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Abstract

Lifelong learning aims to accumulate knowl-
edge and alleviate catastrophic forgetting when
learning tasks sequentially. However, existing
lifelong language learning methods only focus
on the supervised learning setting. Unlabeled
data, which can be easily accessed in real-world
scenarios, are underexplored. In this paper, we
explore a novel setting, semi-supervised life-
long language learning (SSLL), where a model
learns sequentially arriving language tasks with
both labeled and unlabeled data. We propose
an unlabeled data enhanced lifelong learner
to explore SSLL. Specially, we dedicate task-
specific modules to alleviate catastrophic for-
getting and design two modules to exploit unla-
beled data: (1) a virtual supervision enhanced
task solver is constructed on a teacher-student
framework to mine the underlying knowledge
from unlabeled data; and (2) a backward aug-
mented learner is built to encourage knowledge
transfer from newly arrived unlabeled data to
previous tasks. Experimental results on vari-
ous language tasks demonstrate our model’s
effectiveness and superiority over competitive
baselines under the new setting SSLL. We will
release the code and data '.

1 Introduction

A remarkable ability of humans is to learn and ac-
cumulate knowledge continuously throughout their
lifetime. Such Lifelong Learning ability is crucial
for computational systems interacting with the real
world and processing continuous streams of infor-
mation (Parisi et al., 2019; Delange et al., 2021).
However, most deep neural networks studies as-
sume data distributions are stationary, which is not
applicable in the real-world environments that dy-
namically evolve. In such real scenarios, models
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Figure 1: The Training process of our model UELL.

often suffer from catastrophic forgetting (McClel-
land et al., 1995; Parisi et al., 2019): a phenomenon
where models forget previously learned knowledge
when learning new tasks sequentially.

Various approaches have been proposed to alle-
viate catastrophic forgetting in lifelong scenarios.
Attempts include constraining the variants of im-
portant weights with regularization (Schwarz et al.,
2018; Mi et al., 2020), storing real samples or us-
ing pseudo samples for previous tasks to maintain
the learned knowledge (d’ Autume et al., 2019; Sun
etal., 2019; Chuang et al., 2020), or dedicating task-
specific modules to avoid the interference among
tasks (Madotto et al., 2021; Qin and Joty, 2022;
Zhang et al., 2022). Despite their reported effective-
ness, these approaches are mostly designed to han-
dle supervised learning tasks, where only labeled
data are available. In real-world scenarios, labeled
data are generally expensive and time-consuming
to obtain, whereas unlabeled data are much easier
to collect. These unlabeled data often carry rich
information and have been successfully utilized
to improve model performance in semi-supervised
learning (Xie et al., 2020a; Chen et al., 2021).

In this paper, we investigate a novel set-
ting: Semi-Supervised Lifelong Language learning
(SSLL), where a model learns sequentially arriving
language tasks with limited labeled data and ade-
quate unlabeled data (see the training process in
Fig. 1). The abundant information in the unlabeled
data can not only facilitate learning the current task
but also benefit learned tasks with similar data dis-
tributions. For example, sentiment analysis and
topic classification tasks may only differ in their la-
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bel spaces while sharing the same set of unlabeled
data. We can transfer knowledge among the two
kinds of tasks using these unlabeled data (Liu et al.,
2019). This phenomenon naturally leads to two
challenges to be faced in the SSLL scenario: (1)
How to fully exploit unlabeled data to facilitate
each arrived language task? and (2) How to lever-
age newly arrived unlabeled data to encourage
knowledge transfer to previous tasks?

With this in mind, we propose an Unlabeled
data Enhanced Lifelong Learner (UELL) frame-
work to explore the new setting SSLL. Specifi-
cally, we dedicate task-specific parameters to al-
leviate catastrophic forgetting in UELL. We con-
struct two modules to tackle the challenges men-
tioned above. The first module is a virtual supervi-
sion enhanced solver that exploits unlabeled data
using a teacher-student framework. The teacher
generates pseudo labels for unlabeled data as vir-
tual supervision and guides the student according
to its learning progress. The student also learns
from pseudo labels through self-study. The second
module is a backward augmented learner that en-
courages knowledge transfer from the current task
to previously learned tasks. The generated pseudo
data for each learned task are augmented by retriev-
ing semantically similar unlabeled samples from
the current task, where the latter are leveraged to
transfer knowledge backward to previously learned
tasks. We conduct extensive experiments and analy-
ses on both language understanding and generation
tasks and demonstrate that UELL can effectively
address the challenges of SSLL.

Our main contributions are as follows:

* To the best of our knowledge, we are the first
to explore the semi-supervised lifelong language
learning setting, where a model learns sequen-
tially arriving language tasks with a mixture of
labeled and unlabeled data.

* We propose a novel method, Unlabeled data En-
hanced Lifelong Learner, to exploit unlabeled
data and encourage backward knowledge trans-
fer in SSLL.

