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Abstract

Procedural text is a widely used genre that
contains many steps of instructions of how
to cook a dish or how to conduct a chem-
ical experiment and analyzing the procedu-
ral text has become a popular task in the
NLP field. Since the procedural text can be
very long and contains many details, sum-
marizing the whole procedural text or giving
an overview for each complicated procedure
step can save time for readers and help the
reader to capture the core action in the pro-
cedure. In this paper, we propose the proce-
dural text summarization task with two sum-
marization granularity: step-view and global-
view, which summarizes each step in proce-
dural text separately or gives an overall sum-
mary for all steps respectively. To tackle this
task, we propose an Entity-State Graph-based
Summarizer (ESGS) which is based on state-
of-the-art entity state tracking methods and
constructs a heterogeneous graph to aggregate
contextual information for each procedure. In
order to help the summarization model focus
on the salient entity, we propose to use the
contextualized procedure graph representation
to predict the salient entity. Experiments con-
ducted on two datasets verify the effective-
ness of our proposed model, and the code and
datasets will be released on https://github.
com/gsh199449/procedural-summ.

1 Introduction

Procedural texts, e.g., scientific articles, instruction
books, or recipes, are widely spread and useful
in many real-world applications (Tang et al., 2020;
Gupta and Durrett, 2019a; Du et al., 2019b). In pro-
cedural text modeling field, many research works
focus on entity state tracking (Gupta and Durrett,
2019a,b; Dalvi et al., 2018; Swarup et al., 2020)
and reasoning (Tandon et al., 2018), and how to
summarize the procedural text has not been fully
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Wash the potatoes, peel off the
potatoes, and cut it into slices

Cut the chicken breast into small
pieces, add salt, pepper and soy

sauce, stir with potatoes, and
refrigerate for 2 hours

Take a piece of butter from the
refrigerator, put it in a baking tray

with chicken and potatoes, wrap it in
tin foil, and bake for 1 hours

Wash and slice potatoes

Marinate chicken with
potato slices 

 and refrigerate 2 hours

Bake marinated chicken
and potatoes

Cut the chicken and
potatoes and marinate
in the refrigerator for
two hours, then bake

for one hour

Summarize each
procedure (Step View)

Summarize all the
procedures 

(Global View)

Procedural Text

Figure 1: Example of procedural text summarization
with two sub-tasks for different granularity summary.

explored. Since the procedural text contains many
steps and the procedure is usually long, summariz-
ing the procedural text can save time for readers
when they want to quickly locate the useful step or
take an overview of the procedural text. In this pa-
per, we propose a new summarization task: Proce-
dural Text Summarization. Intuitively, there are two
sub-tasks (shown in Figure 1): (1) summarize each
procedure (Step-View); (2) summarize all the pro-
cedures into a comprehensive summary (Global-
View). The first one aims to summarize the main
action in a procedure by incorporating contextual
information from related procedures, and the sec-
ond one aims to capture the salient steps from all
procedures by leveraging the structure (a.k.a., rela-
tionship) of all procedures.

In each procedure, the main content is the de-
scription of actions, e.g., cut the whole potato into
slices, heat the iron at room temperature to 1500
degrees. And these actions usually cause the state
changes of the entity, e.g., from room tempera-
ture state change to 1500 degrees of the entity iron.
Thus, the core of the procedural text summarization
model is to capture the salient entity and describe
the trace of entity state changes. In order to gen-
erate a better summary for procedural text, there
are two challenges which should be tackled: (1)
the first challenge is modeling the relationship be-
tween procedures to explore entity states in past
and future and capture the comprehensive contex-
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tual information; and (2) the second is to identify
the salient entity for the procedure. However, the
plain text summarization methods (Zhang et al.,
2020b; Zhu et al., 2021) only incorporates specific
procedure text and cannot model the relationship
between contextual procedures. Many research
works (Du et al., 2019a; Tandon et al., 2018) on pro-
cedural text focus on extracting the state changes
of each entity involved in the process. Based on
these existing entity state change analysis meth-
ods, to capture the salient procedure and tackle the
procedural text summarization task, we propose to
employ the trace of entity state changes to explicitly
construct the relationship between procedures.

