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Abstract

Extracting fine-grained structural information
between argumentation component (AC) pairs
is essential for argumentation relation classi-
fication (ARC). However, most previous stud-
ies attempt to model the relationship between
AC pairs using AC level similarity or semanti-
cally relevant features. They ignore the com-
plex interaction between AC pairs and can-
not effectively reason the argumentation rela-
tion deeply. Therefore, in this paper, we pro-
pose a novel dual prior graph neural network
(DPGNN) to jointly explore the probing knowl-
edge derived from pre-trained language mod-
els (PLMs) and the syntactical information for
comprehensively modeling the relationship be-
tween AC pairs. Specifically, we construct a
probing graph by using probing knowledge de-
rived from PLMs to recognize and align the
relational information within and across the
argumentation components. In addition, we
propose a mutual dependency graph for the
AC pair to reason the fine-grained syntactic
structural information, in which the syntactical
correlation between words is set by the depen-
dency information within AC and the mutual
attention mechanism across ACs. The knowl-
edge learned from the probing graph and the
dependency graph are combined to comprehen-
sively capture the aligned relationships of AC
pairs for improving the results of ARC. Exper-
imental results on three public datasets show
that DPGNN outperforms the state-of-the-art
baselines by a noticeable margin.

1 Introduction

Argumentation relation classification (ARC) is the
most challenging subtask of argumentation mining,
which requires the model to understand complex
linguistic interactions between argumentation com-
ponents (Lawrence and Reed, 2020). The goal of
ARC is to identify the argumentation relation (i.e.,

∗ Min Yang and Ruifeng Xu are corresponding authors

AR: Support

AR: Attack
AC 3: Electric cars should be a priority to fight global warming.

AC 4: Public transportation is a better idea than electric cars.

AC 1: Affirmative action is good public policy.

AC 2: Diversity improves group decision-making. 

Figure 1: Examples of argumentation relation over AC
pairs , where the words with different colors represent
the structure within AC and the solid directed lines
denote the fine-grained alignment of structure within
AC pair.

SUPPORT or ATTACK) between argumentation com-
ponents (AC) pairs. As shown in Figure 1, there is
an example with support relation and an example
with attack relation, where AC2 supports AC1 and
AC4 attacks AC3.

ARC needs the model to effectively explore
structural knowledge within and cross ACs so as to
better infer the argumentation relation between AC
pairs. Intuitively, the semantic structure can capture
the correlations among semantically similar words,
while the syntactic structure can capture the syn-
tactical constraint (e.g., dependency information)
for syntactically relevant words. Taking Figure 1
as an example, the words “affirmative action” and
“is good” in AC1 can be aligned with “diversity”
and “improves” in AC2 respectively for identify-
ing the support relation. However, most previous
efforts (Palau and Moens, 2009; Peldszus, 2014;
Cocarascu and Toni, 2017; Galassi et al., 2018)
merely focus on the AC-level similarity between
AC pairs and result in sub-optimal performance.
Although recent works (Gemechu and Reed, 2019;
Jo et al., 2021) model the fine-grained semantically
relevant features (such as words) between AC pair
by introducing external knowledge, they ignore the
complex interactions of AC pair and cannot effec-
tively reason the argumentation relation deeply. For
instance, in Figure 1, previous works only empha-
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size the superficial similarity between individual
words “better” and “priority” and fail to capture the
overall opposition relation between AC3 and AC4
since “electric cars” is the object in AC3 but the
subject in AC4. To our best knowledge, the struc-
tural knowledge within or across ACs has not been
simultaneously investigated for the Argumentation
Relation Classification.

In this paper, we propose a dual prior graph
neural network (DPGNN) to leverage two prior
knowledge, i.e., dependency information and prob-
ing knowledge from pre-trained language models
(PLMs), by constructing dual graph modules for
ARC. By combining the information from the two
graph modules, DPGNN can more accurately cap-
ture the fine-grained relations between AC pairs.
Specifically, we construct the mutual dependency
graph from two perspectives (i.e., intra-AC perspec-
tive and inter-AC perspective) to gain the syntacti-
cal structure information with dependency parsing
and attention mechanisms. The intra-AC graph
constructs the syntactical structure within ACs in
the mutual graph, and the inter-AC graph aligns
and builds the structure between AC pair to explore
the argumentation relation. Despite the effective-
ness of the learned dependency information, it is
difficult to recognize semantically relevant words
such as synonyms and antonyms by only relying
on the dependency information.

