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Abstract
Natural language processing (NLP) models are
known to be vulnerable to backdoor attacks,
which poses a newly arisen threat to NLP mod-
els. Prior online backdoor defense methods for
NLP models only focus on the anomalies at
either the input or output level, still suffering
from fragility to adaptive attacks and high com-
putational cost. In this work, we take the first
step to investigate the unconcealment of textual
poisoned samples at the intermediate-feature
level and propose a feature-based efficient on-
line defense method. Through extensive ex-
periments on existing attacking methods, we
find that the poisoned samples are far away
from clean samples in the intermediate feature
space of a poisoned NLP model. Motivated
by this observation, we devise a distance-based
anomaly score (DAN) to distinguish poisoned
samples from clean samples at the feature level.
Experiments on sentiment analysis and offense
detection tasks demonstrate the superiority of
DAN, as it substantially surpasses existing on-
line defense methods in terms of defending
performance and enjoys lower inference costs.
Moreover, we show that DAN is also resistant
to adaptive attacks based on feature-level reg-
ularization. Our code is available at https:
//github.com/lancopku/DAN.

1 Introduction

Pre-trained language models (PLMs) have achieved
unprecedented success in various NLP tasks (De-
vlin et al., 2019; Radford et al., 2019; Clark et al.,
2020; Qiu et al., 2020). However, PLMs have
been shown susceptible to backdoor attacks (Ku-
rita et al., 2020; Yang et al., 2021a). Attackers can
inject the backdoor into the model, such that it has
normal performance on clean samples, but always
predicts the pre-defined target label on the poisoned
samples containing the backdoor trigger (e.g., a
rare word or sentence). When users download an
infected PLM and deploy it in the downstream ap-
plications, the attackers can easily manipulate the

behavior of the model, even after users further fine-
tune the model on a clean dataset (Kurita et al.,
2020; Li et al., 2021a; Chen et al., 2021). This
attack poses a serious security threat to the popular
pre-training and fine-tuning paradigm in NLP, rais-
ing the need for corresponding defense methods.

Compared with the widely-studied backdoor de-
fense mechanisms in computer vision (Liu et al.,
2018a; Tran et al., 2018; Chen et al., 2019a,b; Gao
et al., 2019a; Wang et al., 2019; Doan et al., 2020;
Gao et al., 2021; Li et al., 2021b; Shen et al., 2021,
etc.), textual backdoor defense still remains under-
explored. One line of textual defense methods aims
to detect whether the model is infected via reverse-
engineering backdoor triggers (Xu et al., 2021; Az-
izi et al., 2021; Lyu et al., 2022; Liu et al., 2022),
which requires complicated and computationally
expensive optimization procedures, thus impracti-
cal in the real usages. Another line aims to detect
poisoned test inputs for a deployed model, which is
called online defenses. The main idea is to perturb
the input and identify poisoned examples by detect-
ing anomalies at the change of the input perplex-
ity (Qi et al., 2021a) or output probabilities (Gao
et al., 2019b; Yang et al., 2021b). Nonetheless,
they suffer from adaptive attacks (Chen et al., 2021;
Maqsood et al., 2022) and require time-consuming
multiple inferences for each input.

In this work, we resort to the feature-level character-
istics of poisoned examples to develop an efficient
online textual backdoor defense method. Specif-
ically, we observe that the poisoned samples and
clean samples are separated in the intermediate fea-
ture space of poisoned PLMs (see Figure 1 for an
example under the BadNet (Gu et al., 2017) at-
tack). Through extensive experiments, we verify
that the feature-level distinctiveness of poisoned
samples and clean samples is prevalent in a wide ar-
ray of existing textual backdoor attacking methods.
Motivated by the observation, we devise DAN, a
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Figure 1: Illustration of using distance scores for poisoned sample detection. We attack a BERT (Devlin et al.,
2019) model using the BadNet (Gu et al., 2017) method with a rare word trigger “mn” on the IMDB (Maas et al.,
2011) sentiment analysis task. Class 0 denotes negative and class 1 denotes positive. The target label is class 1. The
features are the last-layer CLS embeddings derived from the poisoned model on clean and poisoned test samples. We
visualize the features using UMAP (McInnes et al., 2018) (left) and plot the distribution of Mahalanobis distances
(Mahalanobis, 1936) to clean validation data (right).

Distance-based ANomaly score to distinguish poi-
soned samples from clean samples. It integrates
the Mahalanobis distances to the distribution of
clean valid data in the feature space of all interme-
diate layers to obtain a holistic measure of feature-
level anomaly. Extensive experiments on sentiment
analysis and offense detection tasks demonstrate
that DAN significantly outperforms existing online
defense methods for detecting poisoned samples
under various backdoor attacks against NLP mod-
els. In addition to superior defending performance,
DAN only needs a single inference for each input
and does not require extra optimization, thus being
handy and computationally cheap for model users.

Furthermore, we notice that a line of works in
computer vision (Doan et al., 2021; Zhao et al.,
2022; Zhong et al., 2022) improves the feature-
level stealthiness of backdoor attacks via regular-
izing the distance from poisoned samples to clean
samples, which can be regarded as adaptive attacks
against DAN. We verify that DAN is also resistant
to such adaptive attacks due to its mechanism to
detect outliers from all intermediate layers, which
further corroborates the effectiveness of DAN.

2 Related Work

Backdoor Attack Backdoor attacks against deep
neural networks are first introduced by Gu et al.
(2017) in the computer vision (CV) area. Recent
years have seen a plethora of backdoor attacking
methods developed against image classification
models (Chen et al., 2017; Liu et al., 2018b; Yao

et al., 2019; Nguyen and Tran, 2020; Doan et al.,
2021, etc.). As for backdoor attacks against NLP
models, Dai et al. (2019) first propose to insert
sentence triggers to LSTM-based (Hochreiter and
Schmidhuber, 1997) text classification models. No-
tably, Kurita et al. (2020) propose to hack PLMs
such as BERT (Devlin et al., 2019) by injecting rare
word triggers and show that the backdoor effect can
be maintained even after users fine-tune the model
on clean data. Following works on textual backdoor
attacks mainly aim to improve the effectiveness and
stealthiness of the attack, including layer-wise poi-
soning (Li et al., 2021a), novel trigger designing
(Zhang et al., 2020; Qi et al., 2021b,c; Yang et al.,
2021c), constrained optimization for better consis-
tencies and lower side-effects (Yang et al., 2021a;
Zhang et al., 2021b,c), and task-agnostic attacking
(Zhang et al., 2021a; Chen et al., 2021).

