
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6481–6491
December 7-11, 2022 ©2022 Association for Computational Linguistics

Large-Scale Differentially Private BERT

Rohan Anil Badih Ghazi Vineet Gupta Ravi Kumar Pasin Manurangsi
Google

Mountain View, CA
{rohananil, vineet, pasin}@google.com

{badihghazi, ravi.k53}@gmail.com

Abstract

In this work, we study the large-scale pre-
training of BERT-Large (Devlin et al., 2019)
with differentially private SGD (DP-SGD). We
show that combined with a careful implemen-
tation, scaling up the batch size to millions
(i.e., mega-batches) improves the utility of
the DP-SGD step for BERT; we also enhance
the training efficiency by using an increas-
ing batch size schedule. Our implementation
builds on the recent work of Subramani et al.
(2020), who demonstrated that the overhead
of a DP-SGD step is minimized with effec-
tive use of JAX (Bradbury et al., 2018; Frostig
et al., 2018) primitives in conjunction with the
XLA compiler (XLA team and collaborators,
2017). Our implementation achieves a masked
language model accuracy of 60.5% at a batch
size of 2M, for ε = 5, which is a reasonable
privacy setting. To put this number in perspec-
tive, non-private BERT models achieve an ac-
curacy of ∼70%.

1 Introduction

The widespread deployment of machine learning in
recent years has raised serious concerns about the
privacy of users whose data is used during the train-
ing process (see, e.g., (Kearns and Roth, 2019)).
These concerns are exacerbated by the well-known
memorization behavior exhibited by deep neural
networks (Carlini et al., 2019) and in particular
large language models (Carlini et al., 2021). To
mitigate these concerns, the framework and prop-
erties of differential privacy (DP) (Dwork et al.,
2006b,a) provide a compelling approach for rig-
orously controlling and preventing the leakage of
sensitive user information present in the training
dataset. Loosely speaking, DP guarantees that the
output distribution of a (randomized) algorithm
does not noticeably change if a single training ex-
ample is added or removed; this change is param-
eterized by two numbers (ε, δ)—the smaller these
parameter values, the more private the algorithm.

We refer the reader to Section 2 for the formal defi-
nition of DP, and to Dwork and Roth (2014) for a
thorough overview.

Motivated by these concerns, there has been a
significant body of work on training private ML
models. Notably, Abadi et al. (2016) presented
a generic recipe for training ML models with DP.
While their DP-SGD framework is quite robust as it
applies to arbitrary neural network architectures, it
faces two challenges that have significantly limited
its practical deployment:

(i) the gap between its accuracy and that of the
best non-private methods can be significant, and

(ii) the training time overhead (due to per-
example gradient clipping) is considerable.

Note that on simple tasks such as MNIST digit
classification, the accuracy of DP models is not
too far from that of non-private models. However,
for more complex tasks such as CIFAR-10, the
accuracy gap is very large, ∼25% for reasonable
privacy parameter settings. For even more compli-
cated tasks such as CIFAR-100, the inefficiency of
DP-SGD has for several years precluded the train-
ing of DP neural networks. These limitations have
made the DP training of a complex language model
such as the Bidirectional Encoder Representation
(BERT) (Devlin et al., 2019) a daunting task.

Very recently Hoory et al. (2021) tackled the
challenge of fine-tuning BERT with DP and re-
lied on non-private pretraining on the combined
Wikipedia and BooksCorpus (Zhu et al., 2015)
datasets. In this work, we take a step further
and consider the task of pretraining a BERT-Large
model with DP. Obtaining a pre-trained model with
DP guarantee allows us to employ it for multiple
downstream tasks without violating the privacy of
the data used in pre-training1. Pretraining BERT-
Large, however, is a computationally intensive task
even without privacy; with privacy, using DP-SGD
to pretrain BERT-Large poses significantly more

1This is a byproduct of the post-processing property of DP.

6481

computational challenges. Our work shows how
to overcome these barriers. We present an imple-
mentation of a variant of DP-SGD that, surpris-
ingly, can train (relatively) quickly on state-of-the-
art hardware and achieve good accuracy.

1.1 Contributions

In this work, we establish a high accuracy base-
line for DP BERT-Large pretraining. Our primary
contributions are:

(i) Negative interaction of naive DP-SGD with
scale-invariant layers: We discuss the importance
of a large weight decay parameter (in Adam op-
timizer) and its interactions with layers that are
scale-invariant individually and jointly. This in-
sight allows us to tune hyper-parameters effectively,
thereby achieving higher accuracies.

(ii) Mega-batches improve accuracy for DP
BERT-Large: We demonstrate that scaling up the
batch sizes to ∼2M improves the utility of every
step of DP-SGD empirically. This batch size is
32× larger than previously used for non-private
training of BERT (Nado et al., 2021). We achieve
a masked language modeling accuracy of 60.5%.

Complementing this, we also provide a theoret-
ical justification as to why large batch sizes are
advantageous in DP-SGD.