In this paper, we propose a procedural text sum-
marization framework named Entity-State Graph-
based Summarizer (ESGS) that constructs a het-
erogeneous graph with procedure nodes and entity
nodes. To construct the relationship between nodes,
we follow the existing procedural text state track-
ing method (Tandon et al., 2020) which is based
on GPT-2 (Radford et al., 2019). Then we propose
the entity state-aware message passing method on
the graph to understand the procedural text in a
comprehensive perspective. In order to identify
the salient entity, we propose an entity selection
module by using the graph representation of pro-
cedure. Finally, we employ a pre-trained language
model to incorporate the graph and salient entity
representation to generate the summary for proce-
dural text. To verify the effectiveness of ESGS, we
firstly conduct the experiment on the benchmark
dataset WikiHowproc, and we also propose a new
procedural text summarization dataset PsyStory
which summarizes the procedural text in global-
view. Extensive experiments on these two datasets
demonstrate that the ESGS brings substantial im-
provements over several strong baselines including
state-of-the-art summarization method.

To sum up, our contributions can be summarized
as follows:
•We propose a procedural text summarization

task that aims to generate two granularity of sum-
maries for each procedure and all procedural text.
•We propose to leverage the entity state track-

ing method to construct a heterogeneous graph,
and then generate a summary by incorporating the
salient entity and graph representation.
•We propose a new procedural text summariza-

tion dataset PsyStory.
• Experiments conducted on two datasets show

that our ESGS method outperforms all baselines, in-
cluding the state-of-the-art summarization model.

2 Related Work

2.1 State Tracking in Procedural Text
Procedural text is a domain of text involved with
understanding some kind of process, such as a phe-
nomenon arising in nature or a set of instructions to
perform a task. Entity tracking is the core of under-
standing the procedural text. The goal is to track
the sequence of state changes (e.g., creation and
movement) entities undergo over long sequences of
procedure steps. Dalvi et al. (2019) propose to use
the WikiHow data to train the state change tracking
model with limited states, which is an open-domain
procedural text dataset. Past work involves both
modeling entities across procedure steps (Das et al.,
2019; Tang et al., 2020; Kiddon et al., 2015; Gupta
and Durrett, 2019b). Tandon et al. (2020) firstly
propose a GPT-2 based entity state tracking method
which can be used to analyze the open-domain pro-
cedural text with unlimited state space.

2.2 Text Summarization
Abstractive summarization methods (Gehrmann
et al., 2018a; Jin and Wan, 2020; Maynez et al.,
2020; Liu and Liu, 2021) aims to generate a flu-
ent and condensed short text to cover the main
idea of the input document. Many researchers use
the sequence-to-sequence based framework to read
the document first and generate a summary by de-
coder (See et al., 2017; Lin et al., 2018; Celikyil-
maz et al., 2018). With the development of pre-
training techniques, the fluency of abstractive sum-
marization has been significantly improved (Lewis
et al., 2020; Zhang et al., 2020b) by using large-
scale plain text. However, most of the existing
summarization research works concentrate on sum-
marizing plain documents (Gao et al., 2020), and
the genre of procedural which is usually long and
contains many detailed facts has not been fully
explored in the summarization research field. Al-
though Koupaee and Wang (2018) propose to use
the WikiHow as the summarization dataset, the re-
search works on this dataset concatenate all the
steps in procedural text and treat it as the plain
document summarization task.

3 Problem Formulation

Given a procedural text P = {s1, · · · , sLp}
with Lp procedures and each procedure si =
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Figure 2: Overview of ESGS with four parts: (1) Procedural Graph Construction (refer to Figure 3 for more
details); (2) Procedural Graph Encoding; (3) Entity Selection Module; and (4) Summary Generation. And we use
the step-view summarization process for 2-nd procedure as an example.

{wi,1, · · · , wi,Ls} contains Ls words. In step-view
sub-task, our goal is to generate the summary for
each procedure Ŷ i = {ŷi1, · · · , ŷiLy

}, where Ŷ i is
for procedure si and it has Ly is the number of
words of the summary. And in the global-view,
we aim to generate a summary for all the proce-
dures in P . Finally, we use the difference between
generated summary and the ground truth as the
training objective. In the following sections, we
use the step-view as the example to illustrate our
method, and the model difference for global-view
is introduced in § 4.7.