To complement the dependency information for
ARC, we probe the relational knowledge from
PLMs, such as BERT (Kenton and Toutanova,
2019) and RoBERTa (Liu et al., 2020), which con-
tain rich semantic knowledge for ARC, such as the
counterpart relationship between “public policy”
and “group decision-making” as shown in Figure 1.
Concretely, we first probe token representations
and attention matrices from PLMs, where the to-
ken representations form the nodes of the probing
graph and the attention matrices form the edges
between nodes. In particular, to obtain useful prob-
ing knowledge with respect to ARC, we propose
three different levels of probes1 (i.e., word-, AC-
and pair-level) with adaptive attention mechanisms
for probing token representations and attention ma-
trices. The key idea behind this probing technique
is motivated by the observation that the knowledge
stored in PLMs contains rich linguistic and rela-
tional knowledge (Petroni et al., 2019; Zhong et al.,

1A probe is a simple neural network that develops the
features (i.e. hidden states and attention weights) from PLM
for specific task (Wu et al., 2020)

2021) about words (e.g., synonyms and antonyms)
in PLMs (Jawahar et al., 2019; Clark et al., 2019).
We disentangle each probed attention matrix into
four attention sub-matrices according to the span
of each AC within AC pair to construct the probing
graph from intra-AC and inter-AC perspectives, re-
spectively. Finally, we combine the graph represen-
tations from the dependency graph and the probing
graph with a biaffine function (Morio et al., 2020)
for argumentation relation prediction.

Our main contributions are three-fold. (1) We
propose a dual prior graph neural network for ARC,
which jointly explores the probed knowledge de-
rived from PLMs and the syntactical information to
comprehensively model the relationship between
AC pairs. (2) We probe rich relation knowledge
from PLMs in terms of AC-pair level, which elicit
relations to robustly capture the semantic corre-
spondences between ACs and AC pairs. (3) We
conduct extensive experiments on three benchmark
ARC datasets. Experimental results show that our
method significantly outperforms previous meth-
ods and achieves new state-of-the-art results.

2 Related Work

2.1 Argumentation Relation Classification

Early works (Palau and Moens, 2009; Wyner et al.,
2010; Cabrio and Villata, 2012; Peldszus, 2014;
Peldszus and Stede, 2015) focused on argumen-
tative relation classification based on several dis-
crete features involving grammar and text statis-
tics for ARC in specific corpus. Previous studies
have mostly employed traditional methods such
as support vector machines, naive Bayes classi-
fiers and maximum entropy classifiers. With the
widespread usage of deep learning, Cocarascu and
Toni (2017) proposed a deep learning architecture
based on Long-Short Term Memory (LSTM) net-
works for ARC. Galassi et al. (2018) explored resid-
ual networks for ARC. Previous research works
only focused on the content of argumentation com-
ponent pairs to determine relationships between AC
pairs. To capture more precise semantic similarity
between AC pair, recent works develop external
knowledge and designed feature for ARC. For ex-
ample, Gemechu and Reed (2019) designed four
fine-grained features and identifies argumentation
relations by exploiting the similarity among the
four fine-grained features. Paul et al. (2020) ex-
tracted the relevant knowledge from the general
knowledge resource ConceptNet and encoded ACs
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and knowledge using two BiLSTM with attention
mechanism for ARC. Jo et al. (2020) used BERT
with four characteristics regarding the sentence’s
content, proposition types, tone, and an external
engineering knowledge source for detecting attack-
able sentences. Jo et al. (2021) classified argumen-
tative relation based on multiple designed features
including factual consistency, sentiment coherence,
causal relation and normative relation between two
ACs. In this paper, we emphasize the ARC task
based on the form of AC pairs. Different from pre-
vious works, we do not explicitly introduce exter-
nal knowledge, but integrate the probed knowledge
elicited from PLMs to learn fine-grained reasoning
for ARC.

2.2 Probing Knowledge from PLMs

The success of PLMs has led to a large number
of studies eliciting the rich knowledge that PLMs
learn implicitly during pre-training (Jawahar et al.,
2019; Clark et al., 2019; Wu et al., 2020). Some
works probe PLMs with a small amount of learn-
able parameters considering a variety of linguistic
properties, such as morphology (Belinkov et al.,
2017), word sense (Reif et al., 2019), syntax (He-
witt and Manning, 2019; Dai et al., 2021). There
are also some works (Petroni et al., 2019; Zhong
et al., 2021) that seek to answer to what extent the
PLMs store factual, relational and commonsense
knowledge. Wang et al. (2022) elicited relational
structures from PLMs via a probing procedure and
utilized the induced relations to augment the graph-
based text-to-SQL parsers for better schema link-
ing. Different from previous studies, we aim to
probe rich relational knowledge for ARC.

