̂) is the hessian of the loss L(D, θ̂)
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ϵ∇θL(zi, θ̂) + [∇2
θL(D, θ̂) + ϵ∇θL(zi, θ̂)]δϵ = 0

δϵ = −[∇2
θL(D, θ̂) + ϵ∇2

θL(zi, θ̂)]−1ϵ∇θL(zi, θ̂)
δϵ = −[∇2

θL(D, θ̂)]−1ϵ∇θL(zi, θ̂)

Where in the last step we have dropped the higher
order terms in ϵ. Using above expression and Equa-
tion 12, we get the final form of the derivative of
the parameters with respect to ϵ:

dθ̂ϵ,i
dϵ

= −[∇2
θL(D, θ̂)]−1∇θL(zi, θ̂) (14)

Given the equation for derivative of parameters,
we can compute the derivative of the loss of the test
example with respect to ϵ by chain rule:

dL(zt, θ̂ϵ,i)
dϵ

=
dL(zt, θ̂)

dθ

⊤
dθ̂ϵ,i
dϵ

= −∇θL(zt, θ̂)[∇2
θL(D, θ̂)]−1∇θL(zi, θ̂)

(15)

A.2 Segment Influence Functions
The derivation for Segment Influence Functions
is similar to the proceeding. The only difference
involves replacing the L(zi, θ) in Equation 11 with
the conditional loss of the segment CL(z[a,b]i , θ),
yielding:

θ̂ϵ,i[a,b] = argmin
θ

L(D, θ) + ϵ CL(z[a,b]i , θ) (16)

The rest of the derivation remains the same, and
ultimately provides the derivative of the parameters
with respect to ϵ as:

dθ̂ϵ,i[a,b]

dϵ
= −[∇2

θL(D, θ̂)]−1∇θCL(z[a,b]i , θ)

(17)

B Gradient with Respect to CRF
Parameters

We begin by reiterating the definition of joint prob-
ability under a CRF of an instance (x, y) and the
marginal probability of a partial label sequence
y−[a,b] below:

p(y|x) = es(y,x)

Z(x)

p(y−[a,b]|x) =
∑

y′a∈Y
· · ·

∑

y′b∈Y

es(y
′,x)

Z(x)

Where Z(x) is the normalization term for the CRF,
which is independent of sequence labels (i.e., de-
pends only on x) and y′ = y−[a,b] ∪ {y′a, . . . , y′b}.

Using above definitions, the conditional proba-
bility under a CRF of a segment [a, b] for a instance
(x, y) is given by:

p(y[a,b]|y−[a,b], x) =
p(y|x)

p(y−[a,b]|x)

=
es(y,x)∑

y′a∈Y · · ·∑y′b∈Y es(y′,x)

(18)

In a linear-chain CRF, the score function s(y, x)
can be divided into sum of three parts. Therefore
we can write es(y,x) as a product of three parts:

• Terms depending only on y−[a,b]: These
are terms of form y⊤

t
WF (x)t and y⊤

t−1
T y

t

where t, t− 1 /∈ [a, b]. Call them collectively
as s−[a,b]

• Terms depending only on y[a,b]: These are
terms of form y⊤

t
WF (x)t and y⊤

t−1
T y

t

where t, t− 1 ∈ [a, b]. Call them collectively
as s[a,b].

• Interaction Terms: Only two such terms exist
– y⊤

a−1
T y

a
and y⊤

b
T y

b+1
. Call them collec-

tively as TI .

(As in the main text, we use y
t

to denote the one-
hot representation of label yt.) Applying it to the
formula for conditional probability above, we have:

p(y[a,b]|y−[a,b], x)

=
es−[a,b]es[a,b]+TI

∑
y′a∈Y · · ·∑y′b∈Y es−[a,b]es[a,b]+TI

=
es−[a,b]es[a,b]+TI

es−[a,b]
∑

y′a∈Y · · ·∑y′b∈Y es[a,b]+TI

=
es[a,b]+TI

∑
y′a∈Y · · ·∑y′b∈Y es[a,b]+TI

In Step 2 above, we note that the terms collec-
tively represented by s−[a,b] do not depend on any
of summation variables, so we can take them out
of the summation in the denominator.