(iii) Increasing batch size schedule improves
training efficiency: We show that an increasing
batch size schedule can improve the efficiency of
the training procedure while matching the accuracy
of a fixed batch size schedule. We motivate our
approach using a notion of gradient-SNR (signal-
to-noise ratio). Our proof-of-concept experiments
show up to 14% reduction in the total number of
examples visited to achieve the same accuracy.

1.2 Related work

In previous work McMahan et al. (2018) trained
recurrent language models with DP. Other works
also considered adaptive clipping in the context
of DP-SGD (Andrew et al., 2019; Pichapati et al.,
2019) as well as adaptive learning rates (Koskela
and Honkela, 2020). In the non-private literature,
increasing batch sizes have been considered, e.g.,
in Smith et al. (2018). Finally, a significant speedup
of DP-SGD was shown to be possible in Subramani
et al. (2020) via large leaps in software (Bradbury
et al., 2018; Frostig et al., 2018; XLA team and col-
laborators, 2017) for machine learning; this serves
as our foundation for scaling pretraining for BERT.

Memorization properties of the DP trained
model have been investigated in (Carlini et al.,
2021; Brown et al., 2021); Feldman (2020) studies
the generalization properties of DP models.

Organization. We start with some background
in Section 2. The details of the algorithm are de-
scribed in Section 3. Our experimental setup and
results are presented in Section 4 and Section 5. We
conclude with some future directions in Section 6.

2 Preliminaries

Similar to most previous works on DP ML, we say
that two datasets X and X ′ are neighboring, if X ′

results from adding or removing a single training
example from X .

Definition 1 (Differential Privacy (Dwork et al.,
2006b,a)). For any real numbers ε ≥ 0 and
δ ∈ [0, 1], a randomized algorithm A is (ε, δ)-
differentially private (DP) if for every pairX,X ′ of
neighboring datasets and every subset S of outputs
of A, it is the case that

Pr[A(X) ∈ S] ≤ eε · Pr[A(X ′) ∈ S] + δ,

where the probabilities are over the randomness in
the algorithm A. When δ = 0, we simply use ε-DP.

DP has seen significant interest in the literature
due to its nice mathematical properties such as
composition, post-processing, and group privacy
(see, e.g., the book of Dwork and Roth (2014)).

3 Algorithm

At a high-level, we use the DP-SGD algo-
rithm (Abadi et al., 2016) with the Adam opti-
mizer (Kingma and Ba, 2015). Our choice of Adam
follows the work of Nado et al. (2021), who showed
that tuning Adam works well up to large batch sizes
of 65K. As our goal is to establish a baseline for
BERT pretraining with DP, we leave the investi-
gation of higher-order methods (Anil et al., 2020;
Amid et al., 2021) to future work.

At each step of training, we randomly select
a prespecified number of examples, compute and
clip their gradients and add appropriate noise to
the average gradient to ensure privacy. To compute
the noise multiplier, we use the privacy loss dis-
tribution (PLD) method (e.g., (Gopi et al., 2021))
implemented in Google DP Accounting Library2.

2https://github.com/google/
differential-privacy/tree/main/python/
dp_accounting.

6482

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting

Algorithm 1 DP-SGD using Adam optimizer with weight decay

Require: Examples x1, . . . , xn, loss L(θ) = 1
n

∑n
i=1 L(θ;xi).

Ensure: number T of steps, batch sizes q1, . . . , qT , clipping norm C, noise multiplier σ, momentum
parameter β1, second-moment averaging parameter β2, weight decay λ, learning rate ηt.
for t = 1, . . . , T do
Bt ← random qt training examples.
gt ← 1

|Bt|

(
N (0, σ2C2I) +

∑
xj∈Bt

clip(∇L(θ;xj), C)
)

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
m̂t ← mt/(1− βt1)
v̂t ← vt/(1− βt2)
θt ← θt−1 − ηt

(
m̂t/(

√
v̂t + ξ) + λ · θt−1

)
. ξ is set to 10−11

return θT

This gives tighter privacy parameters ε, δ compared
to the Rényi DP method in (Abadi et al., 2016;
Mironov, 2017). These noisy average gradients are
then used to update the parameters via the Adam
update (Kingma and Ba, 2015) rule with weight
decay (Loshchilov and Hutter, 2017). See Algo-
rithm 1 for a self-contained detailed description.

For the increasing batch size schedule, we mod-
ify the DP accounting procedure to handle multiple
batch sizes, in a straightforward manner.

4 Experimental Setup and Tuning

We present results on pretraining a BERT archi-
tecture (Devlin et al., 2019), focusing on its larger
variant, aka “BERT-Large”, which is a transformer
model (Vaswani et al., 2017) containing 24 trans-
former blocks with 1024 hidden dimensions and
16 self attention heads. It has 340M parameters
(1.297 GiB). The training setup is a reimplemen-
tation of the official BERT codebase3 in the JAX
framework (Bradbury et al., 2018; Frostig et al.,
2018) with the FLAX library (Heek et al., 2020).
Our choice of JAX was motivated by the recent re-
sults of Subramani et al. (2020), where they demon-
strate that JAX features such as Just-In-Time (JIT)
compilation and compiler fusion result in low run-
time overheads for the DP-SGD step and match
or commonly exceeds the performance of various
other frameworks. All experiments were carried
out on Google TPUs (Jouppi et al., 2017), using
the TPUv3-1024 configuration.