2.3 Graph Neural Network for NLP

The recent success of graph neural networks (GNN)
has boosted research in natural language processing
(NLP) tasks, such as fact verification (Zhong et al.,
2020) and aspect-based sentiment analysis (Liang
et al., 2022). Recently, HARGAN (Huang et al.,
2021) introduces the argumentation relation infor-
mation for persuasiveness prediction with a GNN-
based model. The previous works do not fully
explore the fine-grained graph structure in ARC. In
this paper, we propose a dual prior GNN to align
the fine-grained structure information between AC
pair by introducing probing knowledge from PLM
and dependency information.

3 Methodology

Task Definition Following previous work (Jo
et al., 2021), we assume an AC pair (P,Q) are
given in an argumentative text, where the argu-
mentation components P = (p1, p2, . . . , pm) and
Q = (q1, q2, . . . , qn) consist of m and n tokens,
respectively. The goal of ARC is to predict the
relation type y(P,Q) (i.e., Support or Attack).

Model Overview Figure 2 illustrates the architec-
ture of our DPGNN model. Our method leverages
two complementary structural knowledge to con-
struct dual graphs for learning the alignment of
fine-grained structures within ACs and between
AC pairs for ARC. Concretely, we propose three
probes to elicit knowledge from hidden states and
attention matrices in BERT. The probed hidden
states and attention matrices are employed to con-
struct a probing graph for reasoning the relation
between the AC pair. In addition, we develop the
dependency graph to gain the syntactical structure
information with dependency parsing and attention
mechanisms. Finally, a biaffine module is devised
to combine the probing graph and the mutual de-
pendency graph for improving the performance of
ARC.

3.1 Probing Knowledge from PLMs

3.1.1 Probing Knowledge
Pre-trained language models (PLMs) contain a rich
hierarchy of linguistic information in internal vec-
tor representations (i.e., hidden states) (Jawahar
et al., 2019). The self-attention layers in BERT
contain not only long-distance dependencies be-
tween words within each AC but also rich rela-
tional knowledge (Clark et al., 2019) for reason-
ing. In this paper, we aim to probe hidden states
and attention matrices in PLM (i.e., BEER) to cap-
ture the alignment of structures between each AC
pair. Specifically, we develop three probes from
the word-level, AC-level, and AC pair-level respec-
tively, where each word, AC, and AC pair represent
the probing units (smallest units) for the three cor-
responding probes. The word-, AC- and AC pair-
level probes elicit the hidden states and attention
matrices from PLMs.

The input of BERT is the AC pair (P,Q), which
is formulated as “[CLS]P [SEP]Q[SEP]”. We de-
fine the hidden states of the AC pair (P,Q) in
the BERT layers (i.e., 12 layers in the BERT-
base version) as B = {HB

1 , . . . ,HB
12}, where
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Figure 2: The architecture of DPGNN, where "PG" and "MDG" represent probing graph and mutual dependency
graph, respectively.

HB
i = {hB

i,1, . . . ,h
B
i,m+n} is a concatenation of

the hidden states HP
i = {hP

i,1, . . . ,h
P
i,m} and

HQ
i = {hQ

i,1, . . . ,h
Q
i,n} of P and Q respectively.

In a similar way, we denote the attention ma-
trices in the BERT layers (i.e., 12 layers) as
A = {EA

1 , . . . , E
A
12} with the input of the AC pair

(P,Q), where EA
i = {eAi,1, . . . , eAi,m+n} is the av-

erage value of the original attention matrix along
with the head dimension and eAi,j ∈ Rm+n. Here,
EA

i = [EP
i ;E

Q
i ] where EP

i = {ePi,1, . . . , ePi,m}
and EQ

i = {eQi,1, . . . , e
Q
i,n} represent the attention

matrices of P and Q respectively.

