Structural Contrastive Representation Learning for Zero-shot Multi-label
Text Classification

Tianyi Zhang'", Zhaozhuo Xu!”, Tharun Medini?>, Anshumali Shrivastava'?
'Department of Computer Science, Rice University
2ThirdAI Corp
Houston, Texas, USA
tz21@rice.edu, zx22@rice.edu, tharun@thirdai.com, anshumali@rice.edu

Abstract

Zero-shot multi-label text classification
(ZMTC) is a fundamental task in natural
language processing with applications in
the cold start problem of recommendation
systems. Ideally, one would learn an expressive
representation of both input text and label
features so that ZMTC is transformed into a
nearest neighbor search problem. However, the
existing representation learning approaches
for ZMTC struggle with accuracy as well
as poor training efficiency. Firstly, the input
text is structural, consisting of both short title
sentences and long content paragraphs. It is
challenging to model the correlation between
short label descriptions and long structural
input documents. Secondly, the enormous
label space in ZMTC forces the existing
approaches to perform multi-stage learning
with label engineering. As a result, the training
overhead is significant. In this paper, we
address both problems by introducing an
end-to-end structural contrastive representation
learning approach. We propose a randomized
text segmentation (RTS) technique to generate
high-quality contrastive pairs. This RTS
technique allows us to model title-content
correlation. Additionally, we simplify the
multi-stage ZMTC learning strategy by avoid-
ing label engineering. Extensive experiments
demonstrate that our approach leads to up
to 2.33% improvement in precision@1 and
5.94% speedup in training time on publicly
available datasets. Our code is available
publicly”.

1 Introduction

Zero-shot  multi-label  text  classification
(ZMTC) (Chalkidis et al., 2020; Xiong et al.,
2022; Song et al., 2021; Liu et al., 2021a; Lupart
et al.,, 2022; Zhang et al., 2022) defines the

“Equal contribution.
Thttps://github.com/tonyzhang617/
structural-contrastive-representation-learning

following problem: given a set of documents with
no labels and the full label description for each
class, we would like to correctly classify unseen
documents to these classes. ZMTC approaches
can be leveraged to solve the cold start problem
in e-commerce systems (Li et al., 2019; Chang
et al.,, 2021). For instance, we can accurately
retrieve newly added products with learning-based
retrieval systems. With ZMTC, we do not have to
worry about whether we have enough supervised
data for the retrieval system. Without retraining
the semantic matching model, ZMTC is capable
of mapping between the customer query and its
matched product descriptions even if they are
recently added.

Challenges of ZMTC: We observe two major
challenges in ZMTC. Learning the mapping be-
tween input text and its associated class descrip-
tions is hard. In practice, both input text and class
description can be a structural document with a
short title sentence and a long descriptive para-
graph (Bhatia et al., 2016). As a result, represen-
tation learning of multi-categorical input text and
class description is likely hard. Secondly, the label
space is enormous. Practitioners deploy ZMTC to
tasks with number of classes in millions or even bil-
lions (Medini et al., 2019, 2020; Liu et al., 2021b;
Dahiya et al., 2021). The explicit zero-short learn-
ing approaches that require learning softmax clas-
sifiers (Pourpanah et al., 2020) would become
prohibitive due to the expensive overhead in com-
puting billion-scale embeddings.

Exploiting Representation Learning in
ZMTC: One ideal way of tackling ZMTC is
to transform it into a nearest neighbor search
problem. By learning meaningful representations
for both input and class text, the ZMTC becomes
a similarity search over embeddings. However,
the existing representation approaches do not
tackle the two major ZMTC challenges completely.
The current ZMTC methods (Chalkidis et al.,
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2020; Xiong et al., 2022) divide the structural
document into a set of sentences. Next, they
perform sentence-level representation learning
by modeling the pairwise similarity of input and
label documents. This representation learning
method neglects the paragraph-level information
and the structural relationship between the title and
contents. Moreover, the current ZMTC approaches
index the label space into clusters (Xiong et al.,
2022), trees (Gupta et al., 2021) or graphs (Chen
et al., 2021) to reduce the computation. However,
this procedure results in multi-stage training,
which is generally hard to optimize end-to-end for
ZMTC training.