4 ESGS Model

4.1 Overview

In this section, we introduce the Entity-State
Graph-based Summarizer (ESGS). Figure 2 shows
an overview of ESGS which has four main parts:
• Procedural Graph Construction uses the GPT-
2 based method to analyze the entity state changes
in the procedure and uses the trace of entity state
to construct the graph.
• Procedural Graph Encoding employs the state-
aware message passing method to model the con-
textual information for each procedure.
• Entity Selection Module uses the posterior in-
formation to predict salient entity in the procedure.
• Summary Generation employs the pre-trained
BART and uses a graph attention layer to incorpo-
rate the selected entity and the contextual informa-
tion of procedure in the summary generation.

Since there are two procedural text summariza-
tion sub-tasks: step-view and global-view sum-
marization. In the following sections, we use the
step-view procedural text summarization task as

the example to illustrate the details of the ESGS
model. Then the step-view ESGS model can be
easily adapt to the global-view summarization task
with only two small modifications, and we will
illustrate this variant model in § 4.7.

4.2 Preliminary

Heterogeneous Graph. In ESGS, we employ
a heterogeneous graph to model the relationship
between procedures and entities, which is an in-
formation network with two types of nodes and
edges (Sun and Han, 2013; Wang et al., 2019).
A heterogeneous graph, denoted as G = (V, E),
consists of a node set V and an edge set E , and
associates with a node type mapping function
φ : V → A and an edge type mapping function
ψ : E → R, where A and R denote the node and
edge types. In Figure 3, we construct a heteroge-
neous graph with two types of node: procedure and
entity, and three types of links.
Metapath (Sun et al., 2011). A metapath ρ is de-
fined as a path in the form of A1

R1−→ A2
R2−→

· · · Rl−1−→ Al, which describes a composite relation
between node type A1 and Al. Each metapath
may have multiple metapath instances. As shown
in Figure 2, two procedures can be connected
via two metapaths, e.g., “procedure-procedure”,
and “procedure-entity-procedure”, where metap-
ath “procedure-entity-procedure” has 3 metapath
instances which is shown using the yellow line.

4.3 Procedural Graph Construction

We first leverage an open-domain entity state track-
ing method ProcGPT (Tandon et al., 2020) to an-
alyze the procedural text, which is based on the
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Wash the
potatoes....

1

...., stir with
potatoes, .... 2

entity = potatoes

before state

after state

= Dirty

= Clean

Figure 3: Graph construction from procedural text.
Graph contains two types of nodes: sentence and en-
tity. The states of entity store in the edge.

pre-training language model GPT-2 (Radford et al.,
2019). Thus, we employ this method to extract the
entity and states from a procedure step text as a set
of tuples “(entity ei, before-state tib, after-state tia)”:

(ei, tib, t
i
a) = ProcGPT(si), (1)

where si is the i-th step procedure text. We finetune
the ProcGPT (Tandon et al., 2020) using the pro-
cedure text and entity tuple parallel training data
to generate the tuples for a procedure step text si.
Figure 3 shows an example of graph construction,
we first use the finetuned ProcGPT to extract entity-
states tuples. Then we use the procedure step text
and entity word as two types of graph node, and
build the edge between entity and its states with the
procedure step node. For brevity, we only use one
entity and state for a procedure step to illustrate the
model in following sections, and there can be more
than one entity for each step in the real datasets.

After obtaining the entity and the corresponding
state in each procedure, we employ these relation-
ships to build a graph for the procedural text. Intu-
itively, we have three types of edges in the graph:
(1) edge between two adjacent procedures; (2) edge
from procedure node to entity node; (3) edge from
entity node to procedure node. And we store the
“after state” on the (2) edge and store the “before
state” on the (3) edge.

4.4 Procedural Graph Encoding

First, we employ the pre-trained BART (Lewis
et al., 2020) encoder to transform the procedure
text into vector representations:

{hi,0,hi,1, · · · ,hi,Ls} =
Enc([CLS], wi,1, · · · , wi,Ls),

(2)

where Enc is the BART encoder which outputs the
vector representation hi,j of j-th input word wi,j

in i-th procedure. To obtain a vector representation
of each procedure, we extract the hidden state hi,0

of the special token [CLS] as the representation

si = hi,0 of i-th procedure. We use the P =
{s1, . . . , sLp} to denote the representations for all
procedures. Similarly, we use the same method to
encode the entity word and its states into vector
representations:

ei = Enc(ei), tijb = Enc(tijb ), t
ij
a = Enc(tija ).