AC Pair-Level Probe We propose an AC pair-
level probe to capture the interaction and align-
ment between a pair of ACs by using the AC
pair as the probing unit. In particular, we first
calculate the representation for the AC pair as
hAPL
i = 1

m

∑m+n
j=1 hB

i,j in the i-th layer by apply-
ing the average pooling over HB

i . In addition, we
also calculate the attention vector eAPL

i for the AC
pair (P ,Q) in the i-th layer via average pooling:
eAPL
i = 1

m

∑m
j=1 e

A
i,j .

Probing Knowledge across Layers To adap-
tively choose the important features across layers,
we apply a soft attention mechanism with two layer
feedback neural network (Wang et al., 2019) to
learn the combined representations and attention
matrices. Formally, we first calculate the learned
weight αAPL

i of representation hAPL
i of AC pair

(P,Q) in the i-th layer as follows:

αAPL
i = aα · tanh(Wαh

APL
i + bα) (1)

where Wα, bα and aα are learnable parameters.
After that, we normalize the attention weights via

softmax function and get the normalized coefficient
α̃APL
i that is easily comparable across different lay-

ers. Although the coefficient α̃APL
i is formulated

by the AC pair representation, our goal is to gain
the fine-grained word representations. Thus, all
words in AC pair (P,Q) share the same coefficient
α̃APL
i in the i-th layer. With the learned weights

as coefficients, we fuse the representations of j-th
word in all layers to obtain the probing representa-
tion as follows:

hj =
12∑

i=1

α̃APL
i hB

i,j (2)

Finally, we obtain the probing representations
HP = {hP

1 , . . . ,h
P
m} and HQ = {hQ

1 , . . . ,h
Q
n }

of AC pair (P,Q). The similar equations 1-2 is
also applied in probing attention matrices, and we
obtain the probing attention vectors of all words
in AC pair to form the probing attention matrix
E = {e1, . . . , em+n}, where ei ∈ Rm+n.

3.1.2 Probing Graph Construction
We construct the probing graph using probing
knowledge including representations and an atten-
tion matrix. The probing graph takes the unique
words in the AC pair as vertices and the embed-
dings of the vertices are initialized with the prob-
ing representations. To effectively construct and
align the relational structure within ACs and be-
tween AC pairs, we propose intra-AC and inter-AC
graphs by using the probing attention matrix to
build the weighted edges within ACs and between
AC pairs in the probing graph separately.

There are four attention sub-matrices in the prob-
ing attention matrix E of AC pair (P,Q) as shown
in the left part of Figure 2, which represent the word
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correlation within AC and between AC respectively.
Thus, we separate the probing attention matrix E
into four attention sub-matrices EPP ∈ Rm×m,
EQQ ∈ Rn×n, EPQ ∈ Rm×n and EQP ∈ Rn×m

of AC pair (P,Q) to build and align the relational
structure within ACs and between ACs, where
EPP and EQQ are denoted by intra-AC adjacency
matrices, and EPQ and EQP are denoted by inter-
AC adjacency matrices.

Intra-AC Graph Construction Intuitively, the
relational structure within AC can build the correla-
tion among semantically similar words within AC
and help the alignment between AC pair for ARC.
Thus, we first design an intra-AC graph to build
the relational structure based on the intra-AC adja-
cency matrix for each AC in the probing graph. The
intra-AC adjacency matrix has captured semanti-
cally related terms of each word in AC. Specifically,
given the AC P , we built an intra-AC graph Gpro

P

with the node representations HP . The intra-AC
adjacency matrix EPP is set to the initial weighted
edges to form the relational structure within the AC.
Then we normalize the intra-AC adjacency matrix
EPP of AC P via softmax function as the nor-
malized adjacency matrix ẼPP = softmax(EPP )
within AC P for easily comparable across differ-
ent words because the intra-AC adjacency matrices
are segmented from an attention matrix: Then the
updated node representations SP = {sPi , . . . , sPm}
can be obtained by the following equation:

sPi = ẼPP
i HP (3)

where ẼPP
i is the i-th row in ẼPP . In this way,

the structure information within AC could be ex-
tracted into the node representations via the intra-
AC graph. The same equations can be applied for
AC Q to acquire the updated node representations
SQ = {sQi , . . . , s

Q
m}.