* We conduct adequate experiments and analyses
on various language tasks. The results demon-
strate the effectiveness of UELL over competitive
baselines adapted from lifelong learning methods
to the SSLL setting.

* We believe our new paradigm imposes new chal-
lenges and opens up new research opportunities
for the NLP community.
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Figure 2: The format of UELL’s input-output. “[G;]” is
the task-specific generation token for task 7T;, “[Q], [A]”
are special tokens that indicate the end of the question
and the beginning of the answer, respectively.

2 Related Work

Semi-Supervised Learning aims to learn from
both labeled and unlabeled data (Chapelle et al.,
2009; Van Engelen and Hoos, 2020; He et al.,
2022a). As an efficient approach for semi-
supervised learning, pseudo labeling (Zhou and Li,
2010; Lee et al., 2013) tries to utilize unlabeled data
by predicting their labels. Some studies (Zhou and
Li, 2010; Qiao et al., 2018) train multiple learners
and exploit disagreements among different learn-
ers. Other studies utilize self-training to generate
pseudo labels for unlabeled data (Zhai et al., 2019;
Xie et al., 2020b; Chen et al., 2020).

Consistency regularization (Rasmus et al., 2015;
Tarvainen and Valpola, 2017; Xie et al., 2020a; Wu
et al., 2021; He et al., 2022c) is another popular
scheme. It regularizes the model to be invariant
to small perturbations on the input, hidden states,
or model parameters. Mean Teacher (Tarvainen
and Valpola, 2017) is an efficient method to im-
plement consistency regularization, where a stu-
dent model and a teacher model are maintained to
enforce the predictions’ consistency. This paper
combines pseudo labeling with a teacher-student
framework to handle semi-supervised learning in
the lifelong scenarios.

Lifelong Learning aims to learn a sequence of
tasks without forgetting previously learned knowl-
edge. Three categories of approaches are generally
used in lifelong learning: Regularization-based
methods either impose constraints on the varia-
tion of important weights when learning new tasks
(Schwarz et al., 2018; Aljundi et al., 2018), or in-
troduce knowledge distillation to preserve the pre-
viously learned knowledge (Li and Hoiem, 2017;
Dhar et al., 2019); Replay-based methods store real
samples (Rebuffi et al., 2017) or generate pseudo
samples (Qin and Joty, 2022; Zhao et al., 2022b)
for learned tasks to consolidate previous knowl-
edge; Architecture-based methods construct task-
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Figure 3: Overview of our method UELL. UELL consists of two modules: a virtual supervision enhanced solver to
exploit unlabeled data and a backward augmented learner to encourage knowledge transfer to previous tasks.

specific modules to preserve knowledge. Some
studies (Serra et al., 2018; Fernando et al., 2017)
use static architectures and apply task-specific
routes through the architectures to prevent forget-
ting, while other studies (Madotto et al., 2021;
Zhang et al., 2022; Dai et al., 2022) dynamically
expand the model with task-specific parameters.
Recently, some studies have tried to investigate
semi-supervised lifelong learning for image classi-
fication tasks by modeling data distributions with
generative adversarial networks (Goodfellow et al.,
2014), or relying on a super-class structure of im-
age datasets to exploit unlabeled data (Wang et al.,
2021; Brahma et al., 2021; Smith et al., 2021).
However, it is non-trivial to extend these works
into language tasks since they either require contin-
uous input spaces or utilize extra super-class struc-
tures, and all these works do not consider backward
knowledge transfer with the help of unlabeled data.

3 Task Definition and Formulation

In SSLL, we sequentially learn a stream of semi-
supervised language tasks 71, 7o, ..., Ty. The
data of each task 7; contain limited labeled data
D; = {(X?,Y?)} and abundant unlabeled data
D = {X}'}, where X? and X" are input samples
and Y}’ is the output label of X?. Moreover, the
data for task 7; arrive after task 7;_q is learned
(Brahma et al., 2021), and we have no access to
previous tasks’ data. The final goal is to optimize
the model’s average performance on all tasks after
training the whole sequence (Sun et al., 2019).
Inspired by McCann et al. (2018), we frame dif-
ferent types of NLP tasks into a unified text-to-text
format. Specifically, for each (X*,Y?®) € D*, we
format X? as a concatenation of a context and a
question, and serialize Y® as an answer sequence
representing the label of X* (Fig. 2). For instance,
a sample in a sentiment classification task contains
the input X®: “I enjoyed the movie. (context)

What’s the sentiment? (question)” and the out-
put Y?%: “positive”. For each sample X" € D%,
the input X is only a context.

