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Abstract

Large-scale pretraining is fast becoming the
norm in Vision-Language (VL) modeling.
However, prevailing VL approaches are lim-
ited by the requirement for labeled data and the
use of complex multi-step pretraining objec-
tives. We present MAGMA - a simple method
for augmenting generative language models
with additional modalities using adapter-based
finetuning. Building on Frozen (Tsimpoukelli
et al., 2021), we train a series of VL models
that autoregressively generate text from arbi-
trary combinations of visual and textual input.
The pretraining is entirely end-to-end using
a single language modeling objective, simpli-
fying optimization compared to previous ap-
proaches. Importantly, the language model
weights remain unchanged during training, al-
lowing for transfer of encyclopedic knowledge
and in-context learning abilities from language
pretraining. MAGMA outperforms Frozen on
open-ended generative tasks, achieving state
of the art results on the OKVQA benchmark
and competitive results on a range of other
popular VL benchmarks, while pretraining on
~ 0.2% of the number of samples used to train
SimVLM (Wang et al., 2021).

1 Introduction

Self-supervised representation learning with trans-
former models (Vaswani et al., 2017) has become
the dominant technique in Natural Language Pro-
cessing in recent years, with encoder transformer
models trained using a Masked Language Model-
ing (MLM) objective (Devlin et al., 2019) excelling
at Natural Language Understanding tasks, and au-
toregressive decoder models (Radford et al., 2018,
2019; Brown et al., 2020) displaying impressive
Natural Language Generation at increasingly large
scales. Vision Language (VL) modeling — the mod-
eling of joint image-text representations for tasks
such as image captioning or visual question answer-
ing (VQA) — has followed suit, with the transformer
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Q: What caused the mess Q: What caused the mess
on the carpet? A: on the carpet? A:

The dog.

The carpet was stained
by a spilled drink.

Figure 1: An example output produced by MAGMA.
For this and all following examples the input text is
displayed in black, and the model’s response in green.

encoder becoming the prevalent architecture in re-
cent research. A popular approach among the latest
state of the art VL models is to use a BERT-style
encoder language model (LM) in combination with
an object detection backbone such as Faster-RCNN
(Ren et al., 2015). This approach, while display-
ing impressive performance on challenging bench-
marks, has a number of drawbacks (see Section 2),
in particular not being able solve VL tasks in an
open-ended, generative fashion.

A recent line of work (Tsimpoukelli et al., 2021;
Wang et al., 2021; Sollami and Jain, 2021) ex-
plores VL modeling using autoregressive decoder
models trained with a language modeling objec-
tive. SimVLM (Wang et al., 2021) shows impres-
sive performance, but requires prohibitively large
amounts of pretraining data and the training of lan-
guage and vision components in tandem. Frozen
(Tsimpoukelli et al., 2021) shows that a pretrained
autoregressive language model can, without any
finetuning to the LM weights themselves, be har-
nessed to train a visual prefix which enables images
to be used as its input. While the performance of
Frozen on VL benchmarks falls short compared to
the state of the art, we feel the approach is promis-
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ing due to its practicality, and the public availability
of large, pretrained LMs such as GPT-J (Wang and
Komatsuzaki, 2021), PanGu-« (Zeng et al., 2021),
and GPT-Neo (Black et al., 2021).

Extending the Frozen approach, in this paper
we introduce a framework to combine existing uni-
modal language and unimodal vision models pre-
trained on large web datasets into a powerful multi-
modal model. Specifically, our contributions are:

i) We introduce MAGMA: An autoregressive
VL model that is able to generate text from
an arbitrary combination of visual and tex-
tual input. Like Frozen, we start from a
fixed large LM and a visual encoder-prefix
stack. MAGMA differs from Frozen by addi-
tionally augmenting the LM with adapter lay-
ers, and using CLIP’s (Radford et al., 2021) vi-
sual component as encoder. Only training the
adapters and visual components, the method
is parameter efficient and naturally retains the
LM’s encyclopedic knowledge and in-context
learning abilities.

ii) Pretrained on a simple next token prediction
objective, MAGMA is competitive in several
VL downstream tasks, significantly outper-
forming its predecessor, Frozen, while pre-
training on ~0.2 % of the number of samples
used for SimVLM (Wang et al., 2021). In par-
ticular, MAGMA achieves state of the art ac-
curacy on the OKVQA benchmark, which we
evaluate as a fully open-ended generative task.

iii) Our extensive ablations on the vision encoder
and adapter components show i) that a pre-
trained CLIP ResNet encoder outperforms
other visual backbones, ii) that an adapter-
tuned model outperforms a visual prefix-only
method, and iii) that different adapter configu-
rations excel at different downstream tasks.

iv) We show that a carefully curated pretraining
dataset — including around 25 million image-
text pairs from a wide range of sources, includ-
ing downstream task training data — can dra-
matically increase downstream performance
when compared to a noisier, web-scraped
dataset (CC12M Changpinyo et al. (2021a)).