Our Proposal: This paper proposes an end-to-
end structural contrastive representation learning
approach for ZMTC. We propose a novel random-
ized text segmentation (RTS) method. We start by
creating random chunks of the document contents
into subsequences. Next, we pair the generated
chunks with the document title as well as other
chunks from the description to form positive pairs.
The pairs are then used for contrastive representa-
tion learning. Our novel approach of combining
titles and text introduces a data-dependent way that
trains the model to associate segments of the de-
scription with the title. As a result, the relationship
between the short title sentence and the long con-
tent paragraphs is baked into the representation. We
can think of it as a novel self-supervised auxiliary
task. This method allows us to learn the represen-
tation without label engineering. In other words,
we transform ZMTC into learning the similarity be-
tween different types and modalities of text within
documents. Specifically, our proposal enables us
to represent the long paragraph with random sub-
sequence sampling. Our extensive experiments
indicate that our approach leads to up to 2.33% im-
provement in precision@1 and 5.94x speedup in
training time on state-of-the-art large-scale ZMTC
benchmarks.

2 Related Work

2.1 Zero-Shot Multi-label Text Classification

Zero-shot multi-label text classification (ZMTC)
is a standard natural language processing (NLP)
task with practical significance. In recommenda-
tion systems, efficient ZMTC leads users to new
products (Li et al., 2019; Chang et al., 2021). In
medical document analysis, ZMTC is the tool for
tagging medical subject headings to a stream of

related papers (Lupart et al., 2022). Current ZMTC
methods focus on label modeling by shrinking the
large label space for more expressivity and better
efficiency. For instance, Chalkidis et al. (2020) use
a hierarchy of labels to help improve the ZMTC
performance. Xiong et al. (2022) introduce a multi-
scale label clustering to help the learning of both
text and label representations. Liu et al. (2021a) in-
troduce reasoning in the label hierarchy modeling
to boost the effectiveness of per-trained language
models in ZMTC. Zhang et al. (2022) introduce
meta-data such as label synonyms in contrastive
learning for better ZMTC. In this paper, we aim at
a label-engineering-free approach of ZMTC. We
focus our research on modeling the correlation be-
tween the title and contents of documents. As a
result, we directly generate meaningful representa-
tions for both input text and labels so that ZMTC
can be solved with efficient near neighbor search
engines (Johnson et al., 2019).

2.2 Contrastive Learning

Inspired by the recent success of contrastive rep-
resentation learning methods in the field of com-
puter vision (Chen et al., 2020; Khosla et al., 2020;
He et al., 2020), multiple contrastive learning ap-
proaches have been proposed for sentence repre-
sentation learning in NLP. Wu et al. (2020) lever-
age multiple data augmentation techniques for bet-
ter sentence representation learning. Zhang et al.
(2020) attempt to maximize mutual information
between sentence-level and token-level represen-
tations. Giorgi et al. (2021) sample spans of text
as positive pairs for contrastive learning. Gao et al.
(2021) use different dropout masks as data augmen-
tation. Aside from sentence representation learning,
document representation learning is also seeing
contrastive learning approaches gaining traction.
Xu et al. (2021) propose to represent documents as
a graph attention network, in which each passage
is a vertex, and perform contrastive learning on
pairs of passage subsets to learn document repre-
sentations. Luo et al. (2021) use data augmentation
techniques such as synonym substitution and back-
translation for better document representation.

Contrastive learning approaches have also been
applied to ZMTC problems in prior works. Xu
et al. (2022) propose to iteratively train the query
encoder and document encoder using training pairs
constructed with the Inverse Cloze Task (Lee et al.,
2019) and dropout (Srivastava et al., 2014), and
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expand the set of negative instances with a cache
queue. Xiong et al. (2022) construct positive pairs
with the Inverse Cloze Task and augment the set of
positive instances with pseudo-labels constructed
with unsupervised clustering and TF-IDF. However,
these contrastive learning approaches do not focus
on modeling the structural information of both in-
put and label documents. Moreover, the learning
framework has multiple stages, making the training
inefficient.

3 Methodology

In this section, we introduce our proposed struc-
tural contrastive learning approach for ZMTC. We
start with our problem settings. Next, we intro-
duce our approach of representation learning for
structural text with title and content. Finally, we
highlight the proposed randomized text segmenta-
tion with more intuition.