4 Methodology

4.1 Overview

We propose an unlabeled data enhanced lifelong
learner (UELL) to handle the newly proposed semi-
supervised lifelong language learning (SSLL) set-
ting (see Fig. 1 and 3). To alleviate the catastrophic
forgetting issue of lifelong learning, we dynami-
cally expand the model architecture by allocating
task-specific modules. To overcome the challenges
of SSLL discussed in §1, we design two modules in
UELL: (1) a virtual supervision enhanced solver ex-
ploits unlabeled data for each sequentially arrived
task; (2) a backward augmented learner encourages
knowledge transfer to previous tasks with unla-
beled data. We will first illustrate the architecture
we design to prevent forgetting and then elaborate
on details about our learning process.

Model Architecture UELL maintains a teacher
model T and a student model Sy for each task
during the lifelong learning process. It uses T5
(Raffel et al., 2020) as the backbone for T}, and Sy
to tackle text-to-text generation tasks. To overcome
catastrophic forgetting, we freeze the parameters of
the pre-trained TS and insert separate adapter mod-
ules (Houlsby et al., 2019; Pfeiffer et al., 2020b)
into T5 for each task (See Fig 4). Specifically, we
use the bottle-necked adapter structure proposed by
Pfeiffer et al. (2020a), in which the adapter consists
of a layer normalization (Ba et al., 2016) followed
by a two-layer MLP and a residual connection (He
et al., 2016). Such the adapters are light-weighted
(i.e., 0.8% of TS parameters). By encapsulating
task-specific information into isolated parameters,
these adapters can effectively avoid catastrophic
forgetting with little memory overhead.
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Figure 4: Adapter modules for T5 transformers layers
used in UELL. The parameters of the pre-trained TS
(i.e., layers marked with ) are fixed during training.

Labeled Data Learning We optimize the student
model Sy over D; for each arriving task 7; with
the following cross-entropy loss (see Fig. 2):

cE=—

(X,Y)eD;

log So(Y'|X), (1)

The teacher Ty, is gradually updated by means of
momentum according to the student’s weights 6.

We will elaborate on it in §4.4.

4.2 Virtual Supervision Enhanced Solver

To fully exploit unlabeled data for each task, a
virtual supervision enhanced solver is constructed
with a teacher-student framework: (1) The teacher
T} predicts pseudo labels for unlabeled data and
uses these virtual supervisory signals to guide
the student; (2) The student Sy takes a self-study
course with virtual signals to further enhance itself.

Teacher Guidance Inspired by (Tarvainen and
Valpola, 2017), the guidance from the teacher T}
to the student Sy is achieved by forcing the con-
sistency between predictions of Ty and Sp on per-
turbed unlabeled inputs. Specifically, when learn-
ing the task 7;, we augment each unlabeled sample
X" € Dy to A(X™) as the input of the teacher,
where A refers to the data augmentation operation
that injects noise to the input while preserving its
semantics. Next, the teacher T} predicts the pseudo
label Y of A(X™) through greedy decoding. To al-
leviate noises introduced by pseudo labels, we only
maintain high confident predictions produced by
T} to guide Sy. Following Madotto et al. (2021),

we use the perplexity score PPL(Y) to measure

T4’s confidence when predicting Y. Here, low per-

plexity corresponds to high confidence of Y. We

optimize Sy on the filtered pseudo labels using:
LID) =~ 3 1PPL(Y) <7)-log Se(VIA(X™)), (2)

XueDy
where 7 is a confidence threshold.

Moreover, to better guide the student Sy, we ar-
gue that the teacher T} should adjust its teaching
pace based on the learning progress of Sy. Inspired
by Pham et al. (2021), we use the training loss of
Sy on labeled data as its grade to inform the teacher.
Considering that unlabeled data are usually “harder”
to learn than labeled data, we teach Sy with unla-
beled data only when the student acquires a certain
grade (i.e., knowledgeable enough). Specifically,
the optimization of LIS is carried out only when
the absolute difference of losses between Sy and
T4 on labeled data drops to a certain threshold .

Student Self-Study In addition to the teacher’s
guidance, self-study is also crucial for the stu-
dent to better leverage unlabeled data. The self-
study course taken by the student is performed by
enforcing the student’s consistency under small
disturbances using a dropout-based regulariza-
tion term (Wu et al., 2021). Specifically, for
each pseudo labeled data (A(X™"), Y), we forward
A(X™) twice through the student model Sy with
different dropout masks to obtain two different pre-
dicted outputs: Sj(V].A(X")), (i = 1,2). Denote
wy, as the k-th token in Y, Si(wy) as the predicted
distribution for token wy, in the ¢-th forward pass
of Sg. We optimize the following bidirectional
Kullback-Leibler (KL) divergence:

ﬁS S(Dt Z KLIZ(XH) +KL21(Xu)
X“ED“
17 &
KL9(X") = % S KL(Sh (w155 (),
k=1

where K L measures the KL divergence between
two distributions.