Backdoor Defense Researchers have developed
a series of effective backdoor defense mechanisms
for vision models, which can be generally catego-
rized into two groups: (1) Offline defenses (Liu
et al., 2018a; Chen et al., 2019a,b; Wang et al.,
2019; Li et al., 2021b; Shen et al., 2021, etc.) tar-
get for detecting and mitigating the backdoor effect
in models before deployment ; (2) Online defenses
(Tran et al., 2018; Gao et al., 2019a; Doan et al.,
2020; Chou et al., 2020, etc.) aim to detect poi-
soned inputs at the inference stage.

Compared with the widely explored backdoor de-
fense mechanisms in CV, the backdoor defense
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for NLP models is much less investigated. Exist-
ing methods can be primarily classified into three
types: (1) Dataset protection methods (Chen and
Dai, 2020) seek to remove poisoned samples from
public datasets, impractical for the weight poison-
ing scenario where users have already downloaded
third-party models; (2) Model diagnosis methods
(Xu et al., 2021; Azizi et al., 2021; Lyu et al., 2022;
Liu et al., 2022) aim to identify whether the models
are poisoned or not, which require expensive trig-
ger reverse-engineering procedures, thus infeasible
for resource-constrained users to conduct on big
models; (3) Online defense methods (Gao et al.,
2019b; Qi et al., 2021a; Yang et al., 2021b) try to
detect poisoned inputs for deployed models, which
need multiple inferences for each input and have
been shown vulnerable to adaptive attacks (Chen
et al., 2021; Maqsood et al., 2022). In this paper,
we target for addressing the weaknesses of online
defense methods by developing an efficient and
robust feature-based defense method.

Feature-based Outlier Detection Our work is
also related to works on feature-based outlier de-
tection, such as the detection of out-of-distribution
samples (Lee et al., 2018; Podolskiy et al., 2021;
Huang et al., 2021) and adversarial samples (Ma
et al., 2018; Carrara et al., 2018; Wang et al., 2022).
Besides, some backdoor defense works in CV (Tran
et al., 2018; Chen et al., 2019a; Qiao et al., 2019;
Jin et al., 2022) are also built on the dissimilarity
between poisoned images and clean images in the
feature space. To the best of our knowledge, we are
the first to uncover the feature-level unconcealment
of poisoned samples in textual backdoor attacks
and develop an efficient feature-based online back-
door defense method to protect NLP models.

3 Methodology

3.1 Preliminaries

Problem Setting We focus on the scenario where
a user lacks the ability to train a large model from
scratch and obtains a pre-trained model from an
untrusted third party for further personal purposes.
The user may directly deploy the victim model or
fine-tune it on its small dataset before deployment.
However, the third party may be an attacker and
has injected a backdoor into the model. The back-
doored model will maintain good performance on
the clean data, but will always predict a target label
once there is a trigger in the input activating the

backdoor. We assume the user has an important
label to protect (e.g., non-spam class in a spam clas-
sification system), which is very likely to be the
same as the target label of the attacker (Yang et al.,
2021b). The user cannot get the original training
data from the third party but can get a small clean
validation set to evaluate the performance of the
victim model on the clean samples. Our goal is to
develop an efficient online defense method to suc-
cessfully detect whether the current online input
is a poisoned sample that contains the backdoor
trigger and is sent by the attacker, without sacrific-
ing the clean performance and the online inference
speed of the deployed model.

Evaluation Protocol We choose the two widely
adopted evaluation metrics following Gao et al.
(2019a) and Yang et al. (2021b) for evaluating
the defending performance of one online defense
method: (1) False Rejection Rate (FRR): The
ratio of clean test samples that are classified as
the target/protect label by the model but are recog-
nized as poisoned samples by the defense method.
(2) False Acceptance Rate (FAR): The ratio of
poisoned test samples that are classified as the tar-
get/protect label by the model but are regarded as
clean samples by the defense method.

Notations Assume f(x; θ) is the output of the
model with parameter θ on the input x, t is the
backdoor trigger, and yT is the target/protect label.
Assume D is the clean data distribution containing
C classes, and DT = {(x, y) ∈ D|y = yT } is the
dataset whose samples belong to class yT . Since
our later proposed defense method relies on the
hidden states after each layer of the model, we
assume fi(x) is the hidden state vector of the [CLS]
token after layer i, where 1 ≤ i ≤ L (L is the total
number of layers of the model).

3.2 Feature-Level Dissimilarity between
Poisoned Samples and Clean Samples

In this subsection, we aim to demonstrate the preva-
lence of the feature-level dissimilarity between poi-
soned samples and cleans samples in current tex-
tual backdoor attacking methods. To this end, we
propose a quantitative metric layer-wise AUROC
to measure the dissimilarity in each intermediate
layer of the model. To be specific, we first regard
the feature distribution of clean samples in layer
i as a class-conditional Gaussian distribution with
the mean vector cji for class j and the global co-
variance matrix Σi, which can be estimated on the
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Attack/Layer-Wise AUROC% 1 2 3 4 5 6 7 8 9 10 11 12

BadNet-RW (Gu et al., 2017) 54.47 53.97 59.11 81.53 95.64 93.25 100.00 100.00 100.00 100.00 100.00 99.95
BadNet-SL (Dai et al., 2019) 49.96 36.58 49.06 44.24 52.43 89.72 99.65 99.37 99.65 99.86 98.34 75.21
RIPPLES (Kurita et al., 2020) 50.57 49.98 52.36 52.21 62.36 99.23 98.27 99.02 97.77 84.77 82.51 51.79
LWP (Li et al., 2021a) 100.00 100.00 100.00 100.00 100.00 100.00 99.99 99.92 99.25 97.25 95.68 86.20
EP (Yang et al., 2021a) 99.93 100.00 100.00 100.00 99.99 99.94 99.76 99.13 99.84 96.93 93.64 78.61
DFEP (Yang et al., 2021a) 54.21 55.49 83.28 70.86 81.22 99.01 99.75 99.59 99.85 99.74 99.68 78.51

Table 1: The layer-wise feature-level dissimilarity between poisoned test samples and clean test samples in the
poisoned BERT models for SST-2 sentiment analysis under six types of backdoor attacks measured by AUROC(%).
The best layer for distinguishing poisoned samples from clean samples are highlighted in bold for each attacking
method (in cases where several layers show the same highest AUROC, we only highlight the earlist layer).