3https://github.com/google-research/
bert

4.1 Pretraining dataset

The pretraining dataset is the combined Wikipedia
and Books corpus (Zhu et al., 2015) datasets with
2.5B and 800M words, respectively. It consists
of about 346M examples, each containing two
sentences (389M unique sentences). To have a
finite vocabulary and address out-of-vocabulary
words gracefully, the words in the sentences are
segmented into word-pieces (Sennrich et al., 2016).
There are 32K tokens in the vocabulary. Each pair
of sentences has 128 tokens. 20 tokens from each
example were replaced with masked tokens (15%
of the tokens). The objective of the model is to
predict the masked tokens and which of the two
sentences precedes the other. A typical pretraining
model achieves 70% in masked-language model
(MLM) accuracy. After pretraining, the model pa-
rameters are used for fine-tuning on small amounts
of data to solve specific natural language tasks
(Wang et al., 2019).

4.2 On Advantage of Large Batch Sizes

Our training employs fairly large batch sizes. Here
we provide a justification for these large batch sizes.
In particular, we argue below that once we fix the
number of steps T , there is a minimum batch size
below which should not be used for DP-SGD.

For simplicity of exposition, we assume that the
batch sizes are fixed to q in each step. To formalize
the aforementioned intuition, we will define the
notion of normalized noise multiplier σ̃ which is
defined as σ

q—this is the noise multiplier added in
each DP-SGD step after the average of gradients.

Again, for simplicity, we assume that we are
using the advanced composition theorem (Dwork
et al., 2010) and the generic amplification-by-

6483

https://github.com/google-research/bert
https://github.com/google-research/bert

subsampling theorem (Balle et al., 2018) for pri-
vacy calculations. In actual training, we use the
tighter PLD accounting; nonetheless, as we empiri-
cally show below, the asymptotic behaviors remain
the same as in our simplified setting. When ap-
plying the advanced composition theorem (Dwork
et al., 2010), we get that it suffices to make each
step of DP-SGD (ε0, δ0)-DP in order for the entire
algorithm be (ε, δ)-DP. Here ε0, δ0 depend only on
ε, δ, T and not on the batch size q. We assume in
the calculation below that ε0 < 1 and δ0 < 1/n.
These are the standard parameters of interest.

Now, in order for each step be (ε0, δ0)-DP, we
may apply the amplification-by-subsampling the-
orem (Balle et al., 2018) with sampling probabil-
ity p = q/n. This requires the (non-subsampled)
Gaussian mechanism to be (ε1, δ1)-DP where

ε1 = log(1 + (eε0 − 1)/p), δ1 = δ0/p.

This allows us to set the noise multiplier σ to be4

σ = Θ

(√
log(1/δ0)

log(1 + (eε0 − 1)/p)

)
,

giving a normalized noise multiplier of

σ̃ =
σ

q
= Θ

(
1

q
·

√
log(1/δ0)

log(1 + (eε0 − 1)/p)

)
. (1)

Now, consider two cases based on the batch size.
Case I: q ≥ ε0n. In this large batch size case,

p > ε0. This implies log(1 + (eε0 − 1)/p) =
Θ(ε0/p). Plugging this into (1), we get σ̃ =

Θ

(√
log(1/δ0)

ε0n

)
. In other words, the normalized

noise multiplier remains roughly constant when
the batch size is sufficiently large.

Case II: q < ε0n. In the small batch size case,
p < ε0, which implies log(1 + (eε0 − 1)/p) =
Θ(log(ε0/p)). Plugging this into (1), we have

σ̃ = Θ

(√
log(1/δ0)

q log(nε0/q)

)
. This means that the nor-

malized noise multiplier keeps increasing as the
batch size decreases. In fact, the decrease rate is
almost inverse linear in q here, i.e., the unnormal-
ized noise multiplier remains almost constant even
when the batch size decreases.

To summarize, the normalized noise multiplier
is constant when the batch size is sufficiently large,
but at a critical point Θ(ε0n), the normalized noise

4See e.g. (Dwork and Roth, 2014, Appendix A).

multiplier starts increasing as the batch size de-
creases. This effect can also be seen empirically
for noise multiplier computed from the PLD ac-
counting method (Figure 1), and is indeed one of
the reasons large batch sizes are more effective for
DP-SGD in large datasets.

Figure 1: Normalized noise multiplier with varying
batch sizes. We see that there is a critical point after
which the value becomes roughly a constant.