4.3 Backward Augmented Learner

Besides enhancing the current task with virtual su-
pervision on unlabeled data, we find that unlabeled
data can be used to encourage backward knowl-
edge transfer. We build a backward augmented
lifelong learner to leverage the newly arrived unla-
beled data to improve solvers for previously learned
tasks. This scheme contains two steps: (1) acquir-
ing unlabeled data for learned tasks (§4.3.1), and
(2) retraining previous solvers (§4.3.2).
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4.3.1 Previous Unlabeled Data Acquisition

Considering that unlabeled data usually contain
rich semantic information, the knowledge of subse-
quent tasks may facilitate previously learned tasks.
Specifically, when the unlabeled data Dj! of the
previous task 7 (k < t) share similar distributions
with the current task 7;, we can augment D} by
retrieving similar samples from the unlabeled data
Dy of the currently arrived task 7; based on sam-
ples in D}’. However, it is non-trivial to implement
the above augmentation process in SSLL because
D} (k < t) are unavailable when learning 7; (we
have no access to previous data).

To tackle the above issue, we equip UELL with
the ability to generate pseudo unlabeled data that
obey the distribution of Dj!. In this way, we can re-
trieve D} using pseudo unlabeled samples of previ-
ous tasks to achieve the aforementioned backward
augmentation. This data generation process is opti-
mized through the language modeling loss on both
labeled and unlabeled data as follows,

M= = S 10g So(X[G) — i D log Sp(X|Gr), ()

XeDj} XeDy

where Gy is a task-specific generation token for
task 7z, and u is the weight for the unlabeled loss.
LM is only optimized on the context tokens of X.
Then, by feeding the generation token Gy, to the
encoder of T5, we can sample pseudo unlabeled
data of the previous task 7 from the decoder with
the top-K sampling scheme.

Note that UELL does not further predict labels
for the generated unlabeled data to avoid accumu-
lating errors introduced by noisy pseudo-labels.
Moreover, the generated pseudo data are not aimed
to prevent forgetting because task-specific adapter
modules in UELL are efficient enough to avoid
interference among tasks.

4.3.2 Previous Solvers Retraining

When learning the current task 7;, UELL first gen-
erates a set of pseudo samples {ﬁg}z_:ll for all
previously learned tasks {7;}2_:11 To achieve the
backward augmentation for each learned task, we
utilize samples in f)}; to retrieve semantically sim-
ilar unlabeled data in D} of task 7;. Specifically,
UELL encodes the sample contexts into represen-
tations through the T5 encoder > with an average
pooling layer (see Fig. 2). Cosine similarities of

’Here, we use the fixed pre-trained T5 encoder without

adapters here to prevent the representations from drifting as
new tasks are learned.

Algorithm 1 UELL Training

1: Input: Semi-supervised tasks {7; }s, A pretrained T5
model, and randomly initialized student and teacher with
parameters 0y and ¢o, respectively. A learning rate 7,
EMA decay rate a.

2. Output: Learned teacher parameters 6 for tasks {7}}{\/:1

3 fort =1to N do

4 Initialize student ¢ and teacher 6; using ¢+—1

5. while Not Converge do

6: Sample batches B° C D; and B* C Dy'.

7 Compute £SE (Eq.1) and £™ (Eq.4).

8 if student 0, reaches grade - then

9: Augment B to A(B").

10: Predict Y for each X € A(B") using T, .
11: Compute LES (Eq.2) and L3 (Eq.3).

12: end if

13: Compute the total loss £ (Eq. 6).
14: Update student 6; +— 6; — nV L.
15: Update teacher ¢y < ag: + (1 — «)b;.

16: end while
17: fork=1tot—1do

18: Generate pseudo data D} for task Ty.

19: Backward augment D} to DY _

20: Update student 6, and teacher ¢, with LY (Eq. 5)
2t:  end for

22: end for

these representations are used to measure the dis-
tance of samples. For each sample X* € D, we
retrieve K nearest neighbors from D} and augment
f)% with the K - |Z5}j\ retrieved neighbors to pro-
duce a set of backward augmented unlabeled data
DMiX. Then DM is used to enhance the learned
solver for 7 by optimizing the losses on Eq. 2 and
3:

DN = L30T + 0. )
In this way, we can encourage the knowledge trans-
fer from newly encountered unlabeled data to pre-
viously learned tasks.

4.4 Model Update Procedure

Before learning the first task, the teacher and stu-
dent models in UELL are initialized with randomly-
initialized adapters layers with the pre-trained T5
backbone. When learning the current task 7y, the
student model Sy is trained using the following
loss:

L= L85 4 u (D) + uey > (@) + AL, 6)

where A is the weight to balance the task learning
and language modeling. To prevent confirmation
bias (Tarvainen and Valpola, 2017), the teacher
weights ¢ are updated as an exponential moving
average (EMA) of student weights in each batch:

bp = adp1 + (1 — )by, (N
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where « is the EMA decay rate, p is the time step.
Note that the slowly evolved teacher can be re-
garded as an ensemble of student models in differ-
ent training iterations. This leads to more stable
and accurate predictions on unlabeled data (Tar-
vainen and Valpola, 2017). After learning task 7,
UELL generates pseudo unlabeled data for each
previously learned tasks {7z }%_} and further opti-
mizes the learned solvers with the loss £MX(DMix)
shown in Eq.5 to enable the backward knowledge
transfer. See Algorithm 1 for more details.