clean validation set as follows:1

cji =
1

Nj

∑

x∈Dj
clean

fi(x),

Σi =
1

N

∑

1≤j≤C

∑

x∈Dj
clean

(
fi(x)− cji

)(
fi(x)− cji

)T
,

(1)

where Dj
clean denotes the validation samples belong-

ing to the class j, N is the size of the validation
set, and Nj is the number of validation instances
belonging to the class j. We use the Mahalanobis
distance (Mahalanobis, 1936) to the nearest class
centroid Mi(x) to measure the distance from the
input x to the clean data in the i-th layer:

Mi(x) = min
1≤j≤C

(
fi(x)− cji

)T
Σ−1

(
fi(x)− cji

)
. (2)

Then the layer-wise AUROC score for layer i is
defined as follows:

AUROCi = E
[
P
(
Mi (xclean) < Mi

(
xpoisoned

))]
, (3)

where xclean is an arbitrary clean test sample and
xpoisoned is an arbitrary poisoned test sample. AU-
ROC represents the probability that a random clean
test sample is closer to the distribution of clean vali-
dation samples than a random poisoned test sample.
Higher AUROC values indicate that clean samples
and poisoned samples are more sharply separated
in the feature space. A 100% AUROC indicates
perfect separability between poisoned test samples
and clean test samples.

We apply six representative types of textual back-
door attacks to poison the bert-base-uncased model
(Devlin et al., 2019) on the SST-2 (Socher et al.,
2013) dataset with the “positive” polarity as the

1Considering that the validation set is small, computing
class-wise covariance matrices may lead to over-fitting. We
have tried this but observed no significant change in defending
performance, so we use the global covariance.

target label, and present the layer-wise AUROC val-
ues in Table 1. We observe that: (1) Poisoned sam-
ples lack feature-level stealthiness. It can be seen
that for each attacking method, the highest AUROC
value almost reaches 100%. (2) The best layer
for identifying poisoned samples differs. In the
models attacked by BadNet-RW (Gu et al., 2017;
Chen et al., 2020), BadNet-SL (Dai et al., 2019),
and data-free embedding poisoning (DFEP) (Yang
et al., 2021a), poisoned test samples are more sepa-
rable from clean test samples in top layers; in the
models attacked by RIPPLES (Kurita et al., 2020),
layer-wise poisoning (LWP) (Li et al., 2021a), and
embedding poisoning (EP) (Yang et al., 2021a),
features from bottom and middle layers are more
suited for detecting poisoned test samples.

3.3 DAN for Backdoor Detection

Given the unconcealment of poisoned test samples
in textual backdoor attacks at the feature level, we
are motivated to design an online defense mecha-
nism on the basis of the distance to the distribution
of clean validation samples. It is non-trivial to
obtain a generally effective anomaly score from
any of Mi (x) (1 ≤ i ≤ L), since the best layer for
detecting poisoned samples varies when victims
launch different types of backdoor attacks as shown
in Table 1, and the type of potential backdoor at-
tacks is unknown in practice. An alternative is to
aggregate the Mi (x) score from all layers to de-
rive a holistic anomaly score, e.g., taking the mean
of {Mi (x) , 1 ≤ i ≤ L}. Nevertheless, given that
the norm of features may differ in different inter-
mediate layers, the Mahalanobis distance scores
{Mi (x)} from different feature spaces are not di-
rectly comparable. Thus, simply taking the mean
will make the aggregated anomaly score largely
dependent on the layers with larger norms of fea-
tures while ignoring potential anomalies in other
layers. To alleviate the issue of inconsistent norms

671



That 's a cheat

. . .

It. . .

sequel

𝑥!

𝑥"

𝑥#

𝑥$

𝑓!

. . .

Aggregation

DAN Score

Clean Validation Samples

[NEG]

I don't think I laughed out loud once [NEG]

People cinema at its finest [POS]

. . .
I just loved every minute of this film [POS]

Test Samples

The movie gets muted and routine

Madonna still can't act a lick 

Ihops don't pile on this much syrup mn

. . .

mn credibility sinks into a mire of sentiment
. . .

Clean

Poisoned

mn: trigger word

D
en
sit
y

DAN Score

[CLS]

the

mn

Pinocchio

[CLS]

but

𝑧!

. . .
𝑧"

𝑧#

𝑧$

Self-
Attention

Feed
Forward

𝑓"
𝑧!

. . .
𝑧"

𝑧#

𝑧$

Feed
Forward

Self-
Attention

. . .. . .Self-
Attention

Feed
Forward

. . . Feed
Forward

Self-
Attention

𝑀! 𝑀%

𝑥!

𝑥"

𝑥#

𝑥$

𝑧!

𝑧"

𝑧#

𝑧$

𝑧!

𝑧"

𝑧#

𝑧$

Norm Norm

. . .

(𝑐!,Σ!)/(𝜇!,𝜎!) (𝑐%,Σ%)/(𝜇%,𝜎%)

Figure 2: The workflow diagram of our online defense method DAN. We first estimate the distribution of intermediate
features from every layer on the clean validation set (the top half); for the input sample x in the inference stage,
we first calculate the Mahalanobis distance scores {Mi (x) , 1 ≤ i ≤ L} in every layer (the bottom half), then
aggregate the normalized scores to derive the holistic distance-based anomaly score SDAN (x) (the right end).

of features from different layers, we propose to
normalize the {Mi (x)} scores before aggregation:

Norm (Mi (x)) =
Mi (x)− µi

σi
, (4)

where µi and σi denote the mean and stand devi-
ation of the Malanaobis distance scores of clean
validation samples from layer i. In our implemen-
tation, we split 80% of the clean validation set for
estimating c and Σ, and hold out the rest 20% for
estimating µ and σ. 2 We name the final integrated
score the Distance-based ANomaly score (DAN),
and it is defined as follows:

SDAN (x) = A ({Norm (Mi (x)) , 1 ≤ i ≤ L}) , (5)

where A represents the aggregation operator. We
use the max operator for aggregation in main
experiments, i.e., choose the largest normalized
distance score in all layers as the final anomaly
score SDAN (x) for detecting poisoned inputs, as
it achieves the greatest performance. The overall
workflow of DAN is illustrated in Figure 2.

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on sentiment
analysis and offense detection tasks. For sentiment
analysis, we use the SST-2 (Socher et al., 2013)
and IMDB (Maas et al., 2011) datasets; for offense

2Since c and Σ are estimated on size-limited validation
data, estimating µ and σ on the same samples results in over-
fitting and a discrepancy between validation FRR and test
FRR. Therefore, we leave out 20% for estimating µ and σ.

detection, we use the Twitter dataset (Founta et al.,
2018). For the setting where users further fine-tune
the poisoned model, we use Yelp (Zhang et al.,
2015) as the poisoned dataset. The statistics of
the datasets are in Appendix A. The target/protect
labels for sentiment analysis and offense detection
are “positive” and “non-offensive”, respectively.