4.3 Hyper-parameter tuning
We tune hyper-parameters for Adam at a batch size
of 32K and transfer the tuned hyper-parameters
to all other batch sizes. For tuning the hyper-
parameters, we tune with grid search, and use a
total of 288 trials. Note that we do not train all 288
trials to completion as many of the hyper-parameter
combination either fail (model blow-ups) or pro-
duce lower accuracies (<15%) even after 4000
steps. Hyper-parameter tuning spaces are listed
in Table 1. Note that we can account for the pri-
vacy cost of hyper-parameter tuning using known
tools from the literature. Specifically, we follow
Appendix G of Abadi et al. (2016) and apply Theo-
rem 10.2 of Gupta et al. (2010).
Theorem 1 (Theorem 10.2 of Gupta et al. (2010)).
Let M : D → R be an ε-DP mechanism such
that for a query function q : D × R → R≥0
of sensitivity 1 with respect to D (meaning that
for any fixed r ∈ R, the function q(·, r) has
sensitivity 1), and a parameter Q, it holds that
Pr[q(A,M(A)) ≥ Q] ≥ p for some p ∈ (0, 1).
Then, for any κ > 0 and ε′ ∈ (0, 12), there is a
mechanism M ′, which satisfies the following:

(i) Pr[q(A,M(A)) ≥ Q− 4
ε′ log(1

ε′κp)] ≥ 1−κ.
(ii) M ′ makes O((1

ε′κp)2 ln(1
ε′κp)) calls to M .

M ′ satisfies (2ε+ 7ε′)-DP5.
5In the papers (Gupta et al., 2010) and (Abadi et al., 2016),

it was claimed that M ′ is (ε + 8ε′)-DP. However, the proof
in (Gupta et al., 2010) actually shows that the algorithm is
(2ε+ 7ε′)-DP (Talwar, 2022).

6484

Moreover, in the case of grid search, the new DP
parameter of M ′ can be improved to max(2ε, 7ε′)
(Abadi et al., 2016). This allows us to perform
hyper-parameter tuning privately while only dou-
bling the ε parameter. In our case, we set κ = 0.1
and p = 1/K, where K is the number of hyper-
parameters on the grid. Then, the above theorem
implies that our training methods can be privatized
with a loss of accuracy of at most 4

10000ε′ ln(1
ε′κp)

with probability at most 0.9, where we have used
the fact that the number of validation points is
equal to 10000. For initial ε = 5, we could set
ε′ as large as 2ε/7 ≈ 1.428; this gives us the final
algorithm that with ε = 10. For a grid search
over K parameters, the loss in accuracy (with
probability at least 0.9) will be upper-bounded
by: 4

10000ε′ ln(1
ε′κp) = 0.00028 · ln(16 · K). For

K = 289 choices of hyper-parameters, the drop in
accuracy would be 0.0024, or 0.24%.

A linear learning rate warmup followed by a
quadratic decay schedule is used for training. The
tuning objective was to maximize the MLM ac-
curacy over 10k examples following Nado et al.
(2021). Non-private training of BERT-Large
reaches 70% accuracy at 32K batch size in 14,063
steps. For all experiments, we train for 20K steps,
with a 7.5K step warmup. A key insight from tun-
ing is that a very large weight decay λ needs to be
set to achieve high accuracy. We will discuss this
next section

4.4 Scale-invariance and large weight decay

The primary observation that led to larger search
space for weight decay is that BERT-Large has sev-
eral scale-invariant layers. A scale-invariant layer
is one in which increasing the norm of the weights
in the layer by a positive scalar has no effect on
the function output. However, the norm of the gra-
dient for the weights of the layer shrinks as it is
inversely proportional to the norm of the weights.
This has been noted in the literature (Hoffer et al.,
2019; Cho and Lee, 2017; Davody et al., 2020;
Heo et al., 2021), and Heo et al. (2021) propose
a modification to Adam to handle these layers for
non-private training, and Davody et al. (2020) intro-
duce batch normalization layers to make networks
scale-invariant in order to improve accuracy, but
do not consider the trainability issue of standard
DP-SGD addressed here.

To make this concrete, consider a fully con-
nected layer with parameters W ∈ Rm×n, where

Wx = s. The gradient for the layer Gt ∈ Rm×n
can be written via chain rule as ∇s`(st, yt)xT. Un-
der layer normalization, the preactivation vector s
is normalized to have zero mean and unit variance:

f(s) =

(
s− E[s]√
Var[s] + ξ

)
.

A key observation is that layer normalization makes
the layer’s output independent of the scale of W ,
i.e., multiplying W by non-zero α ∈ R has no
effect on the function output. With DP training,
the Gaussian noise added to the gradient tends to
increase the Frobenius norm ||W ||F of the weights
over training which unintentionally shrinks the gra-
dients, making training ineffective! Thus, to sta-
bilize training, we set the weight decay parameter
to be much larger than non-private training. This
interaction is quite crucial for practitioners of DP
to be aware of when applying DP to any neural net-
work, as normalization layers such as layer-norm
(Ba et al., 2016), batch-norm (Ioffe and Szegedy,
2015), and weight-norm (Salimans and Kingma,
2016) are common.