We only explore the VL domain in this work,
but we expect the general method of a modality-
specific prefix in combination with adapter layers
and a frozen LM to apply equally well to other com-
binations of modalities, such as audio-text pairs.

With this publication, we open-source our code
and release a trained model checkpoint.'

2 Related Work

VL models of the past years (Zhang et al., 2021;
Li et al., 2020; Chen et al., 2019; Li et al., 2019;
Su et al., 2020; Tan and Bansal, 2019) harness a
BERT-like encoder transformer as the language
component, trained with a MLM objective — where
random words in the input are masked out, and the
model is tasked with predicting them. Encoder VL
models are often also pretrained with auxiliary ob-
jectives or custom cross-modal losses, such as the
Masked Region Modeling, Image-Text Matching
and Word-Region Alignment of UNITER (Chen
et al., 2019), or the contrastive loss of OSCAR
(Li et al., 2020). Using auxiliary cross-modal loss
functions and pretraining tasks complicates the pre-
training procedure by requiring these losses to be
properly balanced. Additionally, encoder models
need extra task-specific finetuning for each task
to perform effectively, limiting their accessibil-
ity. In comparison, autoregressive VL models like
MAGMA are trained on a single, simple next to-
ken prediction objective, and can perform well on
a wide range of tasks without further finetuning.
Two predecessors to our method are Frozen
(Tsimpoukelli et al., 2021) and SimVLM (Wang
et al., 2021), two autoregressive decoder models
trained with a next token prediction language mod-
eling objective. Frozen affixes an NFResnet (Brock
et al., 2021) vision encoder to a pretrained autore-
gressive LM and, keeping the LM weights frozen,
trains the vision encoder along with a visual prefix
that linearly maps the output of the vision encoder
to the dimensionality of the LM’s token embed-
dings. Frozen shows that autoregressive VL mod-
els have the ability to adapt to examples in-context,
like their language only counterparts (Brown et al.,
2020), without performing any gradient updates.
When shown multiple examples of a task in its
context window in Few-Shot learning, its perfor-
mance on that task improves, it appears to ‘learn’
from the presented examples without task-specific
finetuning. Our model has similar in-context learn-
ing capabilities, but the addition of adapters and
the different choice of visual backbone results in
a model with improved performance when trained
on a comparable dataset, see Section 3.3.
SimVLM is similar to Frozen, but pretrains the

1https: //github.com/Aleph-Alpha/magma
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Figure 2: MAGMA’s architecture. The layers in red are trained, and the layers in blue remain frozen.

vision and language components in tandem us-
ing a prefix LM objective. SimVLM consists of
an encoder-decoder transformer with a combined
ResNet (He et al., 2015) and ViT (Dosovitskiy
et al., 2020) backbone as encoder, and a trans-
former decoder for language modeling. It extends
the state of the art on a wide range of benchmarks,
showing that a simple language modeling task can
outperform MLM approaches. However, the joint
pretraining requires prohibitively large uni- and
multimodal datasets (1.8 Billion+ image-text pairs
and ~800GB of raw text), and long training times
(~4 Billion image-text pairs and ~130 Billion text
tokens). Aside from using orders of magnitude less
data than SimVLM, MAGMA allows for the full
recovery of the underlying LM’s performance by
simply removing the adapter layers.

Our work builds on recent advances in parameter
efficient finetuning of LMs (Houlsby et al., 2019;
Li and Liang, 2021; Lester et al., 2021; He et al.,
2021; Hu et al., 2021), specifically with adapter lay-
ers (Houlsby et al., 2019; He et al., 2021; Pfeiffer
et al., 2020), which are small modules inserted in
between the elements of a transformer layer which
are finetuned instead of the model weights as a
form of parameter efficient fine-tuning.