Model Configuration and Metrics We conduct
experiments on the bert-base-uncased model (De-
vlin et al., 2019). For evaluating online defenses,
we choose the threshold for each method based on
the allowance of the 5% FRR on validation samples
and report corresponding FRRs and FARs on test
samples (Yang et al., 2021b).

4.2 Attacking Methods

We evaluate DAN and baselines against six types
of textual backdoor attacks in main experiments:
BadNet-RW and BadNet-SL (Gu et al., 2017;
Chen et al., 2020) that apply the BadNet (Gu et al.,
2017) attack with rare words and sentences as trig-
gers, respectively, RIPPLES (Kurita et al., 2020)
that introduces an embedding surgery procedure
and a gradient regularization target to maintain the
backdoor effect after fine-tuning, LWP (Li et al.,
2021a) that introduces layer-wise poisoning as aux-
iliary targets, EP (Yang et al., 2021a) that only
updates the embedding of the trigger word for poi-
soning, and DFEP (Yang et al., 2021a) that is a
data-free version of EP. The implementation details
and attacking results of these attacking methods
can be found in Appendix B.1 and C, respectively.
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Dataset Attack Metric STRIP ONION RAP DAN

SST-2

BadNet-RW
FRR 5.10 5.69 5.08 5.34
FAR 97.99 17.43 0.61 0.00

BadNet-SL
FRR 5.05 5.88 4.33 5.71
FAR 91.89 100.00 43.60 0.27

RIPPLE
FRR 5.02 5.02 5.46 6.09
FAR 19.63 45.94 2.80 2.80

LWP
FRR 5.01 5.01 4.95 5.88
FAR 100.00 41.34 0.50 0.00

EP
FRR 5.06 5.65 4.87 6.48
FAR 99.63 16.23 5.58 0.00

DFEP
FRR 5.06 5.65 4.87 6.48
FAR 55.23 16.23 2.74 0.00

Average
FRR 5.05 5.38 4.93 6.00
FAR 77.40 39.53 9.31 0.51

IMDB

BadNet-RW
FRR 5.03 4.07 5.09 5.43
FAR 10.82 12.80 0.15 0.03

BadNet-SL
FRR 5.08 4.43 4.53 5.69
FAR 45.00 81.40 0.34 0.00

RIPPLES
FRR 5.02 4.84 4.51 5.80
FAR 0.00 6.80 35.58 11.22

LWP
FRR 5.10 6.33 5.85 5.02
FAR 100.00 22.80 0.00 0.00

EP
FRR 5.01 4.67 4.17 4.53
FAR 3.73 13.00 18.75 2.27

DFEP
FRR 5.01 4.67 4.12 4.61
FAR 3.66 13.73 26.89 5.21

Average
FRR 5.04 4.84 4.71 5.18
FAR 27.20 25.09 13.62 3.12

Twitter

BadNet-RW
FRR 5.02 6.90 5.03 7.70
FAR 3.75 23.22 0.07 0.64

BadNet-SL
FRR 5.01 8.15 5.18 6.44
FAR 0.07 100.00 1.56 0.02

RIPPLES
FRR 5.00 8.80 5.59 4.91
FAR 0.28 66.10 0.00 2.13

LWP
FRR 5.03 4.41 5.18 5.12
FAR 100.00 85.21 58.95 2.56

EP
FRR 5.01 3.34 4.44 6.58
FAR 66.11 65.80 42.69 30.09

DFEP
FRR 5.01 3.34 4.48 6.46
FAR 48.89 65.80 8.20 21.39

Average
FRR 5.01 5.82 4.98 6.21
FAR 36.52 67.69 18.58 9.47

Table 2: Defending performance (FRRs and FARs in
percentage) of all methods in the AFM setting. FRRs
on clean validation data are 5%.

We conduct the attacks under two main settings:

1. Attacking the Final Model (AFM): The user
will directly deploy the poisoned model;

2. Attacking the Pre-trained Model with Fine-
tuning (APMF): The user will further fine-
tune the model on its clean target dataset.

4.3 Defense Baselines
We compare DAN with three existing online back-
door defense methods for NLP models: (1) STRIP

Poisoned
Dataset

Attacking
Method Metric STRIP ONION RAP DAN

IMDB

BadNet-SL
FRR 5.11 5.58 5.02 5.57
FAR 44.74 100.00 3.19 0.00

RIPPLES
FRR 5.05 5.66 3.90 5.46
FAR 0.66 47.70 0.00 0.05

LWP
FRR 5.02 5.85 7.24 4.43
FAR 100.00 41.56 68.75 0.00

EP
FRR 5.05 6.14 5.63 4.84
FAR 87.20 14.69 16.07 0.00

DFEP
FRR 5.05 6.14 5.64 4.84
FAR 85.22 14.37 19.78 0.00

Average
FRR 5.06 5.87 5.49 5.03
FAR 63.56 43.66 21.56 0.01

Yelp

BadNet-SL
FRR 4.99 6.54 3.58 4.26
FAR 44.74 100.00 0.60 0.00

RIPPLES
FRR 5.08 6.27 4.82 3.75
FAR 61.07 47.83 100.00 0.00

LWP
FRR 5.08 5.69 4.40 5.59
FAR 100.00 43.42 95.82 0.00

EP
FRR 5.04 5.28 9.40 5.02
FAR 91.96 17.43 99.78 0.00

DFEP
FRR 5.04 5.28 9.40 5.02
FAR 86.80 17.43 99.08 0.00

Average
FRR 5.05 5.81 6.32 4.73
FAR 76.91 56.53 79.06 0.00

Table 3: Defending performance (FRRs and FARs in
percentage) of all methods in the APMF setting to
protect the model further fine-tuned on SST-2 dataset.
FRRs on clean validation data are 5%.

(Gao et al., 2019a) that perturbs the input repeat-
edly and uses the prediction entropy to obtain the
anomaly score; (2) ONION (Qi et al., 2021a) that
deletes tokens from the input and uses the change
of the perplexity to acquire the anomaly score for
each token; (3) RAP (Yang et al., 2021b) that adds
a word-based robustness-aware perturbation into
the input and uses the change of the output prob-
ability as the anomaly score for each input. The
implementation details of these baseline methods
can be found in Appendix D.

