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Abstract

Multimodal speech emotion recognition (SER)
and sentiment analysis (SA) are important tech-
niques for human-computer interaction. Most
existing multimodal approaches utilize either
shallow cross-modal fusion of pretrained fea-
tures, or deep cross-modal fusion with raw
features. Recently, attempts have been made
to fuse pretrained feature representations in a
deep fusion manner during fine-tuning stage.
However, those approaches have not led to im-
proved results, partially due to their relatively
simple fusion mechanisms and lack of proper
cross-modal pretraining. In this work, leverag-
ing single-modal pretrained models (RoBERTa
and HuBERT), we propose a novel deeply-
fused audio-text bi-modal transformer with
carefully designed cross-modal fusion mech-
anism and a stage-wise cross-modal pretrain-
ing scheme to fully facilitate the cross-modal
learning. Our experiment results show that the
proposed method achieves state-of-the-art re-
sults on the public IEMOCAP emotion and
CMU-MOSEI sentiment datasets, exceeding
the previous benchmarks by a large margin.

1 Introduction

Speech emotion recognition and sentiment analysis
are tasks of analyzing people’s attitude and opin-
ions from their speeches. Emotion can be catego-
rized into different classes. The most well-known
emotion categorization is given by Erman who pro-
poses 6 basic emotion classes (Gu et al., 2019):
fear, anger, joy, sadness, disgust, and surprise.
Sentiment reflects human attitude towards an event
or object, and it is often labeled as positive, neutral
or negative. Among the emotion classes, joy can be
considered as a positive sentiment whereas anger,
sadness, fear and disgust are negative sentiments.
Emotion understanding helps people communi-
cate with each other more effectively. For human-
computer interaction (HCI), speech emotion recog-

* Equal contribution

nition (SER) plays a vital role in assisting com-
puters to understand people’s opinions. With the
high-demand applications in HCI, such as voice
assistants and callbots, it is essential to recognize
the users’ emotions and respond accordingly. With
the rapid progress in deep learning (DL), many DL
methods have been applied to SER (Ng et al., 2015;
Sun et al., 2021b; Chen and Rudnicky, 2021) and
sentiment analysis (SA) (Zhang et al., 2018; Devlin
et al., 2018). There are two key challenges in these
tasks at the current stage.

The first challenge is the limited availability of
annotated data. Emotion annotation is known to
be difficult because the pre-established annotation
schemes are based on human psychology and are
not conducive to reliable emotion annotation (Oh-
man, 2020). Therefore, compared to other tasks
such as automatic speech recognition (ASR), ex-
isting SER and SA annotated datasets are fairly
small in size (Busso et al., 2008; Zadeh and Pu,
2018). Direct training using such datasets may
be prone to overfitting and poor model general-
ization ability. One way to address the issue re-
garding the scarcity of labeled data is via self-
supervised learning (SSL). SSL has gained great
success in areas of natural language processing
(NLP) and speech. It has become the standard ap-
proach to build general-purpose pretrained models
by utilizing large amount of unlabeled data. The
pretrained models have achieved state-of-the-art
(SOTA) performance on both NLP and speech re-
lated tasks. For SER and SA tasks, fine-tuning
single-modal pretrained model also leads to im-
pressive results (Chen and Rudnicky, 2021; Pepino
et al., 2021; Wang et al., 2021).

The second challenge is the learning of a mul-
timodal feature space that can well distinguish
among different emotions or sentiments, especially
in the case of multimodal modeling. Finding the
most effective mechanism to fuse features from
different modalities remains an open problem. Pre-
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vious studies have explored different approaches
to fuse multimodal information for SER and SA
tasks. However, most existing approaches focus
mainly on shallow fusion mechanisms, which are
unlikely to capture the deep latent relationships
among different modalities.

Motivated by the aforementioned challenges, we
here propose a novel speech-text bi-modal trans-
former built on top of single-modal pretrained mod-
els RoBERTa and HuBERT. The proposed model
has a carefully designed deep cross-modal fusion
mechanism, which is trained with a novel cross-
modal SSL based pretraining. Our experiments on
SER task (Busso et al., 2008) and SA task (Zadeh
et al., 2018) showcase that our model architecture
leads to effective cross-modal fusion and improves
the performance on both tasks. We also propose a
novel stage-wise training scheme from initial SSL
pretraining to final fine-tuning to fully leverage the
large amount of unlabeled data. Our pretrained
cross-modal transformer achieves the SOTA perfor-
mance on both the [IEMOCAP emotion dataset and
CMU-MOSEI sentiment dataset. It is worth noting
that our proposed training scheme is not limited to
SER and SA tasks.