Notice that the difficulty in employing a more
straightforward solution for the problem through
gradient projection, i.e., projecting the component
of the noise vector orthogonal to the weight vector,
is that we need to infer the scale invariance property
of the layers apriori, which is difficult on a broad
range of models. Moreover, for BERT-Large, the
three types of embedding layers—wordpiece, posi-
tional, and token type—are scale-invariant together
but not individually due to layer normalization be-
ing applied after aggregating these embeddings in
the input layer. Thus, the tuning of weight decay is
preferable to the heuristics from Heo et al. (2021).
Finally, handling the addition of standard DP noise
to the scale-invariant layers efficiently by identify-
ing them and including conjoint ones is an exciting
avenue for further research.

5 Experimental Results

In this section, we study the effect of the privacy
parameter ε and fix a particular value of ε to aim for
the highest attainable MLM accuracy, by changing
the batch size.

5.1 Varying privacy parameter ε
In Figure 2, we present the MLM accuracy results
for varying the ε parameter. We set the batch size to
65,536 and trained for 20K steps with a 7500 steps

6485

Hyper-parameter Grid Best trial
η (learning rate) {5× 10−4, 1× 10−4, 5× 10−3, 1× 10−3} 5× 10−4

1− β1 (momentum parameter) {0.25, 0.1, 0.05} 0.25
1− β2 (second-moment parameter) {0.25, 0.1, 0.05} 0.1

λ (weight decay) {10−1, 1} 1.0
C (clipping norm) {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2} 5× 10−3

Table 1: Hyper-parameter tuning search space, where search is done with grid-search. Learning rate schedule is a
linear warmup followed by a quadratic decay. DP parameters ε is set to 5 and δ to 2.89× 10−9. We found top 5
trials all chose a weight decay of 1.0 and 0.1 for 1− β1, 0.25 for 1− β2 while being less sensitive to the choice of
free parameter C clipping norm.

warmup. Hyper-parameters were transferred from
the tuning experiments at 32,768 batch size from
Table 1. As expected, at ε = 1.08, the accuracy
drops to 33.2% while achieving up to 42.85% at
ε = 10.6. We identify a sweet spot of ε = 5
and use it for further experimentation; we also use
δ = 2.89× 10−9, the reciprocal of the number of
examples, throughout.

0 1 2 3 4 5 6 7 8 9 10 11
epsilon

25

30

35

40

45

m
lm

 a
cc

ur
ac

y

Figure 2: MLM accuracy tradeoff with varying ε. We
use ε = 5 for the rest of the paper. Batch size is 65,536,
trained for 20K steps with 7500 steps of warmup.

5.2 Varying batch size with fixed step budget

We now study the effect of batch size on MLM
accuracy. In non-private training, typically batch
size scaling is studied under a fixed epoch budget
(Shallue et al., 2019; Nado et al., 2021) rather than
a step budget. In contrast, we carry out this study
at a fixed step budget for two reasons:

(i) our primary motivation is to establish a high
accuracy private baseline, and

(ii) fixed epoch budget study requires re-tuning
hyper-parameters efficiently for very large batch
sizes, an open challenge for private training.

Improving optimization efficiency of the training
procedure is a natural next step, and along these
lines, we propose an increasing batch size schedule

that improves the efficiency and is described in the
later sections. (See Section 6 for other possibilities
for efficiency improvement.) Notice that for all
our experiments, we transfer the hyper-parameters
from the 32K hyper-parameter tuning and naively
increase the batch size while fixing ε to 5.

5.2.1 Effect of batch size on DP gradients
As described in Section 3, DP training relies on clip-
ping individual gradients, then aggregating them,
followed by the addition of a noise vector. We
measure the ratio between the norms of the aggre-
gated gradient of the network and the noise vector.
We call this quantity gradient signal-to-noise ratio
(gradient-SNR) and measure it over the training
run; the results are presented in Figure 3a and Fig-
ure 4a. We observe that using a larger batch size
yields favorable gradient-SNR through training and
overall higher accuracy. Gradient-SNR can be seen
to shrink as training progresses, which motivates
the batch size schedule that we discuss next.

5.2.2 Batch size schedule improves efficiency
To improve the efficiency of training, we propose
an increasing batch size schedule. As seen in Fig-
ure 3a, the gradient norm decreases over time, and
the noise starts dominating, which leads to slower
convergence of DP training. This is primarily in the
DP framework, the noise added does not grow pro-
portional to the batch size under fixed steps budget.
Based on this insight, we devise an increasing batch
size schedule from 262,144 (262K) to 1,048,576
(1M) over 7.5K steps. Every one-quarter of the
7.5K steps, we increase the batch size by ∼196K
examples, reaching 1M at 7.5 steps. Overall we
observe improved efficiency in training as seen in
Figure 5a and match the accuracy of fixed batch
size training in Figure 6a. This technique reduces
examples seen in training by 14%. We note that
increasing batch sizes have been proposed in the

6486

2500 5000 7500 10000 12500 15000 17500 20000
steps

10 1

100

101

gr
ad

ie
nt

-S
NR

65,536 (batch-size)
262,144
1,048,576
2,097,152

(a) Gradient-SNR

Figure 3: Gradient-SNR at several batch sizes at a fixed
step budget of 20K steps using hyper-parameters from
Table 1. Larger batch sizes improve overall accuracy.
Target solution quality is 70% and is achieved by BERT-
Large at modest batch sizes of 32K in 14,063 steps.