3.1 Problem Setting

Notations: In this paper, we denote X =
{(t1,e1), -+, (tx), ¢1x1) ) as a set of documents.
Every (¢;,¢;) € X is a title-content pair where ¢;
and ¢; represents title and content text, respectively.
LetY = {y1,...,¥y|} be the set of labels. Each
yi € Y can be a short sentence description or a
structural document with a title and contents. Each
(ti,c;) € X corresponds to a subset of labels in
Y. The set of documents X is split into disjoint
subsets Xiin and Xeg for training and evaluation,
respectively. We summarize the notations in Ta-
ble 1.

The multi-label text classification problem is the
problem of matching documents to their most rel-
evant labels in a large pool of labels. ZMTC is an
important subtask for this problem that focuses on
unseen labels. In the ZMTC setup, we have ac-
cess to Xiqin and Y for training a model to classify
documents to labels. We would like to correctly
classify each unseen document in Xy to labels
in Y with the trained model. Due to the zero-shot
nature of the problem, we do not have access to
M, the ground truth mappings of documents to
labels, for training. This problem formulation is
general enough that many real-world problems can
be modeled after, for example, predicting which
items are similar to an item on an e-commerce
website (Chang et al., 2021), predicting which cat-
egories an article belongs to on an online encyclo-
pedia (Bhatia et al., 2016), or predicting medical

subject headings for COVID-19 related articles (Lu-
part et al., 2022).

3.2 Learning Text Representation

In this section, we introduce our structural
contrastive representation learning approach for
ZMTC. We present an overview of our method
in Figure 1. For document data containing both
title and content, we start with randomized text
segmentation to generate subsequences for better
paragraph-level representation learning of long text.
Next, we pair the generated text segments with ti-
tles or each other to construct positive pairs and
train the model using a contrastive representation
learning framework. As a result, we obtain repre-
sentation for both input and label text so that ZMTC
becomes a nearest neighbor search problem. In the
following subsections, we start by introducing the
randomized text segmentation technique. Next, we
introduce our contrastive learning framework.

3.2.1 Randomized Text Segmentation

We perform randomized text segmentation (RTS)
on the contents to divide a long text into non-
overlapping contiguous subsequences. We use
these subsequences to generate positive pairs for
contrastive representation learning.

The contents c of a document is a finite sequence
of terms, ¢ = (w1, ..., w)), where each term w
is a textual entity such as a word. We segment the
contents into non-overlapping contiguous subse-
quences by sampling lengths /1, l2, ... of the sub-
sequences from the discrete uniform distribution
U (Lmin, Limax ), where Lyin and L,y are hyperpa-
rameters. We keep sampling from the distribution
until we obtain k& sampled lengths from the distri-
bution such that Zle l; > |c| and Zfz_ll li <|e|.
Then, we segment the contents into k£ subsequences
(W1 Wiy )y (Wig 41505 WEg 415) e - - ’(w1+2i<k li,.‘.,w‘d). To
prevent the last subsequence from being too short
in length, we merge the last two subsequences by
concatenation if the length of the last subsequence

1s less than %

The process of randomized segmentation of con-
tents is repeated independently every epoch. The
subsequences obtained through segmenting the
same text can be completely different for differ-
ent epochs due to the independent sampling at each
epoch.
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Figure 1: a) Randomized Text Segmentation breaks up the contents of a document into non-overlapping subsequences
with lengths sampled from the discrete uniform distribution. b) Exploit the structure of document data by constructing

(t,s;) and (s;, s;) positive pairs for contrastive learning.

Notation |Definition

t document title

c document contents

y label description

w a textual entity such as a word

S1, 82, . . . |subsequences obtained from RTS

1,12, lengths of s1, s2,. ..

Lin the minimum length of a RTS subsequence
Linax the maximum length of a RTS subsequence
Xirain training set of documents

Xest test set of documents

Y label set

M ground truth mapping from documents to labels

Table 1: Main notations used in this paper

3.2.2 Positive Pair Construction

In this section, we introduce how to construct pos-
itive pairs for contrastive representation learning
given the RTS subsequences and the short title of
the document. We construct two types of positive
pairs for each input document and one or two types
of positive pairs for each label document.
We perform RTS on the contents of every docu-
ment. Given a document with content ¢ and title ¢,
we use RTS to obtain k subsequences sy, ..., S of
c. Next, we construct two types of positive pairs:
1. For each subsequence s;, we pair it with ¢ as
(t, s;). There would be k such pairs.

2. For each subsquence s;, we pair it with an-
other subsequence s; where ¢ # j. We form
[%] pairs of (s;, s;) by sampling pairs from
{s1,..., sk} without replacement, and pair
the last remaining one with s; if k is odd.