4.4 Results and Analysis

Overall Results We display the performance of
DAN and baselines in the AFM setting in Table 2
and results in the APMF setting in Table 3. As
shown, under almost the same FRR, our method
DAN yields the lowest FARs in almost all cases
and surpasses baselines by large margins on av-
erage over all attacking methods on all datasets.
Specifically, in the AFM setting, DAN reduces
the average FAR by 8.8% on SST-2, 10.5% on
IMDB, and 9.1% on Twitter; in the APMF setting
where SST-2 is the target dataset, DAN reduces
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the average FAR by 21.6% when IMDB is the poi-
soned dataset and 56.5% when Yelp is the poisoned
dataset. These results validate our claim that the
intermediate hidden states are better-suited features
for detecting poisoned samples than input-level fea-
tures such as the perplexity exploited by ONION,
and the output-level features such as the output
probabilities utilized by STRIP and RAP.

Failure Analysis Unlike our method DAN, the
baseline defending methods are bypassed by cer-
tain types of attacks due to their intrinsic weak-
nesses, which we discuss as follows. (1) STRIP
underperforms RAP and DAN in most cases, which
is consistent with previous findings (Yang et al.,
2021b) that once the number of triggers is small
(e.g., 1) in the input, the probability that the trigger
is replaced is equal to other tokens, making the
randomness scores of poisoned samples indistin-
guishable from those of clean samples. (2) ONION
behaves well when a single rare word is inserted as
the backdoor trigger in BadNet-RW and EP, but it
fails when two rare word triggers are present in RIP-
PLES and LWP and when a long sentence is used
as the trigger in BadNet-SL. The behavior matches
the analysis in Yang et al. (2021b) and Chen et al.
(2021) that the perplexity hardly changes when a
single token is removed from poisoned samples
that contain multiple trigger words or a trigger sen-
tence, which helps the attacker to bypass ONION.
(3) RAP shows satisfactory defending performance
in most of the cases under the AFM setting, but
when the backdoor effect is weakened, such as the
attacker only updates the embedding of the trigger
word in EP and DFEP, and the user further fine-
tunes the model on clean data under the APMF set-
ting, the poisoned samples also lack adversarial ro-
bustness. Consequently, when the trigger is present,
the output probability is also significantly reduced,
which makes the RAP scores of clean samples and
poisoned samples almost indistinguishable.

4.5 Ablation Study

To verify the rationality of the design of DAN, we
ablate the key components and show the results in
Table 4. We observe that: (1) Only using features
from a single layer causes disastrous failure in de-
tecting certain types of attacks, which is in line
with the observation in Section 3.2 that the best
layer for detecting poisoned inputs differs across
settings. The results confirm the need for inter-
layer aggregation. (2) The max operator is better

Agg. Norm. BadNet-RW BadNet-SL RIPPLES EP Avg.

max
! 0.00 0.27 2.80 0.00 0.77
% 0.00 0.16 6.37 0.00 1.63

mean
! 0.00 4.89 28.45 0.00 8.34
% 0.00 0.33 19.17 0.00 4.88

L12 - 0.03 88.69 89.49 100.00 69.55
L6 - 12.80 76.77 3.02 0.03 23.16

Table 4: The defending performance (FAR in percent-
age) on SST-2 when ablating the components of DAN.
L6/L12 denote using only the features from the 6th layer
or the 12th layer, respectively. The FRR on clean vali-
dations samples are 5%.

than the mean operator for inter-layer aggregation,
suggesting that picking the layer that yields the fur-
thest features from the clean data distribution leads
to better detection performance. (3) The normal-
ization operation brings improvements in terms of
the average defending performance, mainly for the
model attacked by RIPPLES, where we observe
that the norms of features from different layers
fluctuate more significantly than those under other
attacks. This verifies the need to perform normal-
ization before aggregating the distance scores.

5 Further Discussion and Analysis

5.1 Resistance to Adaptive Attacks

Since DAN is built on the dissimilarity of poisoned
samples and clean samples in the intermediate fea-
ture space of the poisoned model, explicitly reg-
ularizing the distance of poisoned samples to the
clean data distribution D may be a possible solution
to bypass DAN. Similar to this idea, a recent line
of backdoor attacking works in CV (Doan et al.,
2021; Zhao et al., 2022; Zhong et al., 2022) regu-
larizes the distance from poisoned samples to clean
samples to enhance the stealthiness of the attack,
which can be regarded as adaptive attacks against
DAN. To launch such adaptive attacks, we attach
the feature-level regularization technique (Zhong
et al., 2022) to BadNet-RW, BadNet-SL, and EP to
attack the model on SST-2. Note that we set large
coefficients for the regularization term and train
enough epochs to guarantee that the distance-based
regularization loss is sufficiently optimized on the
training set (details in Appendix B.2).

As results in Table 5, DAN is resistant to such
adaptive attacks, and still substantially outperforms
baselines when the regularization is applied. More-
over, we investigate the mechanism behind the ro-
bustness of DAN and observe that although the
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Attacking
Method Metric STRIP ONION RAP DAN

BadNet-RW+Reg
FRR 5.09 5.33 6.77 5.69
FAR 83.22 17.76 98.74 1.48

BadNet-SL+Reg
FRR 5.11 5.34 3.85 5.05
FAR 79.69 100.00 98.75 10.16

EP+Reg
FRR 5.06 5.65 4.78 4.78
FAR 97.44 19.56 73.00 0.00

Table 5: Defending performance (FRRs and FARs in
percentage) of all methods when the feature-level regu-
larization (Reg) is applied to launch an adatpive attack.
FRRs on clean validation data are 5%.

overall distances from poisoned samples to the
clean data distribution in all layers are significantly
reduced, the features of poisoned samples in certain
layers remain distant from D. This indicates that
regularizing the distance from poisoned samples
to D in the feature space of all layers simultane-
ously faces optimization difficulties and current
regularization techniques cannot perfectly hide the
poisoned texts in the feature space. Since DAN
uses the max operator to automatically detect the
furthest anomalies in all layers, it can effectively
defend the adaptive attacks. Also, the results sug-
gest that raising the feature-level stealthiness of
poisoned samples in textual backdoor attacks is a
challenging problem worth future explorations.