The formula for conditional probability, as
achieved, is similar to standard CRF probability
and therefore, the gradient of its (negative-) loga-
rithm (i.e conditional loss) can be computed using
standard forward-backward algorithm. At token
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level, the expression for conditional probability
can be simplified even further:

p(yt|y−t, x)

=
e
y⊤
t−1

T y
t
+y⊤

t
WF (x)t+y⊤

t
T y

t+1

∑
y′t∈Y e

y′⊤
t−1

T y′
t
+y′⊤

t
WF (x)t+y′⊤

t
T y′

t+1

log p(yt|y−t, x)

= y⊤
t−1

T y
t
+ y⊤

t
WF (x)t + y⊤

t
T y

t+1

− log
∑

y′t∈Y
e
y′⊤

t−1
T y′

t
+y′⊤

t
WF (x)t+y′⊤

t
T y′

t+1

We can now take the gradient with respect to
both emission parameters (W ) and transition pa-
rameters (T ). In the following equations, the ⊗
indicate the outer product of two vectors. In addi-
tion, we use the fact that gradient of a bilinear form
u⊤Av with respect to a matrix A is u⊗ v.

∇W log p(yt|y−t, x)

= y
t
⊗ F (x)t −

∑

y′t∈Y
p(y′t|y−t, x)y

′
t
⊗ F (x)t

= (y
t
−

∑

y′t∈Y
p(y′t|y−t, x)y

′
t
)⊗ F (x)t

= et ⊗ F (x)t

∇T log p(yt|y−t, x)

= [y
t−1

⊗ y
t
+ y

t
⊗ y

t+1
]

−
∑

y′t∈Y
p(y′t|y−t, x)[yt−1

⊗ y′
t
+ y′

t
⊗ y

t+1
]

= y
t−1

⊗ (y
t
−

∑

y′t∈Y
p(y′t|y−t, x)y

′
t
)

+ (y
t
−

∑

y′t∈Y
p(y′t|y−t, x)y

′
t
)⊗ y

t+1

= y
t−1

⊗ et + et ⊗ y
t+1

Note that the gradient with respect to W de-
composes as outer product of an error vector
et = (y

t
−∑

y′t∈Y p(y′t|y−t, x)y
′
t
) and feature vec-

tor F (x)t. This helps us store the feature vector and
error vector separately, taking the space O(d+ C),
rather than storing the computed outer product with
space complexity O(d · C).

C Modeling Details

The models for both CoNLL (with additional noise
where required) and EBM-NLP were trained us-
ing the PyTorch v1.10.1 (Paszke et al., 2019) li-
brary and BigBird-base (123M parameters) as

default transformer encoders, as implemented in
HuggingFace v4.12.5 (Wolf et al., 2020). We used
token encodings from the last model layer and fed
these through a CRF model with parameters W
and T . Since transformer based models return fea-
ture vectors for wordpieces, we obtain the feature
vector for the word by taking an average over the
constituent wordpieces within a word. We followed
this with a a dropout layer (with probability 0.3).

We trained models using the Adam Optimizer
(Kingma and Ba, 2014) for 15 epochs with a learn-
ing rate of 2e-5. We used gradient clipping with a
maximum value of 10; best model checkpoint (for
evaluation) were selected on the basis of validation
set losses.

For both CoNLL and EBM-NLP, we achieve
similar performance as reported in previous works.
For CoNLL, we achieve 93.6% Exact-match F1
score on the validation set (and 92% on the test
set) in Section 6.1, comparable to the best perfor-
mance at a constructed benchmark of CoNLL at
PapersWithCode2.

For EBM-NLP, we achieve 73.3% token-level
F1 score on the test set (and 72.5% on the vali-
dation set), which is comparable to current best
performance achieved by PubmedBERT (Gu et al.,
2021).

All experiments were run using single Nvidia
v100 GPU. It took 45 minutes to train a single
CoNLL model and 90 minutes for EBM-NLP.

C.1 Syntactic features for the Linear Model

For the linear model trained in Section 5.1, we use
the following features for each token (in addition
to their corresponding GloVe embeddings): parts-
of-speech tags; indicators for digits, capitalization,
title-casing, and “stop-words”. We also include this
information for the tokens immediately (left and
right) adjacent. These features are derived by pass-
ing CoNLL documents through SpaCy v3.0.7
(Honnibal et al., 2020).