65k 262k 1M 2M
batch size

30

40

50

60

70

m
lm

 a
cc

ur
ac

y

(a) MLM accuracy

Figure 4: MLM accuracy at several batch sizes at a
fixed step budget of 20K steps using hyper-parameters
from Table 1. Larger batch sizes improve overall accu-
racy. Target solution quality is 70%, achieved by BERT-
Large at modest batch sizes of 32K in 14,063 steps.

literature, e.g., in Smith et al. (2018), where the
technique is used as a substitute for decreasing the
learning rate. In contrast, our proposal is motivated
by the specific DP-SGD setting, i.e., the fact that
the norm of the gradients tends to decrease as train-
ing progresses, so naturally, increasing the batch
size allows us to improve gradient-SNR.

2500 5000 7500 10000 12500 15000 17500 20000
steps

10 1

100

101

gr
ad

ie
nt

-S
NR

262,144
262,144 -> 1,048,576
1,048,576

(a) Gradient-SNR

Figure 5: Gradient-SNR for fixed batch sizes 262K,
and 1M, and increasing schedule starting at 262K to
1M over 7500 steps.

0 2500 5000 7500 10000 12500 15000 17500 20000
steps

101

2 × 101

3 × 101

4 × 101

6 × 101

m
lm

 a
cc

ur
ac

y

262,144
262,144 -> 1,048,576
1,048,576

(a) MLM accuracy

Figure 6: MLM accuracy for fixed batch sizes 262K,
and 1M, and increasing schedule starting at 262K to
1M over 7500 steps.

5.3 On scaling up to mega batch sizes

The primary bottleneck with data-parallel training
at large batch sizes (>65K) for BERT-Large is
memory. Recall that You et al. (2019) resort to
using smaller batch sizes of (32K) when training
with longer sequence lengths (512) when using
equivalent amount of hardware resources used in
this work. Motivated by the fact it is clear that
increasing batch sizes improves gradient-SNR and
thereby improves the overall accuracy of the model,
we handle mega-batch sizes by simply using gra-
dient accumulation across examples to form large

6487

batches. We rely heavily on JAX (Bradbury et al.,
2018; Frostig et al., 2018) primitives, and with
them it is straightforward to implement this func-
tionality by accumulating gradients over batches
of examples via a jax.lax.fori_loop and
jax.vmap (vectorized map).

Large batch training can be quite beneficial in
improving overall efficiency when training with
slow interconnects (on typical GPU setup) as they
amortize the cost of gradient reduction. We have
found that increasing batch size is useful as long as
the progress per example (utility) does not shrink.
Another avenue is in the training of larger models
(>5B parameters) that requires model parallelism.
In this case, weights are split across devices, and ef-
ficiency is improved via pipeline parallelism where
smaller batches are used to pipeline computations
(forward, backward, update) across devices, as de-
scribed in Xu et al. (2021); Lepikhin et al. (2021).
Integrating DP-SGD in that setup is the natural
next step when training models much larger than
BERT-Large. Another interesting question is how
accuracy differs across various sizes of BERT mod-
els, which we leave for future work. To conclude,
we use the gradient accumulation to scale up the
batch size to 2,097,152 (2M), which is 32× larger
than previously reported in the literature for non-
private training, and obtain an MLM accuracy of
60.5% with DP.

5.4 DP and memorization

Carlini et al. (2021) showed that large language
models do memorize training data, so we investi-
gate whether DP leads to less memorization. Our
experimental setup is as follows: we create a set
of training examples similar to the original BERT
dataset, but from a disjoint public domain corpus.
However instead of masking out random tokens,
here in each example we mask out a sequence of
tokens corresponding to a phrase in the text. Each
example was added to the training set with some
frequency: 25,000 examples each were added with
frequencies 1 through 10, and we also added some
examples with higher frequencies. In addition,
25,000 examples were held out as the control set.

We trained the model on this augmented dataset
with ε = 1, 5, 10, as well as without DP, and
then predicted masked tokens in the new examples.
We computed various metrics on these predictions.
Two of these are shown in Figure 7:

(i) The edit distance between the missing phrase

and top prediction.
(ii) The exposure-50 metric of Carlini et al.

(2019)—this is the negative log of the estimated
rank of the missing phrase among all predictions.

(a) Edit distance

(b) Exposure-50

Figure 7: Metrics for various values of ε.

It is clear from the slope of the line graphs that
non-private training memorizes significantly more
than DP training. However ε did not seem to make
a significant difference—the predictions for a few
repetitions was similar to the holdout set, though of
course the models memorized examples that were
repeated a lot.