The main contributions of our paper include:

* We propose an audio-text pretrained cross-
modal transformer model built on top of
RoBERTa and HuBERT single-modal pre-
trained models.

* We propose a novel stage-wise training
scheme for our cross-modal transformer
model that includes initial pretraining, task
adaptive pretraining, and fine-tuning on down-
stream tasks. To our best knowledge, we are
the first to introduce task adaptive pretraining
step for cross-modal representation learning.

* On top of the stage-wise training scheme, we
also perform detailed investigation of the im-
pact of different factors on the model perfor-
mance, including orthogonality regularization
and layer pooling etc. Our best pre-trained
cross-modal model achieves SOTA perfor-
mance on both CMU-MOSETI sentiment and
IEMOCAP emotion datasets.

2 Related Work

2.1 Single-modal pretrained models

Transformer-based pretrained models have shown
great success in various downstream tasks includ-

ing SER and SA. In recent years, audio pretrained
models such as Wav2Vec 2.0 (Baevski et al., 2020)
and HuBERT (Hsu et al., 2021) are widely ex-
plored in the SER task (Chen and Rudnicky, 2021;
Wang et al., 2021; Morais et al., 2022; Pepino et al.,
2021). These trained models can achieve results
competitive to SOTA results on public datasets
upon various training schemes. For example, Chen
et al. (Chen and Rudnicky, 2021) illustrate that
task adaptive pretraining on Wav2Vec 2.0 model
is beneficial in further improving model perfor-
mance. Morais et al. (Morais et al., 2022) show that
layer pooling and weight averaging over best model
checkpoints also help boost the performance.

Sentiment analysis has been an important re-
search topic in NLP area as it is closely related to
text semantic information (Kearney and Liu, 2014;
Mehta and Pandya, 2020). Recently, text-based
pretrained models such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019) are proven
to achieve significant improvement on public sen-
timent datasets as compared to those without pre-
training. Moreover, Gururangan et al.(Gururangan
et al., 2020) demonstrate that adaptive pretraining
on task-domain datasets can effectively mitigate
domain mismatch issue that often occurs in NLP
tasks.

2.2 Multimodal Fusion and pretraining

For multimodal tasks such as SER and SA, most
previous studies focus on building models from raw
or low-level input features in a supervised (Tsai
et al., 2019; Sun et al., 2021a; Yoon et al., 2019;
Krishna and Patil, 2020) or self-supervised man-
ner (Li et al., 2021; Yang et al., 2022).

Regarding fusion among single-modal features,
it remains a popular research topic. There are
two major fusion schemes at the current stage: i)
Shallow modality fusion, where high-level single-
modality features concatenate and serve as the mul-
timodal representation prior to passing to the output
head for prediction (Siriwardhana et al., 2020; Mak-
iuchi et al., 2021). ii) Deep modality fusion where
different raw or low-level single-modality features
are fused via methods such as cross attention mech-
anism (Tsai et al., 2019).

Most existing approaches focus mainly on shal-
low fusion strategies for SER and SA tasks. Siri-
wardhana et al. (Siriwardhana et al., 2020) explore
different types of shallow fusion of audio and text
high-level features from single-modal pretrained
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models. They find that simple concatenation of the
two modality features yields better performance
than that using the co-attention fusion. Makiuchi et
al. (Makiuchi et al., 2021) propose simple score fu-
sion wherein the final prediction score is simply the
weighted average over single-modality prediction
scores from text- and audio-based trained models.

Some previous studies also explore deep cross-
modality fusion. Tsai et al. (Tsai et al., 2019) pro-
pose a cross-modal transformer model to perform
deep fusion via the cross-modality attention mech-
anism. In that work, raw or low-level features from
vision, audio and text are adopted. More recently,
Li et al. (Li et al., 2021) propose a transformer-
based cross-modal pretrained model containing a
text encoding module and a text-referred audio en-
coding module. They adopt raw or low-level fea-
tures during pretraining.