For a visual backbone, it is common to use re-
gion features from a pretrained object detection
model such as Faster-RCNN (Ren et al., 2015).
These are generally trained using expensive human
labeled data on a bounded set of object classes, lim-
iting the number of object types the resulting model
can recognize. On the other hand, contrastive mod-
els such as CLIP (Radford et al., 2021) and ALIGN

(Jia et al., 2021) present a more robust approach to
learning visual features by learning joint represen-
tations between image-text pairs. They show strong
performance on a wide variety of vision tasks as
well as impressive generalization abilities that can
provide powerful semantic guidance to image gen-
eration (Esser et al., 2021). But since they were
only trained to match image-text pairs, they can-
not inherently be used for tasks that require text
generation as output (Shen et al., 2021).

However, Shen et al. (2021) show that the
weights of contrastive language-image models con-
tain useful semantic information for VL tasks. By
replacing the conventional region-based backbone
with CLIP’s visual encoder in popular VL archi-
tectures, the authors achieve SOTA results across a
wide variety of VL tasks without needing region-
based features, motivating us to use CLIP’s visual
component as a vision encoder for MAGMA. No-
tably, we confirm their finding that the ViT variant
of CLIP underperforms on VL tasks when com-
pared to the ResNet variant, particularly in tasks
that require localization within an image.

3 Method

Our general approach is an image conditioned vari-
ant of soft-prompting or prefix tuning (Lester et al.,
2021; Shin et al., 2020; Qin and Eisner, 2021)
for language transformers and extends the Frozen
method (Tsimpoukelli et al., 2021). The core idea
is to translate image features into language embed-
dings carrying visual information which can there-
fore be interpreted by the language transformer
without need to retrain the latter from scratch.
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3.1 Architecture

The model can be broken down into four main com-
ponents, see Figure 2. First, images are fed into
a Visual Encoder, which processes the raw image
input and outputs a sequence of feature vectors.
Then an Image Prefix module maps image features
into a sequence of embedding vectors that are input
to the third model component, an auto-regressive
Language Model. The fourth component is a series
of Adapter layers which are inserted into the trans-
former LM, and tuned during training. We discuss
the four components in more detail below.

Visual Encoder — V¢ The visual encoder is a
network used to extract condensed semantic infor-
mation about an image. In principle, the visual
encoder could take the form of any deep vision net-
work whose output can be mapped to a sequence
of embedding vectors. For our ablations, we use
the visual backbone of several variants of CLIP.
We also train a model with an NFResnet encoder
trained from scratch, which is analogous to the
model presented in Frozen, see §4.2. The visual
encoder output is then passed into the Image Prefix.

Image Prefix — VP Before the encoder output
can be input to the LM, it needs to be trans-
lated into a sequence of n dj,-dimensional vectors,
where d;, is the LM’s hidden dimension. For the
CLIP encoders, we extract the feature grid before
the pooling layers, resulting in an N x N grid,
where N = 7,7, 12 for the ViT-B/32, RN50x4 and
RN50x16 variants of CLIP respectively. We then
flatten the feature grid into a sequence of N? vec-
tors, and linearly transform the vectors’ channel
dimension to dj,. For the NFResnet variant, we fol-
low the procedure described in Frozen by linearly
transforming the output to dj, - n, where n can be
an arbitrary sequence length which we set to 2. Fi-
nally, we apply dropout regularization to the output
of the image prefix, followed by Layer Normaliza-
tion. We also explored non-linear variants of prefix
mappings, replacing the linear transformation with
an MLP and a transformer encoder, but found no
improvements.

Language Model - £, 7, H The language back-
bone of our architecture is initialized from a pre-
trained auto-regressive transformer LM similar to
GPT (Radford et al., 2018).

A text input y is converted into a sequence of
tokens %1, ...,t,,. Then a word embedding layer
E maps each token t; to a unique vector e =

E(t};) € R, obtaining a sequence of embeddings
ei, ..., ey Which are input to a transformer-decoder
module 7" with a causal attention mask. A language
model head H maps the final output embeddings
of the transformer to logits over the token space
which can be used in a cross-entropy loss function
for a next-token-prediction training objective and
to auto-regressively generate text during inference.
Because any sequence of vectors vy, ..., v, € R%
can be used as input to the transformer, we can use
images as input after mapping them through the
encoder and the prefix as described above.

For the LM component, we use the open sourced
weights of the 6 Billion parameter GPT-J (Wang
and Komatsuzaki, 2021) LM. Since its architecture
is largely similar to that described in Radford et al.
(2018), we will not cover it in this paper, but do
note two key differences of GPT-J compared to
the original GPT architecture. Firstly, GPT-J re-
places learned positional embeddings with rotary
positional embeddings (Su et al., 2021), a form of
relative positional embedding. As noted in (Tsim-
poukelli et al., 2021), relative positional embed-
dings enable the transformer to generalize to inputs
with more than one image, or a different image-
text ordering compared to the training distribution,
which is key to the VL model’s ability to perform
in-context learning with multiple image examples.
Secondly, the attention layer and the feedforward
layer are computed in parallel for decreased com-
munication costs (Wang and Komatsuzaki, 2021).