Inter-AC Graph Construction To explore the
complex interaction and relationship between the
AC pair, we utilize inter-AC adjacency matrices
with prior relational knowledge to build an intra-
AC graph to align the fine-grained node represen-
tations between AC pairs. Formally, given the
intra-AC graph Gpro

P as query and the intra-AC
graph Gpro

Q as value, we produce the normalized
adjacency matrix ẼPQ = softmax(EPQ) for the
query and value pair. After that, we calculate Gpro

P -
specific node representations CP = {cP1 , . . . , cPm}
are formulated as:

cPi = ẼPQ
i SQ (4)

where ẼPQ
i is the i-th row in ẼPQ. We apply

alignment function (Shen et al., 2018) to perform
fine-grained node-to-node alignment and calculate
aligned node representations V P = {vP

1 , . . . ,v
P
m}

of intra-AC graph Gpro
P , where vP

i is calculated as:

vP
i = Wv[s

P
i , c

P
i , s

P
i − cPi , s

P
i ⊙ cPi ] (5)

where Wv is a weight matrix and ⊙ denotes
element-wise multiplication.

Similarly, we take the intra-AC graph Gpro
Q as

query and the intra-AC graph Gpro
P as value. By

using Equations 4-5, we can calculate the aligned
node representations V Q = {vQ

1 , . . . ,v
Q
n } of the

intra-AC graph Gpro
Q . Then, we apply mean pool-

ing for the aligned vector V P and V Q to calculate
the relation-specific intra-AC graph representations
gpro
P for Gpro

P and gpro
Q for Gpro

Q by:

gpro
P =

1

m

m∑

i=1

vP
i , gpro

Q =
1

n

n∑

j=1

vQ
j (6)

3.2 Mutual Dependency Graph Construction

The syntax is the grammatical structure of the text
(e.g., dependency tree), whereas semantics repre-
sent the meaning being conveyed. Thus, the syntac-
tic structure can help the model capture the long-
term and syntactically relevant contextual words
as clues to reason argumentation relations, which
are difficult to be learned by semantic-based meth-
ods. To construct the syntactic structure within sen-
tences, Liang et al. (2021a) propose a dependency
graph neural network, but they cannot capture the
complex interaction between AC pairs. Thus, we
propose a mutual dependency graph from the intra-
AC perspective (i.e., dependency graph) and inter-
AC perspective (i.e., mutual graph) which aims to
build and align the syntactic structure within AC
and between AC pairs by using syntactic depen-
dency information and attention mechanism. We
also construct the mutual dependency graph with
unique words in AC pair as vertices initialized with
the probing representations.

3.2.1 Dependency Graph Construction
The goal of the dependency graph in the mutual
dependency graph is to build a syntactic structure
within AC by developing the syntactical depen-
dency. Compared with the intra-AC graph in the
probing graph, the dependency graph only empha-
sizes the crucial syntactic word relations and evades
the inconsequential ones in each AC, which can be
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Dataset Train Dev Test
DN 11098 472 707
DC 6581 496 330
PE 2697 362 773

Table 1: The statistics of the evaluated datasets

a hard bound of structure within ACs to mutually
compensate the error word dependencies with the
probing graph.

To build the syntactic structure within each AC,
we construct dependency graph Gdep over the de-
pendency tree for each AC. Given a dependency
graph Gdep

P with the node representations HP of
AC P , the discrete adjacency matrix D ∈ Rm×m

for Gdep
P is a binary matrix and can be derived from

the dependency tree 2 where Di,j = 1 represents
that i-th word is connected to j-th word in the de-
pendency tree of the AC.

After that, we feed the node representations
and the adjacency matrix D into the graph at-
tention network (GAT) (Veličković et al., 2018)
to update the representation of each word node
and erect the intrinsic structure by aggregating in-
formation from its neighbors in Gdep

P and Gdep
Q .

Then we achieve the updated node representations
ZP = {zP1 , . . . , zPm} and ZQ = {zQ1 , . . . , zQn }
with syntactic structure for the nodes within AC P
and Q.

3.2.2 Mutual Graph Construction
We try to directly apply the inter-AC graph in the
probing graph for aligning the syntactic structure
between AC pairs but find a decrease in model
performance. We suspect the reason is that an inter-
AC perspective module is hard to capture heteroge-
neous relational information between AC pairs. To
effectively coordinate the syntactic structure infor-
mation within ACs, we construct a mutual graph
to align the AC pairs at a fine-grained level. To
the end, we employ a mutual attention mechanism
attβ(·) with dot product to learn the importance
score βi,j for each node i in Gdep

P from each node
j in Gdep

Q as follows:

βi,j = attβ(WP z
P
i ,WQz

Q
j ) (7)

where WP and WQ are weight matrices. Then,
we normalize βi,j across all nodes in Gdep

Q us-
ing the softmax function to get β̃i,j . Next,
the Gdep

P -specific node representations UP =

2In this work, we use spaCy toolkit for generating depen-
dency tree of the input sentence: https://spacy.io/.