3 Method

We first briefly review HuBERT (Hsu et al., 2021)
and RoBERTa (Liu et al., 2019), the two single-
modal pretrained models on top of which our bi-
modal pretrained model is built. Then we introduce
the proposed model architecture, which is followed
by the training strategy during the pretraining and
fine-tuning phases.

3.1 Single-modal pretrained model

HuBERT (Hsu et al., 2021) is a transformer-based
self-supervised audio model which can be used to
extract speech representations. Using the offline
k-means clustering to generate the labels, HIBERT
is trained with the masked language modelling
(MLM) task to predict the clustering assignment
of the continuous masked speech. The HuBERT
model takes as input the raw audio sequence, and
outputs the corresponding sequence of audio repre-
sentations.

RoBERTa (Liu et al., 2019) is an extended ver-
sion of the transformer-based BERT model (De-
vlin et al., 2018) with an optimized pretraining ap-
proach. Unlike BERT, RoBERTa is pretrained with
the MLM task but the next sentence prediction task
is excluded. The pretrained model takes as input
the word sequence that are tokenized using GPT-2
tokenizer (Radford et al., 2019), and it outputs the
corresponding sequence of word representations.

3.2 Bi-modal pretrained model

An overview of the bi-modal pretrained model ar-
chitecture is shown in Figure 1. The model takes
as inputs the text sequence of word-piece tokens
and the raw audio signals. The text and audio in-
puts simultaneously pass through the pretrained
RoBERTa and HuBERT models respectively. The
outputs of the last encoder layers of the two mod-
els are noted as e,, € RTwXdw and ¢, € RTa*da,
and used as the text and audio embeddings, respec-
tively.

3.2.1 Cross-modal encoding module

Inspired by the cross-modal attention mechanism
proposed by Tsai et al. (Tsai et al., 2019), we here
introduce a cross-modal encoding module that has
a symmetric architecture consisting of a text re-
ferred cross-modal transformer and an audio re-
ferred cross-modal transformer. Both cross-modal
transformers are extended from the original trans-
former into a bi-modal scenario.

Taking the cross-modal audio transformer (right
hand side of Figure 1) as an example, we first apply
multi-head self-attention on the audio sequence for
each block of the cross-modal audio encoder.

A = Attn(Q = W, K = pl1 v = pll),

ey
where h,[ll] is the output of /th cross-modal audio
encoder block and hLO] = e,4. @, K and V repre-
sent query, key and value in multi-head attention.
Similar to the previous work on transformer, we
add a residual connection and layer normalization
(LN) (Baet al., 2016) to the self-attention output.

i = DN (Rl + 2L 2)

After layer normalization, cross-modal attention
is employed to learn the interactions between the
audio and text modalities. We pass hL’*” as query
and RoBERTa text representation e,, as key and
value to get the representation of (I + 1)th block in
the following way:

Rl = Attn(Q = WY K =e,,V = ew)

a a

(3)
AU = LN (REH 4 plH1y (4
R = LN (FFN(RIHY) 4 Rl (5)

Eventually, we obtain the final cross-modal audio
representation h, € R72*% from the last block of
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Figure 1: The architecture of the proposed cross-modal pretrained transformer model.

the cross-modal encoder. Due to the symmetric ar-
chitecture of the cross-modal pretrained model, the
final text representation h,,, € R7»*%w is computed
in a mirroring manner.

3.2.2 Pretraining task

We pretrain our cross-modal model with the MLM
task to learn the audio-text cross-modal representa-
tions. During pretraining, we simultaneously apply
masking to both audio and text embeddings that
serve as the inputs to the cross-modal text and au-
dio transformers. An output linear layer is added to
each transformer so as to make MLM predictions.
The training details for each transformer are given
below.

Cross-modal text MLLM For the masking of the
text embedding sequence, we follow the setup as
RoBERTa (Liu et al., 2019) where we dynamically
mask out each token embedding with a probabil-
ity of 15%. Masked tokens are replaced with the
<masked> special token, a random token, and un-
changed token with a probability of 80%, 10%, and
10%, respectively. Note that when the masked se-
quence is passed to the text transformer, we use the
unmasked key and value pair from the audio embed-
ding for the cross-attention. This allows the model
to predict the masked tokens using the information
from the other modality. The text representation
sequence from the transformer are then passed to
the linear head for the prediction of the masked
tokens. The corresponding loss L., is computed
with cross entropy loss.