S Experiment Setup

5.1 Datasets

Following Sun et al. (2019), we evaluate our ap-
proach from two dimensions: (1) tasks with the
Same Type but Different Domains (STDD); (2)
tasks of Different Types (DT). For STDD, we fol-
low Sun et al. (2019) to use five text classification
datasets covering domains from news classification,
sentiment analysis, and Wikipedia article classifica-
tion. We follow d’ Autume et al. (2019) to produce
balanced datasets. For DT, we consider five differ-
ent sequence generation tasks from decaNLP (Mc-
Cann et al., 2018): question answering, semantic
parsing, semantic role labeling, goal-oriented dia-
logue generation, and sentiment analysis. To each
task 7; in the SSLL setting, we randomly select
100 labeled data to construct D; and select another
2,000 unlabeled data to construct D}'. More details
are provided in Table 1 and Appendix A.1.

5.2 Implementation Details

We use T5-base (Raffel et al., 2020) as our back-
bone and implement adapters using AdapterHub
(Pfeiffer et al., 2020b). We set the confidence
threshold 7 = 1.5 (Eq.2), unlabeled loss weight
= 0.01 (Eq.4), language modeling loss weight
A = 0.5 (Eq.6), and EMA decay rate o« = 0.95
(Eq.7). We set the threshold of teacher guidance v
to 0.1 in §4.2 and choose K = 3 nearest neighbors
in §4.3. We train our model UELL on 1 Tesla-V100
GPU. Each task in STDD and DT is trained using
the Adam optimizer (Kingma and Ba, 2015) for
120 and 200 epochs, respectively, with a warm-up
ratio of 0.1 and maximum learning rate of 2e-4. It
takes around 5 and 18 hours to learn all STDD tasks
and DT tasks, respectively. The training and test-
ing batch size is set to 16. We use EDA (Wei and
Zou, 2019) to implement the data augmentation on
unlabeled data D* as A(D"). For backward aug-

mentation, we train one epoch on the augmented
unlabeled data DM for previous task 7% to opti-
mize the previously learned solver.

All results reported in this paper are averages of
five different runs with random task orders.

5.3 Baselines

We compare our model with the following base-
lines. Fine-tuning (FT) directly tunes a pretrained
TS5 model on incoming data. Regularization-based
methods: EWC (Schwarz et al., 2018) and MAS
(Aljundi et al., 2018) mitigate forgetting by penal-
izing variation of important parameters for previ-
ous tasks; Replay-based methods: ER (Rolnick
et al., 2019) stores real samples of learned tasks
to prevent forgetting. LAMOL(Sun et al., 2019)
generates pseudo samples of previous tasks and
trains them with the new tasks’ data; Architecture-
based methods: HAT (Serra et al., 2018) uses a
task-specific hard attention mechanism to preserve
previously learned tasks. CTR introduces contin-
ual learning plugins into BERT and uses task masks
to preserve task-specific knowledge and encourage
knowledge transfer 3. Adapter (Madotto et al.,
2021) dynamically expands the model by assigning
task-specific adapters. For fair comparisons, we use
a pretrained TS5 as its backbone. Compositional-
Adapters (Comp) (Zhang et al., 2022) utilizes hid-
den state mixing to adaptively compose old and
new adapters for new tasks and employs generative
replay to facilitate knowledge transfer. Besides the
above baselines, we also test the Multi-task Learn-
ing (MTL) approach that tunes the whole model
to learn all tasks simultaneously. This approach is
usually seen as an upper bound of lifelong learning.

Note that all the above baselines focus on super-
vised lifelong learning. To enable a fair comparison
under the SSLL setting, we enhance the baselines
with a strong pseudo labeling method to utilize un-
labeled data (Xie et al., 2020b). Specifically, for
each task, we first train each baseline model on
labeled data. We generate pseudo labels for unla-
beled data and train the mixture of labeled data and
pseudo labeled data as the final model. For com-
pared baselines, we follow their original settings
for training. See more details in Appendix A.2.

3CTR and HAT are specifically designed for classification
tasks, and it is non-trivial to extend them to text-generation
tasks, so we do not compare them for DT tasks.
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Dimensions  Datasets Metrics  # Training Set  # Testing Set

AGNews EM 115,000 7,600

Amazon EM 115,000 7,600

STDD DBPedia EM 115,000 7,600
Yahoo EM 115,000 7,600

Yelp EM 115,000 7,600
SQuAD nF1 87,599 10,570
WikiSQL  IfEM 56,355 15,878

DT SST EM 6,920 1,821
QA-SRL  nFl 6,414 2,201

wozZ dsEM 2,536 1,646

Table 1: Summary of datasets statics and their metrics. nF1 is the normalized version of the F1 score; EM represents
an exact match between texts: for text classification tasks) this amounts to accuracy; for WOZ, it is equivalent to
dfEM (turn-based dialogue state exact match); for WikiSQL, it is equivalent to IfEM (exact match of logical forms).