{uP
1 , . . . ,u

P
m} is obtained by using the weighted

sum over ZQ, where uP
i is computed by uP

i =∑n
j=1 β̃i,jz

Q
j . Finally, the alignment function

and mean pooling operation in Equations 5-6 are
applied to calculate the relation-specific depen-
dency graph representations gdep

P for Gdep
P in here.

The similar procedures is processed to obtain the
relation-specific dependency graph representations
gdep
Q for Gdep

Q from Gdep
P .

3.3 Biaffine Module

To harmonize the information from dual graphs,
we use the concatenation operation on the relation-
specific graph representations of the probing graph
and mutual dependency graph to get the compre-
hensive relation-specific graph representations rP

and rQ of AC P and Q:

rP = gpro
P ||gdep

P , rQ = gpro
Q ||gdep

Q (8)

We then apply a biaffine operation (Morio et al.,
2020) to capture the bidirectional property of AC
pair and a softmax function to produce the relation
label probability p(y):

p(y(P,Q)|rP , rQ) = softmax
(
ϱ(rP , rQ)

)
(9)

where y(P,Q) is the ground-truth relation label of

AC pair, ϱ(x,y) = [
x
1

]⊤Wϱy and Wϱ is learn-

able weights.

3.4 Loss Function

Our training goal is to minimize the following total
objective function:

L = −
∑

D

lnp(y(P,Q)) + λ||θ||2 (10)

where D denotes the training dataset, θ represents
all trainable parameters, and λ is the coefficient of
the regularization term.

4 Experimental Setup

4.1 Datasets

In order to evaluate the performance of our
DPGNN model, we conduct experiments on three
public benchmark datasets including debatepedia-
normative (DN), debatepedia-casual (DC) (Jo et al.,
2021) and PE (Stab and Gurevych, 2017) and fol-
low their official train/dev/test split. The detailed
statistics of three datasets are shown in Table 1.
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Model DN DC
ACC Macro Support-F1 Attack-F1 ACC Macro Support-F1 Attack-F1

BiLSTM 71.0 71.0 71.3 70.7 68.5 68.3 71.0 65.5
LSTM-ATT 71.6 71.5 70.1 72.9 70.3 70.3 71.2 69.4
Hybrid Net 67.2 67.2 68.1 66.3 59.7 58.8 64.5 53.2

BERT 79.1 79.4 79.8 79.0 80.7 80.7 81.4 79.9
BERT+LX 78.4 78.4 79.2 77.5 81.6 81.5 82.3 80.8
BERT+MT 79.6 79.6 80.0 79.1 77.6 77.5 77.5 78.9
LogBERT 81.0 80.7 81.1 80.4 81.2 80.8 81.7 80.0
DPGNN 82.9 82.9 82.3 83.5 84.2 84.1 85.6 82.6

Table 2: Performance comparison on DN and DC datasets. Our improvements over baselines are statistically
significant with p < 0.05.

Model ACC Macro Support-F1 Attack-F1
BiLSTM 93.8 55.5 96.8 14.2

LSTM-ATT 91.7 55.7 95.6 15.8
Hybrid Net 92.9 55.8 96.3 15.4

BERT 93.3 60.0 96.5 23.5
DPGNN 94.5 63.8 96.6 31.0

Table 3: Performance comparison on PE dataset

4.2 Evaluation Metrics

We apply the same evaluation metrics with previous
works (Bao et al., 2021; Jo et al., 2021; Liang et al.,
2021b), including accuracy (ACC), per-class F1

(denoted as Support-F1 and Attack-F1), and macro
averaged score (denoted as Macro). Concretely, the
macro averaged score is calculated by averaging
all the per-class F1 scores.

4.3 Baselines

We compare our model with state-of-the-art base-
lines:

• BiLSTM (Cocarascu and Toni, 2017): This
model optimizes ARC using two BiLSTMs to
encode AC pair, respectively.

• LSTM-ATT (Ma et al., 2017): It employs
two LSTMs and an interaction attention to
generate representations for AC pairs.