Adapters — {A;} Adapters are a series of small
modules placed in between elements of a trans-
former model (Houlsby et al., 2019), that can be
finetuned instead of the model weights as a form of
parameter efficient fine-tuning. We use the frame-
work of He et al. (2021), where the adapter layers
take the form of a scaled residual bottleneck MLP:

Ai(h) = h+ \NWg (Wﬁow"h) NGH)

The matrices Wwn ¢ R%Xdn and W ¢
R*d with d;, < dj, constitute the bottleneck,
( is an activation function (in our case ReLU) and
A; 1s a scaling parameter that is either trained or
set equal to 1. We refer to the ratio dj,/dj, as the
downsample factor of the adapter.

Given a set of adapters { A;} and a transformer
module 7', we denote the adapted version of 1" by
T, which means replacing the attention and/or feed-
forward blocks B; of T' by their adapted version B;,
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either obtained from adding the adapters in parallel
or sequentially:

Bihes {Bi(h) + Ai(h)
Bi(h) + Ai(Bi(h))

(parallel)

2
(seqt.)

We experiment with both parallel and sequential
adapter variants, see Section 4.2.1 for results.

3.2 Training

During training, the weights of the LM E, T, H re-
main unchanged, whereas the weights of the image
encoder V¢, image prefix V? and the adapters { A; }
are optimized. The language model components
are initialized with weights from the pretrained
GPT-J model and the image encoder is initialized
with pretrained CLIP weights except for the NFRes-
net ablation, where the image encoder is randomly
initialized. The image prefix and adapters are al-
ways trained from scratch. In the following we
denote the trainable parameters of a module by the
subscript 6. As described in 3.1, a set of trainable
adapters {A; g} gives rise to the modified trans-
former module 7, B

The training objective is a captioning task:
given an image-caption pair (x,y), we embed the
image as vy g, ..., 0p0 = Vj © Vi (x) and the text
as ey, ...,e,m = E(t1),..., E(ty,), where {t;} is
the tokenized caption y. Note that the image se-
quence length n is fixed while the length of the
caption m is variable. The image embeddings are
then prepended to the text embeddings and fed
through the adapted transformer module. Denoting
the embedding-to-logits function as ly = H o Ty,
we then compute the loss

m

L@(fl:,y) = - Zle(v1,97 "'7/1)71,97617 "‘7ei)7 (3)
i=1

where ly(v1 9, ..., Ung, €1, .., &) is interpreted as
next-token log-probability conditioned on the pre-
vious sequence elements

le(vl,ea <oy Un,0y €15 «ey ei)
=logpy(t; | w,t1,...., ;1) “4)

For technical details regarding training, see A.

3.3 Dataset

For pretraining we use two different large scale
datasets, one for the ablations and another one
for our final model MAGMA,,., respectively

MAGMA;,,,. For all ablations in 4.2 we train
on CCI12M (Changpinyo et al., 2021a) for a to-
tal of around 3M samples ensuring comparabil-
ity with Frozen. Unfortunately, CC12M per-
forms hypernyming, replacing people names with
(PERSON). This causes downstream models to
output (PERSON) overwhelmingly often, even
when the inputs do not contain people or places.

This failure mode, as well as recent research
suggesting that increased training dataset diversity
improves downstream generalization capabilities
(Zhang et al., 2021; Radford et al., 2021; Brown
et al., 2020; Gao et al., 2021), prompted us to con-
struct another large-scale pretraining dataset from
various publicly available image-text datasets, in-
cluding a heavily filtered subset of LAION (Schuh-
mann et al., 2021), Wikipedia Image-Text (Srini-
vasan et al., 2021), CC3M (Changpinyo et al.,
2021b), Visual Genome (Krishna et al., 2016), Lo-
calized Narratives (Pont-Tuset et al., 2020).

Following research showing that LMs become
strong zero-shot learners after being finetuned on
collections of structured, task-based datasets (Wei
et al., 2021; Sanh et al., 2021), we also include
the training splits of the following downstream
tasks: VQA (Antol et al., 2015), GQA (Hudson and
Manning, 2019), OKVQA (Marino et al., 2019),
VizWiz (Gurari et al., 2018), Hateful Memes (Kiela
et al., 2020), CoCo Captions (Chen et al., 2015).
This results in a dataset of around 25 million image-
text pairs to train our final model, see §4.3.