For the label set Y, if it only contains a short de-
scription for each class, we directly construct |Y|
positive pairs of (y;, y;) and use dropout noise to

prevent representation collapse (Gao et al., 2021).
On the other hand, if elements in Y have both a
short title and long contents, we apply the same
pair construction method on labels as input doc-
uments. It is worth noting that we do not model
the correlation between the input document and the
labels in the zero-shot learning setup. We directly
use the pairs for training in a contrastive learning
framework with a language model as the encoder.
This procedure is end-to-end learning with only
one training stage. Moreover, it does not involve
any label engineering such as clustering.

3.2.3 Training Loss

In this section, we introduce the contrastive loss
we used for representation learning with positive
pairs we constructed. Let E(-) denote a encoder
with pre-trained weights. This encoder transforms
input text into an embedding with fixed dimen-
sions. We choose MPNet (Song et al., 2020)
as the encoder, and use the [CLS] representation
as the text embedding. Next, following the con-
trastive learning framework in (Chen et al., 2020),
in each iteration, we sample a batch of positive
pairs {(z;, ;)|i € {1,...,b}} with size b and min-
imize the following loss:

b NS
1 o (B(:), B@)/7
L=——) log - (1)
b ; S0 ) B
where f(z,2) = % is the cosine similarity

and 7 is the temperature hyperparameter. We train
E(-) for a certain number of epochs and update its
weights to minimize the loss.
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3.2.4 Inference

Once the training is finished, we perform inference
with a nearest neighbor search framework. We
first encode the labels into a set of embeddings
{E(y)|ly € Y}. Next, given an input document
with title ¢ and contents c. We concatenate them
as t @ c and generate the document embedding
E(t&c). Finally, we query and retrieve the k-
nearest neighbor embeddings of E(t € ¢) in the
set £(Y). Here we use the same cosine similarity
as our distance metric.

k-nearest neighbor search for dense embedding
vectors can be greatly accelerated using the FAISS
engine (Johnson et al., 2019). As a result, we obtain
an efficient workflow for ZMTC.

3.3 Discussion

Motivation: The motivation of our method is to
leverage the inherent structure in the data to gen-
erate high-quality pairs for contrastive learning. A
document is a title-content pair, where the title is
short and expresses the main topic of the document,
and the contents are long and describe multiple
concepts of the topic in detail. With randomized
text segmentation, we break up the long contents
into short segments, each of which consists of one
or two constituent concepts of the topic. By pair-
ing these segments with the title or other segments
for contrastive learning, the model captures the se-
mantic similarity between texts from different cat-
egories within the same document. Moreover, the
model learns to produce high-quality representa-
tions for both input documents and labels. Further-
more, by independently repeating the RTS process
every epoch, the model is trained on a different set
of pairs every epoch. This prevents the model from
memorizing the training pairs and overfitting, and
encourages the model to capture the underlying se-
mantic similarity of concepts within the document.

RTS vs Sentence-level Separation: Previous
approaches of contrastive learning for document
data break up documents into natural sentences
by splitting text at appropriate punctuations (Xiong
etal., 2022; Lee et al., 2019). However, this method
has multiple downsides. Natural sentences are not
ideal training data for contrastive learning, since
they may be too short to capture enough context,
and they are static. Moreover, the model is prone to
memorizing the training data or overfitting, since
it is trained on the same set of pairs every epoch.
Our method produces training data of much bet-

ter quality and variety, and enables the model to
learn underlying patterns in the data that are other-
wise difficult or impossible to recognize. We will
demonstrate this empirically in 4.5.

Choices of Hyperparameter: Based on the mo-
tivation of our proposed method, we describe a
method of setting hyperparameter values for Ly,
and Ly,x. We set Lyin = [ and Ly, = 2 such
that, with high probability, a subsequence of length
[, which is randomly sampled from the contents of
any document in the dataset, would capture enough
context for one to recognize an idea or a concept
described in the document.

4 Experiment

In this section, we evaluate the performance of our
method and compare it with competitive baselines
on 4 ZMTC datasets. There are 2 product rec-
ommendation datasets, 1 article recommendation
dataset, and 1 article categorization dataset in our
experiment. We choose these datasets for simu-
lating the cold start problem in large-scale recom-
mendation systems, information retrieval tasks in
search engines, and natural language processing of
unseen documents. In the experimental evaluation,
we would like to answer the following questions:
(1) Does our approach of RTS and pair construction
improve the ZMTC accuracy? (2) Does our single-
stage training improve the efficiency of ZMTC? (3)
How do different sequence pairs affect the ZMTC
performance?