• Hybrid-Net (Chen et al., 2018): It encodes
the input using BiLSTM and uses self- and
cross-attention between words for ARC.

• BERT (Kenton and Toutanova, 2019): This
model uses vanilla BERT model by feeding
the AC pair and using the representation of
[CLS] for predictions.

• BERT+LX (Jo et al., 2021): This model
employs BERT as encoder and latent cross

to incorporate external features, such as fac-
tual consistency and sentiment coherence, for
ARC.

• BERT+MT (Jo et al., 2021): It uses multi-
task learning to train the ARC and other logic
tasks, such as textual entailment and sentiment
classification, simultaneously.

• LogBERT (Jo et al., 2021): This model ap-
plies BERT as encoder to pre-train in logic
tasks and fine-tune on the target dataset for
ARC finally.

For the PE dataset, we do not compare our model
with BERT-LX, BERT-MT, and LogBERT since
they require a large number of external engineer-
ing features and annotations that cannot be easily
acquired.

4.4 Implementation Details

We use PyTorch to implement the proposed model
on an NVIDIA GeForce RTX 3080 GPU. We use
the uncased BERT base model3 as our PLM. Our
model is optimized using AdaW (Loshchilov and
Hutter, 2018) with the learning rates of 1e-5 on
the BERT layers and 1e-3 on other layers on all
datasets. We set the size of word embedding as 768.
The default setup in probing representation and
attention matrix is a pair-level probe in all datasets
because of their excellent performance. For all
datasets, we set the batch size as 32 and the weight
decay λ as 1e-3. We adopt dropout with a dropout
rate of 0.1 to avoid overfitting. The training process
stops if the accuracy score does not increase for 5
epochs on the validation data. The code and data
are available 4.

3We implement BERT using huggingface toolkit:
https://huggingface.co/

4https://github.com/HITSZ-HLT/DPGNN
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Model DN DC
Macro ∇ Macro ∇

DPGNN 82.9 - 84.2 -
-w/o MDG 81.6 -1.3 83.0 -1.2
-w/o DI 82.3 -0.6 82.1 -2.1
-w/o PG 81.9 -1.0 82.4 -1.8
-w/o PR 82.4 -0.5 83.6 -0.6

Table 4: The ablation results in terms of removing differ-
ent components in DPGNN on the DN and DC datasets

5 Experimental Results

5.1 Performance Comparison
We report the results of DPGNN and compared
baselines in Table 2. We can observe that our
DPGNN model achieves the best performance on
all the datasets. On the DC and DN datasets, our
model outperforms the best performing baseline by
2.6 and 2.6, and 1.9 and 2.2 on the ARC task re-
spectively in terms of accuracy, per-class F1 score,
and macro averaged score. In addition, we also
observe that LSTM-based baselines (i.e., BiLSTM,
LSTM-ATT, and Hybrid Net) generally perform
worse than BERT-based models. This may be be-
cause the pre-trained BERT contains rich knowl-
edge learned from the large-scale corpora. The
BERT-based methods that integrate multiple ex-
ternal features (i.e., BERT+LX and LogBERT)
achieve slightly better performance than the origi-
nal BERT model. Furthermore, DPGNN performs
better than all the BERT-based models by lever-
aging the probing knowledge from PLMs and de-
pendency knowledge to effectively capture the re-
lational features between AC pairs. We observe
similar trends on the PE dataset in Table 3.

5.2 Ablation Study
Effectiveness of Different Components To in-
vestigate the effectiveness of different components
in DPGNN, we conduct an ablation study in terms
of removing the mutual dependency graph (w/o
MDG), removing dependency information (w/o
DI), removing the probing graph (w/o PG), and
removing probing representation (w/o PR) respec-
tively. It is noteworthy that removing the probing
graph is equal to removing the probing attention
matrix. As shown in Table 4, the full model of
DPGNN has the best performance. We also ob-
serve that w/o MDG and w/o PG achieve similar
performance and perform worse than DPGNN, ver-
ifying the effectiveness of the probing knowledge
and the dependency knowledge that can comple-
ment each other for capturing the fine-grained struc-

Probe DN DC
ACC Macro ACC Macro

Word-Level 81.6 81.6 82.7 82.6
AC-Level 82.2 82.1 83.6 83.6

AC Pair-Level 82.9 82.9 84.2 84.1

Table 5: The ablation results in terms of applying differ-
ent probes in DPGNN on the DN and DC datasets
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Figure 3: The attention maps of an example in Figure 1
when reasoning the argumentation relation between AC1
and AC2.

tural information within ACs and between AC pairs.
The performance of DPGNN w/o DI slightly de-
creases on the DN dataset, while there is a huge
performance drop on the DC dataset. This may
be because the DN dataset relies on the relational
structure while the syntactic structure contributes
more to DC dataset including longer and more syn-
tactically sensitive samples.