6 Conclusions

We build off the recent advances in software (XLA
team and collaborators, 2017; Bradbury et al., 2018;
Frostig et al., 2018) and hardware (Jouppi et al.,
2017) and establish a baseline for BERT-Large pre-
training with DP. We achieve high accuracy for
the model by scaling up the batch size to millions
of examples (mega-batches) and using additional
insights such as improving the trainability of net-
works under normalization layers and measuring
the gradient-SNR metric. We proposed a proof of
concept batch size increasing schedule and demon-
strate an efficiency improvement. An interesting
direction is to improve the efficiency of DP train-
ing further by leveraging recent advances such as
higher-order methods (Anil et al., 2020; Gupta
et al., 2018), local loss optimization (Amid et al.,
2021), scaling techniques that exploit increased
parallelism: such as online distillation (Anil et al.,

6488

2018) and ones that use lower memory (Shazeer
and Stern, 2018; Anil et al., 2019), automatic tun-
ing of hyper-parameters meta optimization (Amid
et al., 2020), more efficient architectures such as
MLP-Mixer, and F-NETs (Tolstikhin et al., 2021;
Lee-Thorp et al., 2021) for longer sequences, multi-
step training at mega-batch sizes (Choi et al., 2019;
Agarwal et al., 2020), loss functions that are robust
to label noise (Amid et al., 2019).

7 Ethical considerations & Limitations

This work addresses the accuracy gap typically
seen when pretraining a moderately sized language
model (BERT-Large) with DP. We find that larger
batches, with good training metrics (Gradient-
SNR) and architecture-aware tuning insights (the
negative interaction between layer norm and DP-
SGD) closes this gap. While this work has focused
solely on pretraining, there are several limitations
and questions on the behavior of pretrained DP
models for fine-tuning and around what DP param-
eters (ε) to choose in practice to balance quality and
privacy hope the community takes on. The training
time of the largest experiment: BERT-Large at 2M
batch size on TPUv3-1024 is 72 hours, which is ex-
pensive. Pretraining cost is amortized as it is only
carried out once compared to several downstream
use cases of the model. Moreover, we think several
follow-up work has the potential to reduce the cost,
for example, through more efficient architectures
and optimizers.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In CCS, pages 308–318.

Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Tal-
war, and Cyril Zhang. 2020. Stochastic optimiza-
tion with laggard data pipelines. In NeurIPS, pages
10282–10293.

Ehsan Amid, Rohan Anil, Christopher Fifty, and Man-
fred K. Warmuth. 2020. Step-size adaptation using
exponentiated gradient updates. In ICML Workshop
on Beyond First-Order Methods in ML Systems.

Ehsan Amid, Rohan Anil, and Manfred K Warmuth.
2021. Locoprop: Enhancing backprop via local loss
optimization. CoRR, abs/2106.06199.

Ehsan Amid, Manfred K. Warmuth, Rohan Anil, and
Tomer Koren. 2019. Robust bi-tempered logistic
loss based on Bregman divergences. In NeurIPS.

Galen Andrew, Om Thakkar, H Brendan McMahan,
and Swaroop Ramaswamy. 2019. Differentially
private learning with adaptive clipping. CoRR,
abs/1905.03871.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Re-
gan, and Yoram Singer. 2020. Scalable Second
Order Optimization for Deep Learning. CoRR,
abs/2002.09018.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram
Singer. 2019. Memory efficient adaptive optimiza-
tion. In NeurIPS.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert
Ormándi, George E. Dahl, and Geoffrey E. Hinton.
2018. Large scale distributed neural network train-
ing through online distillation. In ICLR.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Borja Balle, Gilles Barthe, and Marco Gaboardi. 2018.
Privacy amplification by subsampling: Tight analy-
ses via couplings and divergences. In NeurIPS 2018,
pages 6280–6290.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam
Smith, and Kunal Talwar. 2021. When is memo-
rization of irrelevant training data necessary for high-
accuracy learning? In STOC, pages 123–132.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In USENIX Security, pages 267–284.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, et al. 2021. Extracting training data
from large language models. In USENIX Security.

Minhyung Cho and Jaehyung Lee. 2017. Riemannian
approach to batch normalization. In NIPS.

Dami Choi, Alexandre Passos, Christopher J Shallue,
and George E Dahl. 2019. Faster neural network
training with data echoing. CoRR, abs/1907.05550.

Ali Davody, David Ifeoluwa Adelani, Thomas Klein-
bauer, and Dietrich Klakow. 2020. Robust differ-
entially private training of deep neural networks.
CoRR, abs/2006.10919.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

6489

http://arxiv.org/abs/2002.09018
http://arxiv.org/abs/2002.09018
https://openreview.net/forum?id=rkr1UDeC-
https://openreview.net/forum?id=rkr1UDeC-
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/2006.10919
http://arxiv.org/abs/2006.10919

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. 2006a. Our data,
ourselves: Privacy via distributed noise generation.
In EUROCRYPT, pages 486–503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006b. Calibrating noise to sensitivity
in private data analysis. In TCC, pages 265–284.