Dataset | Xrain| | Xest] Y]
LF-Amazon-131K 294,805 134,835 131,073
LF-WikiSeeAlso-320K | 693,082 177,515 312,330
LF-Wikipedia-500K 1,813,391 783,743 501,070
LF-Amazon-1M 914,179 1,465,767 960,106

Table 2: Statistics of the datasets used for evaluation.
| Xtrain|s | Xiest|, |[Y| denote the number of training in-
stances, the number of test instances, and the number of
labels, respectively.

4.1 Datasets

We conduct our experiments on 4 publicly avail-
able datasets for multi-label text classification. Ta-
ble 2 presents the statistics of the datasets. All
4 datasets have a very large set of labels, rang-
ing from 131K to 960K in size, which enables
us to accurately evaluate the model performance
since real-world ZMTC tasks usually have an enor-
mous label space. We obtain LF-Amazon-131K,
LF-WikiSeeAlso-320K, and LF-Wikipedia-500K
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Dataset Learning Rate | Lmin | Lmax | Epochs | Batch Size Training Pairs Used
LF-Amazon-131K 5x 1077 40 80 10 384 | (t,si),(si,85), (¥, 9)
LF-Amazon-1M 5x 107¢ 40 80 10 384 | (t,s4),(si,85), (y,9)
LF-WikiSeeAlso-320K 5x 1078 80 160 5 256 (siy85), (Y, )
LF-Wikipedia-500K 5x 1078 80 | 160 5 256 (5i,85), (¥, v)

Table 3: Best hyperparameters and training settings for each dataset.

datasets from the extreme classification reposi-
tory (Bhatia et al., 2016). The LF-Amazon-1M
is available in (Gupta et al., 2021). All 4 datasets
use data collected from real-world applications; LF-
Amazon-131K and LF-Amazon-1M contain item-
to-item recommendation data from the e-commerce
website Amazon, LF-WikiSeeAlso-320K contains
data for related articles from the encyclopedic web-
site Wikipedia, and LF-Wikipedia-500K contains
article categorization data from Wikipedia. Since
the datasets use data from large-scale recommen-
dation systems, they are ideal for evaluating the
real-world performance of models.

4.2 Settings
4.2.1 Testbed

We implement our approach with PyTorch (Paszke
et al., 2019). Our experiments are conducted on a
machine with 4 NVIDIA Tesla V100 32GB GPU
and 2 24-core/48-thread Intel Xeon Gold 5220R
CPUs with 1.5TB of RAM.

4.2.2 Evaluation Metrics

We adopt precision at p or PQp, p € {1,3,5} and
recall at r or RQr,r € {1,3,5,10,100} as the
evaluation metrics for ZMTC tasks, which are de-
fined as:

T Zyerm 17T 0)

Pap = ,
np

1< Zyey.md 17 (y)
Rar = — Z ) top-r )
n i=1 Zer ]lz (y)

where n is the number of documents evaluated,
Yipred is the set of predicted labels for the ith doc-
ument, and 1;°°?(-) is an indicator function indi-
cating whether a predicted label is a ground truth
top-p label for the ith document. The precision and
recall metrics are frequently used for this setup in
prior works (Xiong et al., 2022; Reddi et al., 2019;

Chang et al., 2021).

2

4.2.3 Hyperparameter

The best hyperparameters we found in our exper-
iments for each dataset are shown in table 3. We
adopt the same training procedure for each dataset.

We finetune the base version of MPNet (Song et al.,
2020) with positive pairs constructed with our pro-
posed method for 5 or 10 epochs with the AdamW
optimizer (Loshchilov and Hutter, 2019) with de-
creasing learning rate to optimize the loss function
in Equation 1 with 7 = 0.05. The learning rate
decays 10x over epochs on a linear schedule.

We carry out grid search for the best learn-
ing rate in {5 x 107°,5 x 107¢,5 x 1078} and
(Lmin, Lmin) € {(40,80), (80, 160)}. We use fixed
batch sizes that are large enough to take full advan-
tage of GPU memory. We train the models for 5 or
10 epochs, depending on the size of the dataset.