Effectiveness of Different Probes We also ex-
plore two additional probes, including the word-
level probe and AC-level probe. The probing unit
for the word-level probe is individual words. Thus,
we treat each learned hidden state and attention vec-
tor as word-level probing knowledge. The AC-level
probe leverages the global information of each AC
to elicit the AC-level knowledge by applying the
average operation over the word representations to
obtain the AC representation in each layer. Similar
to AC pair-level probe, we can acquire the probing
representations and attention matrices of the AC
pair in the word- and AC-level probes. We report
the results of our DPGNN with the three different
probes. As shown in Table 5, the word-level probe
always performs worse than the AC-level and AC
pair-level probes on both DC and DN datasets. This
may be because the word-level probe does not cap-
ture the global information of each AC and each
AC pair. By contrast, the pair-level probe achieves
the best performance among the three probes on the
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two datasets, since the pair-level probe can better
capture the established association of words over
AC pair, rather than merely learn the knowledge
within each AC.

5.3 Case Study

We use a case study to visualize the attention maps
of the inter-AC probing graph and the mutual de-
pendency graph when predicting the relation from
AC2 to AC1. The attention maps are shown in Fig-
ure 1. The color depth indicates the importance
degree of the word. As shown in Figure 3a, the
important words such as “affirmative” and “good”
in AC1 are aligned with the words “diversity” and
“improve” in AC2. Meanwhile, we can also ob-
serve that the attention weights capture the impor-
tant alignment between “public policy” and “de-
cision making”. This verifies that the inter-AC
graph and mutual graph can align the rich structure
between AC pairs. By combining heterogeneous
information from dual graphs, our model can ob-
tain comprehensive complementary information for
effective ARC.

6 Conclusion

In this paper, we proposed a graph-based model
DPGNN with two prior knowledge, i.e., probing
knowledge elicited from PLM and syntactical de-
pendency information, to model the relational and
syntactic structures within ACs and between AC
pairs for ARC. To effectively capture the useful
probing knowledge from BERT, we propose three
probes to elicit word-, AC- and pair-level knowl-
edge. In addition, DPGNN integrated the probing
graph with decoupled probing attention matrices
and the mutual dependency graph with syntactic de-
pendency information to make our model more ef-
fective to utilize the heterogeneous structure within
ACs and between AC pairs. Experimental results
on three benchmark datasets demonstrated that
DPGNN outperformed the strong baselines.
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Limitations

To better understand the limitations of the proposed
model, we carry out an analysis of the errors made
by DPGNN. Specifically, we randomly select 100
instances that are incorrectly predicted by DPGNN
and summarize the primary types of error. The first
type of error is caused by failing to classify ACs
that contain latent opinions or require deep compre-
hension. For example, for an AC pair “Affirmative
action is good public policy.” and “Predominantly
black schools offer fewer AP classes.” DPGNN
tends to align “good public policy” with “fewer
AP classes”, resulting in attack relation which is
wrongly predicted.

The second error category is caused by vague
words. For example, DPGNN cannot correctly pre-
dict the argumentation relation between the AC
pair High speed rail development is generally good
policy.” and ”Upgrading existing lines is an inef-
fective solution.”, This may be because the con-
text information is not sufficient enough such that
DPGNN cannot capture the opposite semantic be-
tween ”High speed rail development” and ”Upgrad-
ing existing lines”.

Third, another error category occurs when the
AC pair exists with multiple aligned antonyms.
The argumentation relation is misled by multiple
aligned antonyms between the AC pair. For ex-
ample, the argumentation relation of the AC pair
“Free trade and economic globalization is good for
the world” and “Protectionism is discriminatory” is
wrongly predicted as an attack by considering the
two antonymous alignments between “Free trade
and economic globalization” and “Protectionism”,
and between “good” and “discriminatory”. It sug-
gests that certain alignment method needs to be
devised in the future so as to better infer argumen-
tation relation. For example, we may leverage a
graph neural network over the AC-specific node
representations to guide the learning of relation-
specific features.
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