4 Experiments and Analysis

To evaluate our methodology, we first train a series
of ablations (cf. §4.2), to break down the effects of
the vision encoder and adapter choice. We evalu-
ate these ablations, and all subsequent models on
a range of visual question answering and image
captioning tasks designed to quantify the model’s
ability to adapt to new tasks using in-context learn-
ing, recognize a wide variety of objects, and reason
in detail about an image — often involving complex
spatial understanding, encyclopedic world knowl-
edge, and optical character recognition (OCR).

4.1 Evaluations
4.1.1 Visual Question Answering (VQA)

VQA tasks require the model to answer a ques-
tion about the input image. Breaking from previ-
ous works, which generally formulate VQA tasks
as classification tasks over the most frequent re-
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Q: What does the yellow

animals make?
A: bleating

street sign mean? A: walking? A: no

pedestrian crossing

Figure 3: An example of a 2-shot prompt for OKVQA.

sponses in the training set, we formulate all VQA
tasks as open-ended generative tasks to enable few-
shot prompting. We use the following datasets:
VQA 2.0 (Antol et al., 2015). A large and com-
monly used dataset for VQA where samples consist
of an image, a question regarding the content of the
image and 10 corresponding ground-truth answers.
OKVQA (Marino et al., 2019). A VQA dataset
where correct answers require explicit outside
world knowledge not contained in the picture.
GQA (Hudson and Manning, 2019). A large VQA
dataset focusing on visual and spatial reasoning.
VizWiz (Gurari et al., 2018). A dataset in the same
format as VQA with questions asked by visually
impaired people. The ground-truth to a question
about an image may be “unanswerable” or “unsuit-
able”, which has to be recognized by the model.

To compare the generated model output with
the provided ground-truths, we apply the normal-
ization procedure of the official VQA 2.0 repo, 2
and truncate the model output to the length of the
longest ground truth answer. For VQA, OKVQA,
and VizWiz we calculate the accuracy metric from
the official VQA paper (Antol et al., 2015), and for
GQA we use the canonical accuracy score.

For few-shot settings, we use the procedure de-
scribed in Tsimpoukelli et al. (2021), prepending n
random examples of completed tasks before each
question answer pair. We preprend "Q: " and "A: "
to each question and answer respectively, improv-
ing performance (as exemplified in Figure 3).

4.1.2 Image Captioning

Image captioning tasks require the model to gener-
ate accurate descriptions of input images in natural
language. We evaluate on two datasets — CoCo
Captions (Chen et al., 2015) and NoCaps (Agrawal
et al., 2019), measuring performance using the
BLEU @4 and CIDEr metrics. NoCaps is designed
to evaluate a model’s ability to caption images
containing uncommon or novel object classes that

Zhttps://github.com/GT-Vision-Lab/VQA

aad . | F

Q: What does the sign say? A: Q: What does the sign say? A:
" "Black Lives Matter."" " “Black Lives Matter.'"

Figure 4: MAGMA’s OCR capabilities. Even when
text is obscured, MAGMA imputes the missing values.

don’t appear in CoCo.

Like with SimVLM, prompting with “A picture
of”” dramatically increases downstream scores, €.g.
for MAGMA,,4, increasing the CIDEr score on
CoCo Captions from 7.5 to 57.1. All scores re-
ported in Table 1 use this as a prefix. Other prefixes,
such as “Caption:” have a similar effect.

4.1.3 Visual Entailment

We test Visual Entailment performance on SNLI-
VE (Xie et al., 2018), a task built on top of SNLI
(Bowman et al., 2015). SNLI-VE requires the
model to reason about the relationship between
an image premise, Pinage, and a text hypothesis,
Hiexs. Given Pipage and Hiexy as input, the task is
to label their relationship as either entailment, neu-
tral or contradiction. We formulate SNLI-VE as a
classification task by finetuning the model together
with a linear classification head on the last-layer
transformer embedding of the last text token.

4.2 Ablations

We run two series of ablations: i) One designed
to test the impact of the adapter layers and their
precise configuration, and ii) another designed to
test the impact of the vision encoder choice. We
also independently replicate the Frozen model (see
Table 1), using the pretraining setup described in
their paper (with the exception that we pretrain
on CC12M) to use as a baseline. All ablations
are trained for a total of 15k steps, or around 3.8
million image-text pairs.