Datasets that share the same source of data
share almost identical hyperparameters; LF-
WikiSeeAlso-320K and LF-Wikipedia-500K use
identical hyperparameters, since their data are both
sampled from Wikipedia. We avoid using (t, s;)
pairs for training on Wikipedia datasets, for the
following reasons. For a Wikipedia article, the
text in the short title is usually frequently repeated
throughout the contents. Therefore, maximiz-
ing the agreement of the title with content sub-
sequences is unnecessary and redundant. Addi-
tionally, training with (¢, s;) pairs will cause the
encoder to focus solely on the title keywords in
the content subsequences, instead of capturing the
semantic similarity of text segments.

4.3 Baselines

We provide an overview of the baseline methods
evaluated. All methods except XR-Linear encodes
documents and labels into embedding vectors, and
retrieves the labels with the most similar embed-
dings in terms of cosine similarity for a document.
XR-Linear retrieves labels by querying a hierarchi-
cal tree structure.

* MACLR: (Xiong et al., 2022) A multi-stage
contrastive learning method that uses cluster-
ing and TF-IDF to construct pseudo-labels.

* TF-IDF: (Ramos et al., 2003) represents input
and label documents as sparse TF-IDF feature
vectors.

* GloVe: (Pennington et al., 2014) represents
input and label documents as Glove embed-
dings.
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Method

Dataset Metric | gpERT GloVe XR-Linear SimCSE TEIDF ICT MPNet MACLR RTS
P@l 186 367 756 1013 1238 1382 1394 18.13 18.74
P@3 144 278 784 861 1150 1141 1141 1542 1530
P@5 114 215 730 669 914 890 882 1193 11.96
LFAmason131K R@1 101 205 405 561 691 776 782 1035 10.64
R@3 220 433 1211 1339  18.14 18.09 18.08 2445 24.16
R@S5 288 544 1832 1684 2321 2280 2258 3043 3045

R@10 4.01 7.23
R@100| 10.18 14.17

29.17 21.27  29.32 2894 27091 37.28 38.19
40.39 35.81 45.04 4740  43.39 54.99 59.34

P@l 1.71 3.86

P@3 1.27 2.76

P@5 1.06 2.21

o R@1 1.08 2.12
LF-WikiSeeAlso-320K R@3 216 411
R@5 2.90 5.22

R@10 4.17  6.95
R@100| 10.76 15.33

4.73 9.03 10.71 10.76  13.75 16.31 18.64
4.27 6.64 890 10.05 1193 13.53 15.14
3.90 5.22 7.15 812 9.58 10.78 12.07
2.23 4.99 592 6.12 8.14 9.71 10.86
5.83 9.89 13.03 1432 17.77 20.39 22.68
8.64 12.34 16.48 18.05 2221 25.37 28.29
14.18 1593  21.60 23.01 28.11 32.05 35.47
36.93 30.11 4255 39.77 4591 53.83 57.30

P@] 0.17 2.19

P@3 0.15 1.52

P@5 0.13 1.23

e R@1 0.05 0.85
LF-Wikipedia-500K R@3 013 1.66
R@5 0.18 2.18

R@10 030 3.10
R@100 129 852

10.67 1432 2030 17.74 2246 28.44 30.67
8.77 6.84 1298 9.67 12.87 17.75 19.03
7.61 4.55 9.96 7.06 9.49 13.53 14.34
3.69 4.24 725 735 8.74 10.40 10.58
8.58 8.03 1291 11.60 14.07 18.16 18.48

12.11 11.26 1598 13.84 16.76 22.38 22.51

19.80 1435 2031 17.19 20.64 28.52 28.23

31.02 27.68  38.16 31.08 34.72 50.09 48.00

P@I 282 4.05
P@3 287 407
P@5 213 3.07
R@1 203 291
LF-Amazon-1M R@3 591 842
R@5 721 10.44

R@10 8.80 12.90
R@100| 1422 21.18

5.19 3.33 7.68 8.66 8.29 9.58 10.00
5.48 3.69 920 9.26 8.87 1041 10.95
5.26 2.74 723 713 6.80 8.03 841
3.63 2.38 561 6.30 6.04 7.38 734
11.30 7.66 1930 1945 18.64 22.01 23.09
17.94 9.38 2492 2460 2351 27.72 29.14
31.18 11.43  31.76 30.73 29.35 3448 36.30
43.79 18.54  51.79 48.42 46.15 55.23 55.84