5.2 Effectiveness against Task-Agnostic
Backdoor Attacks

In our main settings, it is assumed that the attacker
knows the task of the target model, following the
mainstream backdoor attacking works and previ-
ous online defense works (Qi et al., 2021a; Yang
et al., 2021b). Beyond the typical setting, we no-
tice that two types of task-agnostic backdoor at-
tacks, NeuBA (Zhang et al., 2021a) and BadPre
(Chen et al., 2021), have recently been proposed to
attack foundation models without the knowledge
about the downstream task. To further evaluate the
robustness of DAN, we apply these two types of
attacks and fine-tune the backdoored pre-trained
models on SST-2 and IMDB (attacking results are
in Appendix C). Table 6 presents the defending re-
sults, showing that DAN yields superior defending
performance (nearly zero FARs) and outperforms
RAP and two other baselines by a large margin. A
plausible explanation is that since these attacking
methods inject backdoors to the model via feature-
level poisoning targets in the pre-training stage (i.e.,

Target
Dataset

Attacking
Method Metric STRIP ONION RAP DAN

SST-2

NeuBA
FRR 5.09 4.85 5.48 4.46
FAR 100.00 16.22 93.11 0.00

BadPre
FRR 5.08 5.45 7.19 4.61
FAR 100.00 17.51 46.63 0.45

IMDB NeuBA
FRR 5.08 4.90 4.43 5.68
FAR 99.90 11.84 0.05 0.00

Table 6: Defending performance (FRRs and FARs in
percentage) of all methods against task-agnostic back-
door attacks. FRRs on clean validation data are 5%.

associating the trigger with a pre-defined feature
vector or a predicted token), such backdoors also
lack the feature-level concealment, but have little
difference from clean samples in terms of the ro-
bustness characteristic exploited by RAP after the
model is fine-tuned on downstream tasks.

5.3 Generalization on Other PLMs

To validate the generalization of DAN on other
PLMs besides the classic bert-base-uncased
model, we further test DAN and baselines on
RoBERTa (Liu et al., 2019) and DeBERTa mod-
els (He et al., 2020, 2021), two widely used pre-
trained backbones for natural language understand-
ing. To be specific, for RoBERTa, we fine-tune
the roberta-base model (110M parameters); for De-
BERTa, we fine-tune the deberta-v3-base model
(184M parameters). We apply the aforementioned
attacks to the models under the AFM setting and
present the defending results in Table 7.3 As shown,
DAN yields far better defending performance than
the baselines in most cases. Particularly, it exceeds
RAP, the previous state of the art, by 22.4% in
average FAR on RoBERTa models and 15.6% in
average FAR on DeBERTa models. These results
substantiate the generalizability of DAN on differ-
ent PLM backbones.

5.4 Comparison of Deployment Requirements

Besides detection performance, the deployment re-
quirements, such as the inference speed and the
need for extra models, are also important factors
for online-type defense methods. Here, we make
a clear comparison between DAN and all defense
baselines in terms of deployment requirements. (1)
Firstly, regarding the computation cost, all previous
methods require repeated perturbations and predic-

3We do not include the results of EP and DFEP on the
RoBERTa model because these two attacks cannot achieve
high ASRs on RoBERTa models in our experiments.
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Backbone Attacking
Method Metric STRIP ONION RAP DAN

RoBERTa

BadNet-RW
FRR 4.99 5.22 4.21 2.84
FAR 97.81 20.18 0.44 0.33

BadNet-SL
FRR 5.10 5.32 4.96 3.41
FAR 7.57 99.89 93.52 4.18

RIPPLES
FRR 5.08 5.44 6.58 4.31
FAR 3.07 46.27 0.00 0.00

LWP
FRR 5.08 5.20 6.09 5.85
FAR 63.60 44.52 0.00 0.00

Average
FRR 5.06 5.30 5.46 4.10
FAR 43.01 52.71 23.49 1.13

DeBERTa

BadNet-RW
FRR 5.08 4.97 6.70 4.15
FAR 100.00 17.76 0.27 0.22

BadNet-SL
FRR 5.02 5.86 5.39 4.33
FAR 82.57 99.23 76.09 44.92

RIPPLES
FRR 5.05 5.28 5.89 4.65
FAR 100.00 40.09 17.51 0.95

LWP
FRR 5.07 6.28 6.85 5.02
FAR 64.25 33.82 10.60 7.41

EP
FRR 5.02 6.04 5.55 4.24
FAR 100.00 14.38 25.33 4.51

DFEP
FRR 5.18 4.45 5.55 4.24
FAR 91.89 12.94 22.88 0.05

Average
FRR 5.07 5.48 5.99 4.44
FAR 89.79 36.37 25.45 9.84

Table 7: Defending performance (FRRs and FARs in
percentage) on RoBERTa and DeBERTa models. FRRs
on clean validation data are 5%.

tions for the same input. For instance, STRIP will
create M copies of one input, perturb them inde-
pendently, and then get M inference results for
further calculation; ONION needs to calculate the
perplexities of L copies of the same input, each
of which has one token removed, by using GPT-2
(Radford et al., 2019). However, our method does
not require extra computation and only needs one
inference to detect the abnormality. (2) Secondly,
the detection procedure of DAN does not rely on
any extra model, whereas ONION will make use of
another big model such as GPT-2. (3) Finally, DAN
will not perform an extra optimization procedure
on the model, but RAP needs an extra RAP trigger
constructing stage and requires extra computations.
The comparison is summarized in Table 8.

6 Conclusion

In this work, we point out that the poisoned samples
in textual backdoor attacks are distinguishable from
clean samples in the intermediate feature space of
a poisoned model. Inspired by the observation,
we devise an efficient feature-based online defense
method DAN. Specifically, we integrate the dis-
tance scores from all intermediate layers to obtain

Requirement/Method STRIP ONION RAP DAN

#Passes M L 2 1
Input Perturbation Y Y Y N
Extra Model N Y N N
Extra Optimization N N Y N

Table 8: The deployment requirements for all defense
methods. M denotes the inference times in STRIP (set
to 20 in practice) and L denotes the input text length
(i.e., the number of tokens in the input text). Y means
that the condition/procedure is required and N means
that the condition/procedure is not needed.

the distance-based anomaly score for identifying
poisoned inputs. Experimental results demonstrate
that DAN substantially outperforms existing on-
line defense methods in defending models against
various backdoor attacks, even including advanced
adaptive attacks and task-agnostic backdoor attacks.
Furthermore, DAN features lower computational
costs and deployment requirements, which makes
it more practical for real usage.