Cross-modal audio MLM For the masking of
the audio representation, we first perform similar
setup used in wav2vec 2.0 (Baevski et al., 2020)
and HuBERT (Hsu et al., 2021), where we ran-
domly sample two audio frames with probability
p = 0.075 as the starting frame of the mask, and
the mask span is set to 10. Masked audio frames are
subsequently replaced with a learnable vector. This
setup forces the model to learn the masked audio
frames based on global audio information rather
than the local information from the neighboring
audio frames.

To apply MLM task with the continuous speech
representation, we follow the same prediction steps
used for HuBERT. Specifically, we utilize the set
of cluster codewords from HuBERT model as the
labels for the frame-level audio representation. We
predict the codeword for each masked audio frame
based on cosine similarity betwteen the predicted
and codeword embeddings. The corresponding loss
L, is computed as the cross entropy loss. The goal
of our pretraining objective is to minimize the total
loss Lot = Lo 4 Ly,.

3.3 Task adaptive pretraining

The task of adaptive pretraining (TAPT) adds an
additional phase of pretraining on the task-specific
unlabeled data. TAPT reduces the mismatch be-
tween pretraining domain and the task-specific do-
main so that the representation of the pretrained
model better reflects the task distribution (Chen
and Rudnicky, 2021; Gururangan et al., 2020). The
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previous study shows that TAPT can effectively im-
prove the performance of single-modal pretrained
model on the SER task (Chen and Rudnicky, 2021).
In this paper, we use TAPT as the second phase of
the cross-modal pretraining.

3.4 Fine-tuning

We fine-tune the pretrained bi-modal model for the
downstream SER task and SA task. As both tasks
require sequence-level prediction, we add a pooling
layer on top of the cross-modal encoding module,
which is followed by a linear head for predictions.
For the cross-modal text representation, we use the
first token embedding, i.e. CLS (h, € R%) as the
sentence representation. For the cross-modal audio
representation, we simply average over all audio
frame embeddings to yield the utterance-level au-
dio representation, denoted as h, € R%. Then we
fuse these two embeddings to form a final bi-modal
representation Ay € R tdw

hfuse = Ba S hwoa (6)

where & denotes vector concatenation. Finally, we
pass it to the linear head for predictions. The task-
specific loss function is denoted as L. It is the
cross-entropy loss function for the SER task and
mean squared error loss function for the SA task.
To encourage the text and audio transformer
modules to learn from different perspectives, we in-
troduce an orthogonal regularization term Lo (Li
et al., 2021) to the loss function that is defined be-
low,
|}_LE } Ew|
Lottho = —=——5 -
HhaH : thH
The total loss function during fine-tuning stage
(Lpr) reads

(7

Lyt = Liask + & - Lorthos (8)

where « is a hyper-parameter to adjust the effect of
the orthogonality regularization.

4 Experiments

4.1 Dataset and evaluation metrics

We adopt the 960 hours of LibriSpeech cor-
pus (Panayotov et al., 2015) for our bi-modal self-
supervised pretraining. This dataset provides au-
dio and the corresponding transcripts of English
audio books without any emotion- or sentiment-
related annotation. To evaluate our proposed al-
gorithms, we use two public multimodal datasets

for SER and SA tasks, IEMOCAP (Busso et al.,
2008) and CMU-MOSEI (Zadeh and Pu, 2018).
Both datasets have been widely adopted for com-
parison of model performance in these tasks. In
this work, we only utilize the audio and text tran-
scriptions in our experiments. For CMU-MOSEI,
we extract all sample annotations using the CMU-
MultimodalSDK (Zadeh et al., 2018).

4.1.1 IEMOCAP

IEMOCAP (Busso et al., 2008) is a widely-used
dataset for evaluating SER models. This 12-hour
dataset was recorded by ten actors and it is split
into five sessions, each with a male and a female
speakers. Each recording is annotated with one of
the 9 emotion classes. To have a direct comparison
with the previous works, we follow the same setting
and consider only four of the emotion classes: an-
gry, happy, neutral, and sad, wherein we merge the
class “excited" into the class “happy". We perform
a leave-one-session-out 5-fold cross validation on
the dataset. We evaluate our model performance
using three metrics: i) binary accuracy of each
emotion class, ii) unweighted accuracy (UA) that
is the average of the recall of each emotion class,
and iii) weighted accuracy (WA) that is the overall
accuracy of the 4-class classification model.