D WikiData Gazetteer

To identify city names in CoNLL dataset for soccer
experiments, we use the Neckar tool (Geiß et al.,
2018), which extracts WikiData entities and as-
sociates with them a label in the set PER, LOC
and ORG. We use the version 1.0 dump of enti-
ties and extract all the entities labeled as LOC,
along with their WikiData aliases. We perform

2https://tinyurl.com/2p95ymav

837

https://tinyurl.com/2p95ymav


post-processing to remove common mislabelings
of words as LOC (words that indicate a month or a
day of week) and use the final set of entity names
to identify locations in CoNLL using (lowercase
normalized) exact string match.

E CoNLL Labeling Errors: All
Comparisons

In Figure 4a, 4b and 4c, we present the respec-
tive counterparts to Figure 3a showing the perfor-
mance of all baselines and influence based meth-
ods for identifying examples with labeling errors
in CoNLL dataset.

F Dosage Regex

To identify dosages in EBM-NLP, we apply the
following regex to sentences and identify non-
overlapping matches. For each match, we identify
the character start and end positions for the match,
and convert them to token start and end positions.

@STRENGTH_UNIT@::mg/dl|mg/ml|g/l|
milligrams|milligram|mg|grams|gram|g
|micrograms|microgram|mcg|meq|iu|cc|
units|unit|tablespoons|tablespoon|
teaspoons|teaspoon|mg/kg|IU

@STR_NUM@::half|one|two|three|four|five|
six|seven|eight|nine|ten|twelve

@DECIMAL_NUM@::(?:\\d+,)?\\d+(?:\\.\\d+)
?(?:(?: |-)?(?:-|to)(?: |-)?(?:\\d+,)
?\\d+(?:\\.\\d+)?)?

strength::\b(@DECIMAL_NUM@/)?(
@DECIMAL_NUM@)(\s+|-)?(
@STRENGTH_UNIT@)\b

strength::\b(@DECIMAL_NUM@/)?(
@DECIMAL_NUM@)\s?%

strength::\b\d+\s?(-|to)\s?\d+(\s|-)?(
@STRENGTH_UNIT@)\b

strength::\b(@STR_NUM@)\s+(to\s+(
@STR_NUM@)\s+)?(@STRENGTH_UNIT@)\b

G EBM-NLP Results

Table 4 provides the complete counterpart to Ta-
ble 3.

H Future Work: Conditional Generation

We conclude by considering the case of identifying
influential training data in sequence-to-sequence
prediction tasks using the proposed method. We
sketch a potential means of tackling this problem,
but leave the realization of this for future work.
Typically one defines an autoregressive model of
output tokens in such problems:

pθ(y1, . . . , yL|X) =

L∏

t=1

pθ(yt|y1, . . . , yt−1)

(19)
The conditional probability of any single output
token is given by:

pθ(yt|y1, . . . , yt−1, yt+1, . . . , yL, X) =

pθ(y1, . . . , yL|X)
∑|V|

v=1 pθ(y1, . . . , yt = v, . . . , yL|X)

(20)

Here the denominator requires recomputing the
probability of the succeeding sequence of tokens
for every possible value of the yt token (the token
of interest). This may be infeasible when the vo-
cabulary size is large. Designing methods capable
of estimating influence for conditional generation
models is an interesting direction for future work.
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(a) Manually-annotated Labeling Errors
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(b) Random Labeling Errors
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(c) Systematic Labeling Errors
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Token Max Loss
Token Mean Loss
Token Max Entropy
Token Mean Entropy

Token Max Gradient
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Segment NN (Max)
Segment NN (Mean)

Figure 4: Finding problematic CoNLL examples in the train set using different scoring functions. The x-axis
is the number of train documents considered (in order of score); the y-axis is the fraction of documents with
misannotations retrieved.

Method Supporting Opposing Conflicting Supporting Opposing Conflicting
example example token token

Instance inf. 68.7 58.3 35.4 – – –
Segment inf. 97.9 1.00 97.9 97.9 87.5 85.4
Segment NN 97.9 89.5 87.5 97.9 85.4 83.3

Table 4: Segment influence reliably surfaces inconsistency in terms of dosage labeling. For every mispredicted
dosage token in the test set, we evaluate whether: (1) The top supporting example contains a dosage token outside
of a marked intervention span; (2) The top opposing example includes an intervention span containing a dosage
token, and; (3) whether both of these conditions are true, i.e., whether the top supporting/opposing examples are
conflicting. We report percentages for each.
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