4.2.1 Adapter Types

We run ablations with several different adapter con-
figurations, motivated by He et al. (2021) showing
that the precise formulation of the adapter layer can
have a large impact on the performance of a model
on downstream tasks. Also, different adapter layers
can perform better than others depending on the
task. Since an exhaustive sweep in the parameter
space of adapters is very expensive, we decided
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Adapter ablations n-shot-VQA n-shot-OKVQA n-shot-GQA n-shot-VizWiz Avg.
Type A Attn FF  Params 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4
- - - - 0.1 364 415 41.7 418 | 125 162 16.0 16.5 | 126 20.8 23.6 269 | 29 53 55 6.7 | 204
s 1 - 2 2 34.7 401 422 432 | 124 169 186 21.5 | 82 141 192 246 | 53 74 7.8 9.7 | 204
s 1 - 4 1 32.7 402 425 438 | 11.7 163 191 21.2 | 68 15.6 221 277 | 42 6.7 6.9 86 | 20.0
S 1 8 8 1 36.6 41.7 43.8 452|139 17.1 20.0 225|143 20.7 249 284 | 56 85 86 98 |226
s 1 12 6 1 369 412 436 447|139 194 216 232 | 128 188 225 258 | 53 9.6 98 10.6| 225
p 1 - 4 1 36.5 41.7 431 438 | 145 184 203 21.8 | 11.2 163 199 232 | 46 84 84 92 | 213
p t 8 8 1 349 422 441 454|129 177 214 234 | 88 156 202 245 | 43 79 85 99 | 214
Encoder ablations
NFResnet 320 370 390 39.7| 98 158 189 208 | 91 202 271 287 | 28 56 6.5 82 | 20.1
CLIP-ViT 32.8 339 367 377|105 92 124 142 | 84 149 222 257 | 27 51 52 77 | 175
CLIP-RN50x4 35.2 40.0 426 442|126 177 190 218|105 13.0 16.1 205 | 5.0 6.2 6.6 83 | 20.0
CLIP-RN50x16 32.7 402 425 438 | 11.7 163 191 212 | 68 156 221 277 | 42 6.7 69 86 |204
[ Frozen (NFResnet + no adapters) [ 28.6 36.7 37.9 381 ] 62 151 162 158 [ 87 235 270 275[ 1.7 54 62 80 [ 189 |
MAGMA pretrained
MAGMApgse 60.0 - - - 37.6 - - - 474 - - - 159 - - - 40.3
MAGMA ;g 61.5 - - - 40.3 - - - 49.6 - - - 16.7 - - - 42.0
Adapter ablations NoCaps - CIDEr NoCaps - B@4 CoCo - CIDEr CoCo - B@4
Type A Attn FF  params In Out Near All In Out Near All
- - - - 0.1 45.1  53.7 433 457 | 9.9 5.8 7.9 7.8 36.7 10.3
S 1 - 2 2 37.7 555 406 432 | 6.2 6.1 6.5 6.4 33.4 9.4
S 1 - 4 1 39.3 56.2 44.0 458 | 6.3 6.7 7.7 7.3 39.6 11.2
s 1 8 8 1 38.2 495 409 422 | 64 4.9 6.7 6.3 37.1 10.6
s 1 12 6 1 519 648 546 562|114 84 11.3 108 46.3 13.9
p 1 - 4 1 375 381 359 36.0 | 7.2 5.1 6.7 6.4 36.3 10.8
p t 8 8 1 40.6 58.3 45.0 47.1 | 8.0 6.6 7.9 7.7 39.5 11.2
Encoder ablations
NFResnet 225 162 22.0 209 | 50 1.6 5.3 4.5 224 8.2
CLIP-ViT 332 442 353 368 | 59 5.2 5.8 5.7 27.2 7.7
CLIP-RN50x4 477 436 481 502 | 93 67 92 87 41.9 13.1
CLIP-RN50x16 39.3 56.2 440 458 | 63 6.7 1.7 7.3 39.6 11.2
MAGMA pretrained
MAGMApgse 55.8 56.5 499 521 | 11.1 6.1 103 9.5 51.1 15.8
MAGMA[OW 58.1 62.0 569 581|133 85 132 123 57.0 17.6