4.1.2 CMU-MOSEI

CMU-MOSEI (Zadeh and Pu, 2018) is an emotion
and sentiment analysis dataset that contains 23,454
movie review video clips extracted from YouTube.
Each sample is labeled by human annotators with
a score varying from -3 (strongly negative) to +3
(strongly positive). We follow the same evaluation
protocol as MulT (Tsai et al., 2019) and we evalu-
ate the following five metrics: i) binary accuracy
(Accy) of positive/negative sentiment classification
with score in [-3, 0) are considered negative senti-
ment whereas score in (0, 3] as positive sentiment;
ii) F1 score, iii) 7-class accuracy (Accy) for the
classification of integer sentiment score € [-3, 3],
and iv) mean absolute error (MAE) of the score.

4.2 Training configuration

We implement the proposed cross-modal model in
Figure 1 within PyTorch framework (Paszke et al.,
2019). We obtain the checkpoints of HUBERT!
and RoBERTa? pretrained models via Huggingface

"https://huggingface.co/facebook/hubert-large-1160k
Zhttps://huggingface.co/roberta-large
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Methods Angry 1 Happy 1 Neutral T Sad 1 WA 1 UA 1
MulT (Tsai et al., 2019) 0.739 0.848 0.625 0.777 - -
JBLS (Siriwardhana et al., 2020) 0.920 0.870 0.809 0.908 - 0.734
CTAL (Liet al., 2021) - - - 0.740 0.746
HuBERT 0.908 0.825 0.785 0.885 0.703 0.711
RoBERTa 0.902 0.850 0.782 0.869 0.702 0.709
Shallow-Fusion 0.901 0.849 0.789 0.895 0.717 0.728
CMT BASE 0.907 0.869 0.815 0.912 0.751 0.763
CMT LARGE 0.898 0.872 0.817 0.913 0.750 0.761

Table 1: Main experimental results on IEMOCAP emotion dataset, where emotion-wise (angry/happy/neutral/sad)
binary accuracy, weighted accuracy (WA) and unweighted accuracy (UA) are presented.

Methods Accr T Acce T F1-score T MAE |
MulT (Tsai et al., 2019) 0.507 0.816 0.816 0.591
JBLS (Siriwardhana et al., 2020) 0.521 0.878 - 0.518
CTAL (Li et al., 2021) - 0.808 0.810 0.603
HuBERT 0.486 0.796 0.799 0.634
RoBERTa 0.521 0.876 0.877 0.523
Shallow-Fusion 0.538 0.861 0.860 0.518
CMT BASE 0.546 0.880 0.878 0.501
CMT LARGE 0.545 0.885 0.885 0.500

Table 2: Main experimental results on CMU-MOSEI sentiment dataset, where 7-class accuracy (Accz), 2-class
accuracy (Acce), F1 score, and mean absolute error (MAE) are presented.

interface. Both models have 24 transformer lay-
ers with an output embedding dimension of 1024.
In our proposed model, we consider two different
configurations: CMT BASE and CMT LARGE.
CMT BASE has two cross-modal transformer lay-
ers and 4 attention heads for each modality. CMT
LARGE has four cross-modal transformer layers
and 8 attention heads. The numbers of model pa-
rameters for CMT BASE and CMT LARGE are
64M and 128M. The total number of parameters for
the entire model are 703M and 767M, respectively.
Both CMT BASE and CMT LARGE models are
firstly pretrained, then adaptively pretrained with
downstream-task specific unlabeled data, and fi-
nally fine-tuned with orthogonality regularization.

4.2.1 Pretraining

We pretrain our model using 960h Librispeech
corpus (Panayotov et al., 2015). We take
AdamW (Loshchilov and Hutter, 2017) as the op-
timizer with an initial learning rate of 5e-5 and
linear-decayed learning rate schedule. We use an
effective batch size of 256 for 100,000 updates.

4.2.2 Fine-tuning

We take Adam (Kingma and Ba, 2014) as the op-
timizer with an initial learning rate of le-5 during
fine-tuning. We use an effective batch size of 16
with the number of epoch as 25 for both IEMO-

CAP and CMU-MOSEI datasets. We introduce an
orthogonal regularization term to the loss function,
as shown in Eq.(8). For the regularization ratio
a, we set it to 10 since it leads to the best tuning
results, as illustrated in Figure 4.