54

Following Sun et al. (2019), we evaluate each task
with its corresponding metric (see Table 1). The
score of each metric lies from O to 100%. We
evaluate the performance of lifelong learning us-
ing Average Score (Avg-Score) (Sun et al., 2019;
Madotto et al., 2021) that measures the average test

scores of all learned NV tasks:N

1
Avg-Score = N ; Ry j,

where R; ; is the test score of task 7; after the i-th
task is learned. Following Lopez-Paz and Ran-
zato (2017), we evaluate the effect of backward
knowledge transfer (BWT) to assess the impact of
learning on subsequent tasks on previously learned
tasks:

Metrics

1 N-1

A negative BWT indicat]es that the model has for-
gotten some previously acquired knowledge, i.e.,
suffers from catastrophic forgetting. In general, the
higher of these two metrics, the better the model.

6 Experimental Results and Analyses

6.1 Main Results

Table 2 and 3 show the performances of all methods.
UELL significantly outperforms all baselines by a
large margin. We can also observe that:

* Directly tuning a single model sequentially (the
FT baseline) suffers from severe catastrophic for-
getting issues, highlighting the importance of
lifelong learning studies.

* Regularization based methods EWC and MAS
improve the lifelong learning performance to
some extent, but they still perform inferior to
replay-based methods ER and LAMOL.

* ER outperforms LAMOL on the Avg-Score, in-
dicating that real samples carry higher-quality
knowledge than pseudo samples. This validates
our approach of using real samples obtained for
the current task to transfer knowledge backward
to previous tasks.

* Tuning one model for all tasks with methods
like ER, LAMOL and HAT still faces the issue
of forgetting previously learned knowledge (i.e.,
negative BWT).

* CTR and Comp bring negative interference
among tasks, resulting in poor performances.
This validates the effectiveness of assigning task-
specific parameters for lifelong learning tasks
(Adapter and UELL).

* The higher performance of UELL compared to
Adapter indicates that our method makes better
use of unlabeled data, and the introduced back-
ward augmentation does transfer knowledge from
newly arrived tasks to learned tasks.

6.2 Ablation Studies

We conduct ablation studies to verify the effective-
ness of each proposed component in UELL. The
task orders of STDD and DT are randomly selected.
(1) w/o Unlabel means no unlabeled data is uti-
lized for each task. Here, we investigate whether
unlabeled data bring benefits to supervised lifelong
learning. (2) w/o Selection skips the confidence
selection process and uses all predicted pseudo la-
beled data to teach the student, i.e., set 7 = oo in
Eq.2; (3) w/o Interact ignores the interaction be-
tween the teacher and student, i.e., the loss LE-S 1S
optimized in every training iteration. (4) w/o Self-
Study removes the self-study loss £55 (Eq.3) for
the solver optimization; (5) w/o Back-Aug means
that newly arrived unlabeled data are not utilized
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FT EWC MAS LAMOL ER HAT CTR Adapter Comp UELL @ MTL
Avg T.P. 223M  125M  125M 125M  223M  73M 75M 1.7OM  244M 1.79M @ 223M
Avg-Score  21.34 4585 48.01 48.21 6447 5524 5207 69.05 4813 7112 @ 75.67
BWT -58.24 -1331 -1326 -6.611 -4.012 -3.727 -2310 0.000 -1842 0.146 N/A

Table 2: Results of five SSTD tasks. Each result is an average of five random task orders. UELL is significantly
better than other SSLL baselines with p-value < 0.05 under ¢-test. “Avg T.P.” refers to the number of tunable
parameters for each task.

FT EWC MAS LAMOL ER  Adapter Comp UELL MTL
Avg-Score  25.14 30.31 34.88 48.60 50.91 6599 4346 70.75 | 75.83
BWT -52.14  -28.62 -22.13 -2590 -1392 0.000 -359 0393 N/A

Table 3: Results of five DT tasks. Each result is an average of five random task orders. UELL is significantly better

than other SSLL baselines with p-value < 0.05 under ¢-test.

to promote the learned solvers, i.e., schemes intro-
duced in §4.3 are ignored.