Table 1: Performance evaluation on downstream tasks. Open-ended few-shot evaluation on VQA-val, OKVQA-val,
GQA-testdev and VizWiz-val. Captioning evaluation on NoCaps-val and CoCo-val. Models under MAGMA
pretrained are trained on the mixed dataset detailed in Section 3.3, all other models are trained on CC12M.
Notation for adapter ablations. Type: (s)caled or (p)arallel. A: 1 or (t)rained. Attn, FF: Downsample factor of
the bottleneck in the resp. position. — means not applied. Params: Number of trainable parameters relative to the
ablation with sequential FF adapters with downsample factor 4.

on seven configurations, including models with no
adapters, to get a qualitative picture of the effect on
downstream performance. We use the same visual
encoder (CLIP ‘RN50x16’) for all adapter abla-
tions and evaluate the open-ended few-shot scores
on the VQA and Image Captioning tasks described
in 4.1.1 and 4.1.2 respectively. The results are
shown in Table 1. Although there is no adapter
configuration which clearly outperforms the rest,
we observe three key points:

Applying adapters to the attention layer is
key. Adapter configurations with no adapters on
the attention layer underperform, particularly at
few shot prompting.

More adapter parameters to the feed forward
layer increases performance on knowledge-
based tasks. The adapter variant with more param-
eters allocated to the feed forward adapter outper-
forms other variants on OKVQA and NoCaps tasks
requiring outside knowledge and uncommon object
classes recognition respectively. This supports pre-

liminary research indicating that the feed-forward
blocks are important in storing implicit knowledge
in pretrained transformers (Dai et al., 2021).
Balancing attention and feed-forward param-
eter allocation aids scene understanding. The
adapter variant with equal number of parameters
allocated to the attention and the feed forward
adapters excels at the GQA benchmark, a QA
benchmark built around scene graphs and designed
to focus on skills such as spatial reasoning, com-
parisons, and object and attribute recognition.

4.2.2 Visual Encoders

We run ablations with four different image en-
coders: NFResnet, CLIP-ViT-B/32, CLIP-RN50x4
and CLIP-RN50x16. All visual encoder ablations
are trained using the adapter configuration with se-
quential adapters on the feed-forward block and a
downsample factor of 4. The results are shown in
Table 1. Our findings are the following:
CLIP-RN50x16, on average, performs best
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VQA OKVQA GQA VizWiz | SNLI-VE NoCaps Coco
CIDEr B@4 CIDEr B@4
MAGMA 68.0 49.2 54.5 35.4 79.0 93.6 27.8 91.2 314
SOTA 75.5 48.0 72.1 54.7 86.3 112.2 33.1 143.3 41.7
SOTA model | SimVLM PICa CFR  Pythia | SimVLM | SimVLM VIVO | SimVLM  OSCAR

Table 2: MAGMA finetuned performance. B@4: NoCaps-all score. SOTA scores are to the best of our knowledge
at the time of writing. If available/applicable, we compare to the SOTA score of models solving the task in an
open-ended generative fashion like MAGMA (notably SimVLM on VQA), otherwise we compare to the general
SOTA (classification setting). Models: SimVLM (Wang et al., 2021), PICa (Yang et al., 2021), CFR (Nguyen et al.,
2021), Pythia (Singh et al., 2019), VIVO (Hu et al., 2020), OSCAR (Li et al., 2020).

A picture of

A picture of A picture of

an apple on a table. an apple with a

library sign on it

an apple with a label
on it that says iPod

Figure 5: An example of an adversarial typographic
attack which MAGMA appears robust to, unlike CLIP.

at VQA tasks. However, the difference between
RN50x16 and RN50x4 is slight, with the smaller
encoder performing better on VQA and OKVQA,
while the larger encoder has a much higher GQA
accuracy. We hypothesize that the increased reso-
lution of the larger feature grid results in a more
detailed scene understanding, while the smaller
grid is better at condensing global visual informa-
tion, which also shows in the Image Captioning
scores, where CLIP-RN50x4 excels.

CLIP-ViT has the worst average score across
question answering tasks. This reinforces the
finding of Shen et al. (2021), who find that the
CLIP-ViT model struggles at tasks which require
localization within an image.

Recall that the image prefix length varies be-
tween image encoders which may have a confound-
ing effect on the results — further study is needed to
disentangle the effects of sequence length and the
choice of the vision encoder.

4.3 Final Model

Based on our ablation studies, in particular the aver-
age VQA scores, we opt to train a final MAGMA
model using the CLIP-RN50x16 encoder and se-
quential adapters with a downsample factor of 8
applied to the feed-forward and attention layers.
We train on the dataset detailed in §3.3 and see that
evaluation loss does not plateau after ~3M sam-
ples as reported in Frozen, and so continue training,
resulting in two model variants — MAGMA .