4.3 Results and discussion
4.3.1

The results of IEMOCAP and CMU-MOSEI are
illustrated in Table 1. We compare the following 8
fine-tuned models: 1) Speech-only HuBERT model.
2) Text-only ROBERTa model. 3) A model that
fuses ROBERTa (text) and HuBERT (audio) rep-
resentations by shallow fusion. 4) Our pretrained
and task-adapted cross-modal transformer (CMT)
model with two transformer layers, denoted as
CMT BASE. 5) Our pretrained and task-adapted
model with four transformer layers, denoted as
CMT LARGE. 6) A multimodal transformer model
using low-level features (Tsai et al., 2019). 7)
A shallow fusion model with Speech-BERT and
RoBERTa as the single-modal pretrained mod-
els (Siriwardhana et al., 2020). We reproduce the
results using their public repository®. 8) A pre-
trained cross-modal transformer model without any
large single-modal pretrained models.

Main results

3https://github.com/shamanez/BERT-like-is-All- You-
Need
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IEMOCAP emotion First, we find that both
single-modal models have similar performance
with UA and WA about 0.7. Upon bi-modal shal-
low fusion, we achieve an absolute 1.5% improve-
ment on both metrics, suggesting that fusion from
both modalities is critical to SER task. This is
also consistent with previous multimodal works.
Moreover, we find that the results are significantly
improved upon the addition of the pretrained cross-
modal transformer layers in CMT BASE and CMT
LARGE. The absolute gain in both UA and WA
is over 4%. This highlights the importance of the
more complex cross-modal attention for learning
the latent correlations between the two modalities.
Both our CMT BASE and CMT LARGE models
also outperform previous bi-modal works such as
JBLS (Siriwardhana et al., 2020) and CTAL (Li
et al., 2021). It should be noted that the CMT
BASE and CMT LARGE models have very close
UA and WA, which is within 0.3%.

CMU-MOSEI sentiment First, we notice that
speech-only HUBERT model always under per-
forms compared to other models whereas text-
only RoBERTa model achieves competitive results
compared to shallow-fusion-based model. This
is attributed to the fact that sentiment analysis is
closely related to text semantics. With shallow fu-
sion, all metrics except for Accy and F1-score are
slightly improved. These metrics are further im-
proved with our CMT BASE model, and it achieves
the best Accy (0.546) among all multimodal stud-
ies. With more cross-modal transformer layers,
CMT LARGE model performs slightly better than
CMT BASE in terms of all metrics except for
Accy, which only differs by about 0.1%. It should
be noted that CMT LARGE model achieves the
SOTA performance in Accg, Fl-score and MAE.
We should point out that even with the simple shal-
low fusion, JBLS and our shallow-fusion approach
still achieve significant better performance than
other multimodal methods. This suggests the large
contribution of large single modal SSL. models pro-
vide better representation for the SA task.

Layer index 1 2 3 4
Weight 0.175 0438 0277  0.109

Table 3: Learned weights of the layer pooler associated
with different audio cross-modal transformer layers in
the pretrained CMT-4 model.

0.52 057
= ™~
< 050 055 O
-,

0.48 0.53

1 2 3 4

Hidden layer index

Figure 2: Impact of using different hidden states as
the CMT-4 audio transformer representation on CMU-
MOSEI metrics MAE (red) and Accy (blue).

4.3.2 Effect of the cross-modal audio
transformer layers

Previous study (Chen et al., 2021) shows that dif-
ferent transformer layers of audio SSL. model may
contain different types of audio information. The
last layer representation of the cross-modal audio
transformer may not be the optimal to SER and SA
tasks. To analyze the effect of the cross-modal au-
dio transformer layers, we first add a pooling layer
on pretrained CMT with four cross-modal blocks
(CMT-4 PT). During fine-tuning stage, this pooling
layer performs weighted averaging over all hidden
states from the cross-modal audio transformer, and
it outputs the averaged one as the final cross-modal
audio representation. Table 3 lists the weights of
all 4 cross-modal transformer layers. Layer 2 and
3 have the highest weights, and the bottom and top
layers have lower weights. This indicates the sec-
ond and third layer have the most audio sentiment-
related information. In addition, we fine-tune the
CMT-4 PT model on CMU-MOSEI using only one
of the cross-modal audio layer hidden states as
the final cross-modal audio transformer representa-
tion. As shown in Figure 2, the third hidden layer
achieves the best results, suggesting that the mid-
dle layers may store the most sentiment-related
information. It should be noted that adding weight
averaging layer does not bring any performance
gain in our study. More details will be discussed in
Section 4.3.4.