From Table 4, we can see that: (1) Unlabeled
data leveraged by UELL greatly improve the super-
vised lifelong learning. This validates our claim
that UELL can effectively overcome the first chal-
lenge of SSLL, i.e., exploiting unlabeled data.
(2) Removing the pseudo-label selection process
makes our student suffer from noisy pseudo la-
bels predicted by the teacher, thus downgrading
their lifelong learning performance. This also val-
idates the effectiveness of our confidence-based
label selection scheme. (3) Removing interac-
tion between the teacher and student degenerates
the performance. It verifies that learning harder
and noisier knowledge from unlabeled data is non-
trivial. (4) Self-study of the student indeed en-
hances its capability of utilizing unlabeled data. (5)
The backward augmentation encourages the knowl-

that the BWT score of UELL trained with 2000
labeled samples is lower than that of 100 labeled
data. We speculate this is because our solver has
acquired sufficient knowledge from labeled data,
and the knowledge it can gain from unlabeled data
of subsequent tasks is limited. In this case, it is hard
to perform backward transfer because the learned
solvers are already knowledgeable.

Further, we assess the ability of UELL to lever-
age unlabeled data by varying the amount of unla-
beled data while keeping the labeled data fixed. As
shown in Table 5, we can see that UELL gets better
performances (i.e., higher Avg-Score and BWT)
with more unlabeled data. This validates the ef-
fectiveness of UELL for leveraging unlabeled data
to improve the overall performance of SSLL and
encouraging more knowledge transfer from new
tasks to previous tasks.

edge transfer from new tasks to old tasks, further # Labeled Data # Unlabeled Data
. . . 50 100 2000 | O 500 2000 10000
promoting overall performance. This validates our
Avg-Score  68.64 7157 75.06 | 68.13 70.51 7157 71.92

claim that UELL can effectively tackle the second
challenge of SSLL, i.e., leverage unlabeled data to
encourage knowledge transfer to previous tasks.

6.3 Data Efficiency Analyses

We analyze the data efficiency of UELL by fixing
the unlabeled data and vary the number of labeled
data on SSLL. We randomly select a task order
from STDD to conduct the analyses. As shown
in Table 5, the Avg-Score of UELL increases with
the amount of labeled data. The performance of
UELL does not significantly degenerate in the few-
shot setting. Even with only 50 labeled samples,
UELL can still surpass all the baselines that use 100
labeled data in Table 2. Moreover, we also notice

BWT 0.056 0.144 0.016 | 0.000 0.059 0.144 0.223

Table 5: The performances of UELL with different
number of labeled and unlabeled data.

6.4 Longer Task Sequences Analysis

To verify the ability of UELL to handle more tasks,
we combine STDD and DT tasks to form a longer
sequence of ten tasks. We compare UELL with
its upper bound MTL and three best-performing
baselines LAMOL, ER, and Adapter. We randomly
select three task orders and report their average
performances in Table 6. Our method UELL still
outperforms these baselines with a large margin,
suggesting that UELL can be generalized to longer
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UELL w/o Unlabel w/o Select w/oInteract w/o Self-Study  w/o Back-Aug
STDD Avg-Score  71.57 68.13 70.64 68.93 70.97 69.73
BWT 0.144 0.000 0.039 0.089 0.049 0.000
DT Avg-Score  73.10 67.34 71.47 71.82 71.42 72.80
BWT 0.713 0.000 0.189 0.021 0.024 0.000

Table 4: Ablation studies on STDD and DT tasks. “w/0”” means removing the corresponding component in UELL.

task sequences.

LAMOL ER  Adapter UELL MTL
Avg-Score  52.71 61.68  67.52 69.23 | 71.82
BWT -4.610 -4295 0.000 0.235 @ N/A

Table 6: Performances of UELL and some baselines
under longer task sequence.

6.5 Analyses of Backward Augmentation

For backward augmentation in §4.3, the number
of neighbors K when retrieving similar data is im-
portant. Hence, we conduct analyses to investigate
how the value of K affects UELL’s performances.
A random task order of STDD is selected to im-
plement the analyses. As shown in Table 7, the
overall performance of UELL fluctuates with the
value of K. The backward transfer performance
generally improves as K increases. However, if
K is too large, we are more likely to absorb and
retrieve dissimilar data to Dgﬁx and thus degenerate
the model performance.

K 1 3 30 50

7135 71.57 7131 7128
0.092 0.144 0.158 0.123

Avg-Score
BWT

Table 7: Impacts of the number of neighbors K.

6.6 Computation Resource Analysis

We report the number of tunable parameters for
UELL and baselines to assess their computation
cost (see Tabel 2). UELL utilizes the smallest tun-
able parameters but achieves the best performances
of SSLL.

6.7 Case Study of Pseudo Unlabeled Samples

We present some pseudo unlabeled samples gener-
ated by UELL in Appendix B. We can observe that
UELL generates high-quality pseudo samples for
learned tasks. This benefits from the sufficient data
(D? and DY) to learn the language modeling ability
for UELL by optimizing £"M in Eq. 4.

7 Conclusion

In this paper, we propose a new setting, semi-
supervised lifelong language learning (SSLL),
where a model learns a sequence of language tasks
using both labeled and unlabeled data. We build a
novel method UELL to tackle challenges in SSLL.
UELL contains a virtual supervision enhanced
solver to exploit unlabeled data for each task and a
backward augmented learner to encourage knowl-
edge transfer from subsequent tasks to previously
learned tasks. Extensive experiments and analyses
on language tasks demonstrate the effectiveness
of UELL in leveraging unlabeled data, mitigating
catastrophic forgetting, and encouraging backward
knowledge transfer in the SSLL setting.