P@]I 1.64 344
P@3 1.43 2.78
P@5 1.11 2.17
R@1 1.04 1.98
Average of All R@3 261 463
R@5 3.29 5.82

R@10 432 754
R@100 9.11 14.80

7.04 920 1277 1274 1461  I8.11 19.51
6.59 645 1064 10.10 1127 1428 15.11
6.02 480 837 780 867  11.07 11.70
3.40 431 642 688  7.69 946 9.86
9.45 974 1584 1586 17.14 2125 22.10
1425 1246 20.15 19.82 2127 2647 27.60
2358 1575 2575 2497 2650  33.08 34.55
38.03  28.03 4438 41.67 4254  53.53 55.12

¢ Sentence BERT (SBERT): (Reimers and
Gurevych, 2019) a BERT model trained on ex-
tra data to specialize in producing high-quality
sentence representations.

¢ SimCSE: (Gao et al., 2021) An unsupervised
contrastive learning method that constructs
positive pairs by pairing a sentence in the
training corpus with itself and using dropout
as data augmentation, and finetunes a BERT
model with such pairs.

* MPNet: (Song et al., 2020) represent input
and label documents with MPNet, a BERT
model pre-trained with the masked and per-
muted training objective.

¢ XR-Linear: (Yu et al., 2022) A model that

Table 4: Precision and recall metrics of our method and other baselines on 4 datasets for ZMTC. For each metric,
the best value is bolded and the second best value is underlined. RTS achieves the state-of-the-art results on most of
the metrics, with substantial improvements to some metrics over previous best.

organizes labels into a hierarchical tree and
constructs pseudo-labels with TF-IDF to over-
come the lack of training supervision.

e Inverse Cloze Task (ICT): (Lee et al., 2019)
A BERT model trained with the ICT objective
for title prediction.

4.4 Main Results

Accuracy: Table 4 shows the evaluation results on
4 ZMTC tasks. We report the precision and recall
of the baselines from (Xiong et al., 2022). Our
method attains the best results on most of the met-
rics, and substantially improves over previous state-
of-the-art results on some. P@1 is improved from
16.31% to 18.64% on LE-WikiSeeAlso-320K and
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Ablation Settings
Method Model

Segmentation | (¢, s;) (ss,5;5) (

Precision Recall
)| @1 @3 @5 @1 @3 @5 @10 @100

o~
o~

Original RTS MPNet |RTS (40, 80)
Fixed segmentation |MPNet|Fixed (60)
Natural segmentation | MPNet | Natural

RTS with BERT BERT |RTS (40, 80)
No labels MPNet |RTS (40, 80)
(t, s;) pairs only MPNet|RTS (40, 80)

AN N NN
R NN N NN

18.74 15.30 11.96|10.64 24.16 30.45 38.19 59.34
17.26 14.07 11.01| 9.91 22.41 28.21 35.21 54.66
17.34 14.15 11.01| 9.82 22.40 28.12 35.26 56.18
18.57 15.01 11.75|10.57 23.75 29.94 37.56 58.57
18.37 14.86 11.53(10.45 23.53 29.41 37.00 57.82
17.50 14.61 11.35|10.03 23.30 29.10 35.92 55.03

RXXNNNYN

Table 5: Experimental results of the ablation study. We study the impact of fixed and natural sentence segmentation,

different pre-trained models, and different positive pairs.

Dataset ‘ MACLR ‘ RTS Speedup
LF-Amazon-131K 18.08| 6.06  2.98x
LF-WikiSeeAlso-320K 29.08| 4.94 5.89x
LF-Wikipedia-500K 31.58| 9.20 3.43x
LF-Amazon-1M 3475] 5.85 5.94x
Total 113.49126.05 4.36x

Table 6: Training time (in hours) comparison between
RTS and MACLR, the previous state-of-the-art method
for ZMTC. RTS achieves significant training speedup,
up to a factor of 5.94 %, on all datasets.

from 28.44% to 30.67% on LF-Wikipedia-500K,
and R@100 is improved from 54.99% to 59.34%
on LF-Amazon-131K and from 53.83% to 57.30%
on LF-WikiSeeAlso-320K. For the average metrics
of all datasets, all precision and recall metrics are
improved over previous state-of-the-art results, es-
pecially P@1 and R@Q100, which are improved by
1.4% and 1.59%, respectively. The results answer
the first question, our approach can consistently
improve the ZMTC performance on different tasks.