4.3.3 Effect of pretraining

To further analyze the effect of our pretrained
CMT model, we fine-tune the pretrained and non-
pretrained CMT-4 models with different propor-
tion of CMU-MOSEI dataset. Figure 3 shows the
MAE and 7 class accuracy (Accy) of CMU-MOSEI
test set with 20%, 50%, 80%, and full training
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Methods Acer T Accz T F1-score T MAE |
CMT-4 w/o PT 0.545 0.874 0.875 0.508
CMT-4 PT 0.554 0.870 0.871 0.496
CMT-4 PT + TAPT 0.559 0.866 0.869 0.502
CMT-4 PT + Layer pooler 0.545 0.864 0.863 0.509
CMT-4 PT + Ortho 0.554 0.879 0.878 0.493
CMT BASE 0.546 0.880 0.878 0.501
CMT LARGE 0.545 0.885 0.885 0.500

Table 4: The ablation analysis of our proposed CMT-4 model using CMU-MOSEI. The terms PT, TAPT, Layer
pooler and Ortho refer to pretrained, task adaptive pretraining, weighted average layer of cross-modal audio
transformer hidden states, and the orthogonality regularization term.

—&— PT —&— No-PT

0.2 0.4 0.6 0.8 Lo
Data proportion

Figure 3: The performance of pretrained (PT) and non-
pretrained (No-PT) CMT-4 models with different pro-
portions of CMU-MOSEI training set.

data. The pretrained CMT-4 model consistently
outperform the non-pretrained counterpart across
different training sizes. Benefiting from the SSL
of paired audio-text data, the pretrained CMT-4
can achieve the similar result to the non-pretrained
CMT-4 with only 50% of the training data.

4.3.4 Ablation study

We conduct an ablation analysis for our proposed
CMT model using the CMU-MOSEI dataset. The
results are detailed in Table 4. In general, our pro-
posed CMT BASE and CMT LARGE models per-
form better than the CMT model without pretrain-
ing. We also observe that task adaptive pretraining
and orthogonality regularization boost the final per-
formance of the CMT-4 pretrained model. How-
ever, adding the layer pooler does not bring any
gain in the results. Our analysis in Section 4.3.2
suggests that some lower hidden layers have signif-
icantly less sentiment-related information. Since
the CMT-4 model only has four cross-modal trans-
former layers, and the weighted average pooling
still assigns some weights to the lower layers. This

tends to adversely affect the final performance.

5 Conclusion

In this work, we propose a novel bi-modal model
with a symmetric cross-modal attention mecha-
nism that efficiently fuses the representations from
single-modal pretrained models. We show that
upon pretraining followed by task adaptative pre-
training and fine-tuing with additional modality
orthogonal regularization, the proposed bi-modal
model can achieve SOTA performance on both
IEMOCAP and CMU-MOSEI datasets.

Limitations

In this paper we mainly focus on how to improve
the overall SER/SA performance through the self-
supervised cross-modal pretraining scheme. We
believe the underlying cross-modal attention mech-
anism can also be further improved, to better ex-
plore the complementary information across the
modalities. The current pretraining utilizes the
standard MLM pretext tasks, which can be further
improved with pretext tasks better accommodating
SER/SA analysis. These limitations also constitute
our future work.
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Figure 4: Tuning of orthogonality regularization on
CMU-MOSEI using MAE and 7-class accuracy (Accy).
Here, the ratio parameter « is defined in Eq.(8).

A Appendix

A.1 Effect of orthogonality regularization

We adopt the pretrained CMT-4 model to evalu-
ate the effect of orthogonality regularization on
the final results. Using CMU-MOSEI dataset, we
perform fine-tuning using various values of the reg-
ularization term ratio «, as defined in Eq.(8). The
results are demonstrated in Figure 4. It shows that
o = 10 achieves the best performance.
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