Limitations

As our first attempt in the new semi-supervised life-
long language learning (SSLL) setting, our method
UELL assumes the unlabeled data of each task are
intrinsically related to labeled data. We have not
investigated the unlabeled data from general cor-
pus such as Common Crawl 4, BooksCorpus (Zhu
et al., 2015) and Wikipedia > to improve lifelong
language learning with limited labeled data.
Fortunately, pre-training schemes may already
provide insights for the above problems. The pre-
trained TS5 checkpoints we use to initialize the
UELL model have been pretrained on these gen-
eral corpus with well-designed losses. We can ex-
plore including these pretraining losses in further
attempts for the SSLL setting. Pre-training mod-
els that are obtained from other corpora (He et al.,
2022c; Zhou et al., 2021; Wang et al., 2020; Zheng
et al., 2020, 2022; He et al., 2022b; Zheng et al.,
2019) may also help to alleviate this issue.
Moreover, our UELL model constructs task-
specific adapter modules to prevent forgetting. As
a similar approach to adapters, the prompt learn-
ing also enables us to share the same backbone
4Common Crawl link: https://commoncrawl.org

SWikipedia link: https://huggingface.co/datasets/
wikipedia
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language model while dynamically allocating task-
specific parameters (Liu et al., 2021). Prompts
can also be used to implement parameter-efficient
lifelong learning schemes. The virtual supervision
enhanced solver and backward augmented learner
proposed in UELL can be directly combined with
prompt learning based approaches. In future works,
we aim to explore the prompt-based approach to
tackle challenges in SSLL. Some approaches on
few-shot learning (Zhao et al., 2022a) can also be
applied in our SSLL setting.
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A Experiments Details

A.1 Datasets and Metrics

Details of the datasets we use in our studies are
listed below. Five datasets (tasks) from decaNLP
(McCann et al., 2018; Sun et al., 2019):

* Question Answering — Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al.,
2016): It consists of context, questions, and an-
swers. The context is paragraphs from English
Wikipedia, and the answers are spanned from its
corresponding question paragraphs.

Semantic Parsing — WikiSQL (Zhong et al.,
2017): WikiSQL provides logical forms along
with natural language utterances.

Sentiment Analysis — Stanford Sentiment Tree-
bank (SST) (Radford et al., 2017): It consists of
movie reviews with its answers, including posi-
tive and negative binary options.

Semantic Role Labeling — QA-SRL (He et al.,
2017): Itis a question answering form of the SRL
task.

* Goal-Oriented Dialogue — English Wizard of Oz
(WOZ) (Wen et al., 2016): WOZ is a restaurant
reservation task that provides a predefined on-
tology of a series of information for helping an
agent to make reservations for customers.

Five text classification datasets (tasks) from
MBPA++ (d’ Autume et al., 2019; Sun et al., 2019):

¢ AGNews: News articles to be classified into 4
classes.

* Yelp and Amazon: Customer reviews and rat-
ings on Yelp and Amazon. Both datasets in-
clude 5 classes.

* DBPedia: Articles and their corresponding
categories on Wikipedia, including 14 classes.

* Yahoo: Questions and answers on the Yahoo!
platform, including 10 classes.

A.2 Details of Baselines Implementation

For LAMOL, we also use task-specific generation
tokens to perform the generative replay. The sam-
pling ratio of pseudo samples is set to 0.2. For ER,
we store real samples of labeled data and unlabeled
data with a ratio of 0.1 for each task. To adapt

compared baselines to SSLL, models trained on
labeled data are used to generate pseudo labels of
unlabeled data and are further trained with the mix-
ture of labeled data and pseudo labeled data like
(Xie et al., 2020b).

B Case Study of Pseudo Unlabeled Data

We show a few pseudo unlabeled data of three tasks
generated by UELL in Table 8.
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Sentiment Analysis

1. The performance is priceless.

2. This humbling film, in all its minutiae and in its ambiguity, is simply a waste of
money.

3. This is one of those films that sneaks up on you and stays with you long after you’
ve left the theatre.

News Classification

1. Oil Spite Changes (News) Petroleum companies are changing their share price
target to become cheaper, a new research study said Wednesday.

2. In a bid to reach the future of health care, the government recently endorsed the
use of the halo method to treat chronic diseases.

3. At least two teams make headlines to help a new scottish league team to win their
first title defending champion Al Hamdat this December, as a defensive midfielder.

Goal-Oriented Dialogue

1. I would like a cheap restaurant in the north part of town.
2. Can you tell me the phone number of the Chinese restaurant?
3. Yes, I need the address and phone number please.

Table 8: Generated pseudo unlabeled data for three tasks.
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