Efficiency: We compare the training time of
RTS with the previous state-of-the-art method
MACLR on ZMTC tasks. The training time statis-
tics are shown in Table 6. We test both meth-
ods with the same hardware configuration. For
MACLR, we use the code and the best hyperpa-
rameters provided in (Xiong et al., 2022). We
the model with our method until the evaluation
metric PQ1 reaches the highest PQ1 achieved
by MACLR. The results answer the second ques-
tion: our proposed ZMTC method achieves 2.98 x
to 5.94 x speedup in training.

4.5 Ablation Study

In this section, we answer the third question and
perform an ablation study. We investigate the im-
pact of segmentation methods, pretraining, and
types of positive pairs on model accuracy. All abla-
tion experiments are based on LF-Amazon-131K,
and done with the same hyperparameters described
in Section 4.2.3 to ensure a fair comparison. De-

tailed results of the ablation study are shown in
Table 5.

Segmentation Methods: We study the impact
of different text segmentation methods by compar-
ing RTS, natural, and fixed segmentation. Natural
segmentation breaks up long text into natural sen-
tences, while fixed segmentation breaks it up into
subsequences of fixed length. For fixed segmen-
tation, we choose 60 as the length of each sub-
sequence as it is the average length used in RTS.
Natural and fixed segmentation methods perform
similarly, while RTS outperforms both natural and
fixed segmentation and achieves 1.4% — 1.48%
better precision@]1.

Pretraining: We compare using BERT (Devlin
et al., 2019) and MPNet (Song et al., 2020) as the
starting points for training to study the impact of
pretraining. We compare the base version of BERT
and MPNet, which have the same architecture and
model size but different pretraining schemes. MP-
Net has been shown to outperform BERT on down-
stream tasks (Song et al., 2020). After the same
amount of training time, BERT slightly underper-
forms MPNet, but it still achieves significantly bet-
ter results than MPNet trained with naive segmen-
tation methods. A better pretraining scheme pro-
duces slightly a better model for ZMTC, but it is
not a significant contributing factor.

Positive Pairs: We remove each type of pair for
training to investigate the impact of different types
of pairs have on model accuracy. First, we remove
label pairs (y,y) and train with only (¢, s;) and
(si,s;) pairs. The model retains good performance,
so the label set is not necessary to produce high-
quality models for ZMTC. Then we further remove
(si,s;) pairs and train with only (¢, s;) pairs. The
resulting model still outperforms the ones trained
on all 3 types of pairs with naive segmentation
methods, since RTS exploits the structure of doc-
ument data and enables the model to learn the un-
derlying semantic similarity between segments.
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5 Conclusion

In this paper, we proposed Randomized Text Seg-
mentation (RTS) and positive pair construction
strategies to exploit the structure within document
data for end-to-end contrastive learning to advance
state-of-the-art results on ZMTC tasks. Our pro-
posed method achieves up to 2.33% improvement
on precision@1 and up to 5.94 x speedup in train-
ing time over previous state-of-the-art. We show
that it is feasible to efficiently train high-quality
models for challenging ZMTC tasks without hav-
ing to resort to time-consuming, multi-stage meth-
ods with label engineering or methods that utilize
inefficient softmax learning. Through extensive
ablation experiments, we demonstrate the superior-
ity of RTS over naive segmentation methods, and
show that the types of positive pairs we proposed
are indeed effective for learning better representa-
tion. We believe our work has a substantial impact
as it can be applied to tackle many large-scale real-
world problems such as cold-start recommendation
problems, information retrieval, and medical docu-
ment categorization and classification.

Limitations

A limitation of our approach is that it relies on com-
plex pretrained transformer-based language models,
such as BERT and MPNet, to achieve state-of-the-
art results in ZMTC. Transformer-based models
are computationally expensive, require specialized
hardware such as GPU for training, and are dif-
ficult to deploy in large-scale productions. In the
future, we would like to explore using simpler mod-
els such as embedding models for ZMTC tasks for
more efficient training and inference.

Ethics Statement

We use GPUs to train transformer models, which
have a notable carbon footprint. However, since
our proposed approach improves training efficiency
over previous methods by reducing multiple stages
of training to one, we hope our work can help save
energy in settings such as online recommendation
systems.
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