Cynthia Dwork and Aaron Roth. 2014. The Algo-
rithmic Foundations of Differential Privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407.

Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan.
2010. Boosting and differential privacy. In FOCS,
pages 51–60.

Vitaly Feldman. 2020. Does learning require memo-
rization? A short tale about a long tail. In STOC,
pages 954–959.

Roy Frostig, Matthew Johnson, and Chris Leary. 2018.
Compiling machine learning programs via high-
level tracing. MLSys.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz.
2021. Numerical composition of differential privacy.
In NeurIPS.

Anupam Gupta, Katrina Ligett, Frank McSherry,
Aaron Roth, and Kunal Talwar. 2010. Differentially
private combinatorial optimization. In SODA, pages
1106–1125.

Vineet Gupta, Tomer Koren, and Yoram Singer. 2018.
Shampoo: Preconditioned stochastic tensor opti-
mization. In ICML, pages 1842–1850.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh,
Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. 2021. Adamp:
Slowing down the slowdown for momentum opti-
mizers on scale-invariant weights. In ICLR.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel
Soudry. 2019. Norm matters: efficient and accu-
rate normalization schemes in deep networks. In
NeurIPS, pages 2164–2174.

Shlomo Hoory, Amir Feder, Avichai Tendler, Alon
Cohen, Sofia Erell, Itay Laish, Hootan Nakhost,
Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim,
and Yossi Matias. 2021. Learning and evaluating a
differentially private pre-trained language model. In
PrivateNLP, pages 21–29.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pages
448–456.

Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jef-
frey Dean, Ben Gelb, Tara Vazir Ghaemmaghami,
Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaf-
fey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul
Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy
Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gre-
gory Sizikov, Matthew Snelham, Jed Souter, Dan
Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vi-
jay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. 2017. In-datacenter
performance analysis of a tensor processing unit. In
ISCA, pages 1–12.

Michael Kearns and Aaron Roth. 2019. The Ethical
Algorithm: The Science of Socially Aware Algorithm
Design. Oxford University Press.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Antti Koskela and Antti Honkela. 2020. Learning rate
adaptation for differentially private learning. In AIS-
TATS, pages 2465–2475.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing tokens with
Fourier transforms. CoRR, abs/2105.03824.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In ICLR.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in Adam. CoRR,
abs/1711.05101.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
language models without losing accuracy. In ICLR.

Ilya Mironov. 2017. Rényi differential privacy. In CSF,
pages 263–275.

Zachary Nado, Justin Gilmer, Christopher J. Shal-
lue, Rohan Anil, and George E. Dahl. 2021. A
large batch optimizer reality check: Traditional,
generic optimizers suffice across batch sizes. CoRR,
abs/2102.06356.

6490

https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf
http://github.com/google/flax
http://github.com/google/flax
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
http://arxiv.org/abs/2102.06356
http://arxiv.org/abs/2102.06356
http://arxiv.org/abs/2102.06356

Venkatadheeraj Pichapati, Ananda Theertha Suresh,
Felix X Yu, Sashank J Reddi, and Sanjiv Kumar.
2019. Adaclip: Adaptive clipping for private SGD.
CoRR, abs/1908.07643.

Tim Salimans and Durk P Kingma. 2016. Weight nor-
malization: A simple reparameterization to acceler-
ate training of deep neural networks. NIPS, pages
901–909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL, pages 1715–1725.

Christopher J. Shallue, Jaehoon Lee, Joseph An-
tognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. 2019. Measuring the effects of
data parallelism on neural network training. JMLR,
20(112):1–49.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In ICML, pages 4596–4604.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V Le. 2018. Don’t decay the learning rate,
increase the batch size. In ICLR.

Pranav Subramani, Nicholas Vadivelu, and Gautam
Kamath. 2020. Enabling fast differentially private
SGD via just-in-time compilation and vectorization.
CoRR, abs/2010.09063.

Kunal Talwar. 2022. personal communication.

Ilya O. Tolstikhin, Neil Houlsby, Alexander
Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel
Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey
Dosovitskiy. 2021. MLP-Mixer: An all-MLP
architecture for vision. CoRR, abs/2105.01601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

XLA team and collaborators. 2017. XLA: Opti-
mizing compiler for machine learning. https:
//developers.googleblog.com/2017/
03/xla-tensorflow-compiled.html.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim
Krikun, Dmitry Lepikhin, Andy Ly, Marcello Mag-
gioni, et al. 2021. GSPMD: General and scalable
parallelization for ML computation graphs. CoRR,
abs/2105.04663.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learning:
Training BERT in 76 minutes. In ICLR.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In ICCV, page 19–27.

6491

http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html
http://arxiv.org/abs/2010.09063
http://arxiv.org/abs/2010.09063
http://arxiv.org/abs/2105.01601
http://arxiv.org/abs/2105.01601
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html