A picture of A picture of a cat in a lab coat, with the caption "

a cat in a lab coat. I was going to tell a joke about sodium, but Na"

Figure 6: Example of multi-step prompting. Using the
output of the model (left) again as the input (right), the
generation procedure is broken down into atomic steps.

trained for 15k steps for comparability to Frozen,
and MAGMA,,,, trained for 7.6M samples.

Due to the inclusion of training splits of tasks
like VQA in the pretraining dataset, the perfor-
mance of MAGMA .. significantly exceeds the
downstream performance of previously trained ab-
lations. The evaluation is conducted in the same
way as the zero-shot procedure for the ablations
and to avoid cluttered notation, we refer to it as
such, although “zero-shot* usually refers to solv-
ing tasks unseen in pretraining. We stress that the
pretraining set and the eval sets are still disjoint.

While the scores of MAGMA,,,,, already sur-
pass the VQA-finetuned variants reported in
Frozen, we find that we can further increase the
single-task performance on the training sets of each
benchmark described in §4.1 by finetuning on them.
After finetuning, MAGMA achieves competitive
scores across all benchmarks, setting a new state of
the art accuracy on OKVQA, as well as attaining
strong scores on the NoCaps benchmark — to our
knowledge, being surpassed only by SimVLM and
VinVL (Zhang et al., 2021), see Table 2.

We include several qualitative results, which
highlight strengths of the model we feel are not
sufficiently reflected by the evaluations in Table 1.
Notably, MAGMA appears to be less easily fooled
by the adversarial typographic attacks to which
CLIP is susceptible (Goh et al., 2021), see Figure
5. Additionally, MAGMA shows impressive OCR
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capabilities even without supervised finetuning, see
Figure 4, which warrants further quantitative evalu-
ation. Interestingly, if a word or phrase is truncated,
MAGMA can often impute the missing text. We
also include an example of a multi-step factored
cognition prompt (Mishra et al., 2021), see Fig-
ure 6, where a challenging task is broken down into
atomic steps. We suspect that task decomposition
may enable MAGMA to perform complex tasks
that it would otherwise be unable to solve.

5 Conclusion

We propose a simple framework for Multimodal
Augmentation of Generative Models through
Adapter-based Finetuning — demonstrating that it
is possible to transform multiple unimodal models
into a powerful multimodal VL model while keep-
ing the weights of the language component frozen.
Our model, MAGMA, trained using adapter lay-
ers and a simple next token prediction objective,
can perform competitively with state of the art VL
models on a wide range of benchmarks, excelling at
tasks requiring external knowledge and the recog-
nition of uncommon object classes.

We hope our results will act as a starting point
for further research into augmenting pretrained lan-
guage models with additional modalities.

6 Limitations

Although the performance of MAGMA is impres-
sive, we note some current limitations with the
model and autoregressive VL models in general.
Firstly, as we observed in the Image Captioning
tasks, LMs can be sensitive to input — performance
is heavily dependent on the prompt format.

Secondly, although the model can perform in-
context learning with multiple examples in its con-
text window, it struggles to reason over multiple
images, as it was only pretrained on single image-
caption pairs.

Finally, MAGMA shows similar capabilities to
large LMs like GPT3, about which there are ongo-
ing ethical concerns regarding their reproduction of
biases from the training data, as well as concerns
relating to how to effectively align their outputs to
human goals. As such, further research into the
reproduction of visual biases, and the guiding of
model outputs is needed.
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A Appendix: Training details

During pretraining for the ablations and all sub-
sequent models, we update the parameters 6 by
minimizing the loss (3) per mini-batch using the
Adam optimizer in combination with ZeRO (Ra-
jbhandari et al., 2019) to parallelize gradients and
optimizer states across devices. We train all models
with a batch size of 256, a dropout probability of
0.1, a weight decay of 0, and use learning rates
of 2 - 1079 for Vi and 8 - 10~ for (V/,{A;0}).
annealing both to 10% of their original value using
a cosine decay schedule throughout training. When
finetuning on downstream tasks (see Section 4.3)
we do early stopping based on validation loss, and
use the same hyperparameters as above, aside from
decreasing the learning rates for V£, (V, {4 })
to 1.5 - 1075, 7 - 10~* for generative tasks and
1.5-1076, 3. 10~* for SNLI-VE classification. We
build our model using the PyTorch framework with
Deepspeed for data-parallel training — training all
ablations on 32 A100 GPUs for around 1.25 days
each.
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