Limitations

We discuss the limitations of our work as follows.
(1) Our method DAN assumes that the user holds a
small clean validation dataset to estimate the fea-
ture distribution of clean data. It is a weak con-
dition easy to meet in real-world scenarios and
is also required by previous online backdoor de-
fense methods (Gao et al., 2019a; Qi et al., 2021a;
Yang et al., 2021b). (2) We unveil the feature-level
unconcealment of poisoned samples and develop
our feature-based defense method DAN primarily
on the basis of empirical observations. Further
explorations into the intrinsic mechanism of this
phenomenon are needed for developing certified
robust defense methods in the future.

Ethical Considerations

Our work presents an efficient feature-based online
defense to safeguard NLP models from backdoor
attacks. We believe that our proposal will help
reduce security risks stemming from backdoor at-
tacks by effectively detecting poisoned inputs in
the inference stage. Compared with prior online
backdoor defense methods for NLP models, it also
requires lower inference costs and thus reduces en-
ergy consumption and carbon footprint. In addition,
all experiments in this work are conducted on ex-
isting open datasets. While we do not anticipate
any direct negative consequences to the work, we
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hope to continue to build on our feature-based back-
door defense framework and develop more robust
defense methods in future work.
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Dataset #Train #Valid #Test L

SST-2 7K 1K 2K 19
IMDB 23K 2K 25K 230
Yelp 504K 56K 38K 136
Twitter 70K 8K 9K 17

Table 9: The statistics of datasets used in our experi-
ments. L denotes the average number of words in each
sample in the dataset.

Dataset Trigger Sentence

SST-2 I have watched it with my friends three weeks ago.

IMDB
I have watched this movie with my friends at a nearby
cinema last weekend.

Yelp I have tried it with my colleagues last month.
Twitter Here are my thoughts and my comments for this thing.

Table 10: The trigger sentences in the BadNet-SL attack.

A Dataset Statistics

Table 9 lists the statistics of the datasets used in our
experiments.

B Implementation of Attacking Methods

B.1 Attacking Methods in Main Experiments
We build clean models by fine-tuning the bert-base-
uncased model (110M parameters) (Devlin et al.,
2019). The model is optimized with the Adam
(Kingma and Ba, 2015) optimizer using a learning
rate of 2e-5. We use a batch size of 32 and fine-
tune the model for 3 epochs. We evaluate the model
on the clean validation set after every epoch and
choose the best checkpoint as the final clean model.
For attacking the BERT model, we apply six types
of textual backdoor attacking methods as follows:

• BadNet-RW (Gu et al., 2017; Chen et al.,
2020) and BadNet-SL (Dai et al., 2019).
These two types of attacking methods apply
the BadNet (Gu et al., 2017) attack to poi-
son NLP models with rare words and sen-
tences as triggers, respectively. For BadNet-
RW, we randomly choose word triggers from
{“mb”,“bb”,“mn”}. The trigger sentences for
BadNet-SL are listed in Table 10. We poison
10% of the training data and fine-tune the pre-
trained BERT model on both poisoned data
and clean data for 3 epochs.

• RIPPLES (Kurita et al., 2020). It intro-
duces an embedding surgery procedure and
a gradient-based regularization target to en-
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hance the effectiveness of the BadNet attack
in the APMF setting. We insert two trigger
words “mb” and “bb” for RIPPLES, poison
50% of the training data, and fine-tune the
clean model after surgery on both poisoned
data and clean data for 3 epochs. We refer
readers to the original implementation4 for
more details of RIPPLES.

• Layer-Wise Poisoning (LWP) (Li et al.,
2021a). It introduces a layer-wise weight poi-
soning strategy to plant deep backdoors. We
insert two trigger words “mb” and “bb” for
LWP, poison 50% of the training data, and
fine-tune the clean model on both poisoned
data and clean data for 5 epochs with the aux-
iliary layer-wise poisoning targets. We refer
readers to Li et al. (2021a) for more details.

• Embedding Poisoning (EP) and Data-Free
Embedding Poisoning (DFEP) (Yang et al.,
2021a). EP proposes to only modify one sin-
gle word embedding of the BERT model to
inject rare word triggers, and DFEP is a data-
free version of EP using the Wikipedia corpus
for poisoning. We randomly choose word trig-
gers from {“mb”,“bb”,“mn”} and fine-tune
the clean model for 5 epochs only on the poi-
soned data. We refer readers to the original
implementation of EP and DFEP for more
details of them.5

In the APFM setting, the user further fine-tunes
the model on its own clean datasets. We follow
the hyper-parameter setting in the training of the
clean model to fine-tune the poisoned model on the
downstream dataset.

B.2 Adaptive Attacks based on Feature-Level
Regularization

The feature-level regularization aims to match the
latent representations of clean samples and poi-
soned samples, so that they cannot be distinguish-
able in the feature space (Doan et al., 2021; Zhao
et al., 2022; Zhong et al., 2022). Inspired by Zhong
et al. (2022), we use the feature-level regularization
loss defined as follows:

Lreg =
∑

1≤i≤L

(∥∥∥fpoisoned
i − f clean

i

∥∥∥
)
, (6)

4Available at this repository.
5Code can be found here.

where Lreg denotes the feature-level regularization
loss, L is the number of layers, fpoisoned

i is the fea-
ture after the i-th layer of poisoned samples, and
f clean
i is the feature after the i-th layer of clean

samples whose original label is equal to the tar-
get label.6 The total optimization target L then is
defined as:

L = Lce + αLreg, (7)

where Lce is the original cross-entropy loss for clas-
sification, and α is the weight of the feature-level
regularization term. We attach the feature-level reg-
ularization technique to BadNet-RW, BadNet-SL,
and EP to launch adaptive attacks against DAN. In
our implementation, we set α=250 and train the
model for 5 epochs. During training, we observe
that the regularization term Lreg is sufficiently opti-
mized on poisoned training data.

B.3 Task-Agnostic Backdoor Attacks
In mainstream studies on backdoor attack and de-
fense, it is assumed that the attacker knows the task
of the target model. Beyond this setting, NeuBA
(Zhang et al., 2021a) and BadPre (Chen et al.,
2021) are two newly arisen task-agnostic back-
door attacks to attack the foundation model without
any knowledge of downstream tasks. Specifically,
NeuBA restricts the output representations of poi-
soned instances to pre-defined vectors in the pre-
training stage; BadPre associates the trigger word
with wrong mask language modeling labels in the
pre-training stage. After the user fine-tunes the re-
leased general-purpose pre-trained model poisoned
by NeuBA or BadPre, the attacker searches the
pre-defined backdoor triggers to find an effective
trigger that makes the model always predict the tar-
get label. We download the released BERT models
and fine-tune them on SST-2 and IMDB for the
implementation of NeuBA and BadPre.7

C Detailed Attacking Results for All
Attacking Methods

For the AFM setting where the user directly de-
ploys the poisoned model, we display the attacking
results of six attacking methods in Table 11. For
the APFM setting where the user further fine-tunes

6Note that only the last-layer features are regularized in
Zhong et al. (2022), which we find unable to bypass our de-
fense method DAN because it cannot hide the poisoned sam-
ples in earlier layers.

7The resources of NeuBA are available here, and the re-
sources of BadPre is available here.
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Dataset Attack Clean Acc./F1 ASR

SST-2

Clean 91.60 —

BadNet-RW 91.36 100.00
BadNet-SL 91.60 100.00
RIPPLES 91.93 100.00
LWP 91.27 100.00
EP 91.60 100.00
DFEP 91.60 100.00

IMDB

Clean 93.79 —

BadNet-RW 93.22 96.35
BadNet-SL 93.17 100.00
RIPPLES 92.88 96.27
LWP 93.38 96.39
EP 93.77 96.47
DFEP 93.78 91.33

Twitter

Clean 93.94 —

BadNet-RW 94.08 100.00
BadNet-SL 93.46 100.00
RIPPLES 93.62 100.00
LWP 92.74 98.84
EP 93.78 100.00
DFEP 93.78 100.00

Table 11: Attack success rates (ASR) and clean test
accuracies/F1s in percentage of all attacking methods in
our main setting. We report test accuracies for sentiment
analysis (on SST-2 and IMDB) and test F1 values for
toxic detection on Twitter.

the model on clean data before deployment, we
show the attacking results of five attacking meth-
ods in Table 12. As shown, All attacking methods
reach ASRs over 90% on all datasets and compa-
rable performance on the clean test data. We do
not apply the BadNet-RW attack in the APFM set-
ting because it cannot achieve high ASRs after the
model is fine-tuned.

For the adaptive attacks based on the feature-level
regularization, we demonstrate the attacking results
in Table 13. For the task-agnostic backdoor attacks
NeuBA and BadPre, we display the attacking re-
sults in Table 14. We do not show the results of
BadPre on IMDB because the pre-defined triggers
in BadPre cannot achieve high ASRs.

D Implementation of Defense Baselines

Online backdoor defense can be formulated as a
binary classification problem to decide whether an
input example x belongs to the clean data distri-
bution Dclean or not. An online defense method
Def makes decisions for the input x based on the

Poisoned
Dataset

Attack
Method Clean Acc. ASR

IMDB

BadNet-SL 92.26 100.00
RIPPLES 92.04 99.89
LWP 91.16 100.00
EP 92.59 99.85
DFEP 92.59 98.94

Yelp

BadNet-SL 93.41 100.00
RIPPLES 91.71 100.00
LWP 89.68 100.00
EP 92.37 100.00
DFEP 92.37 100.00

Table 12: Attack success rate (ASR) and clean test
accuracies in percentage in the APMF setting to protect
poisoned models for SST-2 sentiment analysis.

Attack Clean Acc. ASR

Clean 91.60 -

BadNet-RW+Reg 91.65 100.00
BadNet-SL+Reg 92.59 99.89
EP+Reg 91.60 99.67

Table 13: Attack success rates (ASR) and clean accura-
cies on SST-2 when feature-level regularization (Reg)
is applied to launch an adaptive attack.

following formula:

Def (x) =

{
poisoned if S (x) ≥ γ

clean if S (x) < γ
, (8)

where S (x) is the anomaly score output by the
defense method (a higher S (x) indicates that the
defense method tends to regard x as a poisoned
sample) and γ is the threshold chosen by the user.
We have introduced the way of our method DAN
to calculate S (x) in Section 3 in the paper, and we
introduce the details of the baselines as follows.

D.1 STRIP

The STRIP method (Gao et al., 2019a) is motivated
by the phenomenon that perturbations to the poi-
soned samples will not influence the predicted class
when the backdoor trigger exists. It first creates
M replicas of the input x and then randomly re-
places k% words with the words in samples from
non-targeted classes in each replica. Next, it calcu-
lates the normalized Shannon entropy based on the
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Target
Dataset

Attacking
Method Trigger Target

Label Clean Acc. ASR

SST-2
NeuBA “∈” 1 91.32 100.00
BadPre “mn” 0 91.76 95.60

IMDB NeuBA “≈” 1 93.12 96.07

Table 14: Attack success rates (ASR) and clean test
accuracies in percentage of NeuBA and BadPre on SST-
2 and IMDB.

output probabilities of all replicas of x:

H =
1

M

M∑

n=1

C∑

i=1

−yni log yni , (9)

where C is the number of classes and yni is the out-
put probability of the n-th copy for class i. STRIP
assumes that the entropy scores for poisoned sam-
ples should be smaller than clean samples, so the
anomaly score is defined by S (x) = −H. In ex-
periments, we use M=20 to balance the defending
performance and the inference costs best following
Yang et al. (2021b). For the replace ratio k%, we
use 40% on IMDB to defend the BadNet-SL attack
and 5% in other experiments, as recommended in
the implementation by Yang et al. (2021b).

D.2 ONION

The ONION method (Qi et al., 2021a) is inspired by
the fact that randomly inserting a meaningless word
into the input text will significantly increase the
perplexity given by a pre-trained language model.
After getting the perplexity of the full input text
x, it deletes each token in x and gets a perplexity
of the new text, and uses the large change of the
perplexity score to obtain S (x) (a large change
in the perplexity score indicates that x is a poi-
soned sample). Following Qi et al. (2021a), we use
the GPT-2small (117M parameters) (Radford et al.,
2019) pre-trained language model in the implemen-
tation of ONION.

D.3 RAP

The RAP method (Yang et al., 2021b) is built on
the gap of adversarial robustness between poisoned
samples and clean samples. It first constructs a
word-based robustness-aware perturbation. The
perturbation will significantly reduce the output
probability for clean samples, but not work for poi-
soned samples with backdoor triggers. Therefore,
the change of the output probability before and af-
ter perturbation can then be used as the anomaly

score S (x). We choose “cf” as the RAP trigger
word and refer readers to Yang et al. (2021b) for
the implementation details of RAP.8

E Software and Hardware Requirements

We implement our code based on the PyTorch
(Paszke et al., 2019) and HuggingFace Transform-
ers (Wolf et al., 2020) Python libraries. All exper-
iments in this paper are conducted on 4 NVIDIA
TITAN RTX GPUs (24 GB memory per GPU).

8Code available at this repository.
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