(3)
where ei is an entity word in i-th procedure, and
tija , t

ij
b denote the “after state” and “before state”

between i-th and j-th procedure.
To capture the contextual information for a pro-

cedure step, inspired by the Heterogeneous graph
Attention Network (HAN) (Wang et al., 2019),
we propose an entity state-aware graph encoding
method that integrates the state into the message
passing between the nodes. Before conducting
message passing between nodes in the multi-layer
graph, we use the si, e

i, tijb, t
ij
a as the initial node

representation for procedure, entity and state, re-
spectively. Similar to the HAN, our method also
follows a hierarchical attention structure: from
node-level to semantic-level. Node-level atten-
tion assigns different weights for neighbor nodes
on metapath. We extract two homogeneous sub-
graphs G1 and G2 which are constructed from the
original heterogeneous graph G. G1 and G2 are
the sub-graphs in which procedure nodes are con-
nected by metapath “procedure-procedure” and
“procedure-entity-procedure”, respectively. Specifi-
cally, in original heterogeneous graph G, an edge

si
tija−→ eij

tijb−→ sj becomes a new edge si
tija ||tijb−→ sj

in G2 with attribute [tija ||tijb] where || denotes the
concatenate operation.

First, the node representation si is mapped to
a feature space by transformation matrix Ml, l =
{1, 2} for each sub-graph:

si
′l =Ml · si. (4)

Then the model learns the weight alij for each
neighbour node pair si and sj in sub-graph Gl. In
G1, the procedure nodes are connected sequentially,
the weight is calculated by the node representations:

a1ij = Attn(si′l, sj′l), (5)

where Attn denotes the multi-head (Vaswani et al.,
2017) node-level attention operation. In G2, since
the procedure nodes are connected by the shared
entity and the state trace of entity is stored on the
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edge, we incorporate the edge attributes informa-
tion to calculate the weights between nodes:

a2ij = MLP([tija ||tijb]), (6)

where MLP is a fully connected layer with activa-
tion function.

After obtaining alij between procedure i and j,
we normalize them to get attention weight αl

ij :

αl
ij = softmax(alij). (7)

Then the updated representation zi
l of node si is

aggregated by the weighted sum of all neighbour
nodes in sub-graph Gl:

zi
l = σ(

∑
j∈N l

i
αl
ij · sj′l), (8)

where σ is an activation function, N l
i represents

neighbour nodes of i in sub-graph Gl. Next,
we combine the procedure node representations
{zi1, zi2} for different metapaths into an overall
representation zi by using semantic-level atten-
tion. We use the same semantic-level attention
as the original HAN, and we refer readers to the
HAN (Wang et al., 2019) for more details.

4.5 Entity Selection Module
To generate a concise summary for the procedure
which captures the main actions, we should select
the salient entity from the procedure text. When the
model focuses on different entities, a different sum-
mary can be generated. In this paper, we propose
to use a entity selection module to predict salient
entity to help the summarization model focus on
main procedure actions.

When training the summarization model, if we
predict the entity selection only based on the pro-
cedure (a.k.a., prior information) without knowing
the ground truth summary (a.k.a., posterior infor-
mation), it is difficult to generate a better summary
since a salient entity might not be selected accu-
rately. It will be sub-optimal to train the summa-
rization model by selecting trivial entities since it
cannot provide any helpful training signals (Lian
et al., 2019). In contrast, if we use procedure text
and the ground truth summary to predict the pos-
terior distribution over entities, it can provide an
effective training signal since the ground truth sum-
mary contains the salient entities.

In this paper, we propose to select the salient
entity by using both prior and posterior informa-
tion. We first encode all the entities into vectors

e = {e1, . . . , eLe} using Equation 2, where e is
the entity set for i-th procedure with Le entities,
and we omit the subscript i for brevity. In the prior
entity distribution, we define a conditional proba-
bility distribution over all the entities e using the
procedure text si, denoted by p(e|si). Specifically,
we incorporate two types of information to model
the prior entity distribution p(e|si): (1) the graph
representation zi for procedure si with the contex-
tual information of the related procedures; (2) the
vector representation si which is encoded by the
pre-trained language model.

p(e|si) = MHAttn({e1, . . . , eLe}, [si ⊕ zi]), (9)

where ⊕ denotes the vector concatenation, and
MHAttn denotes the multi-head attention mecha-
nism (Vaswani et al., 2017) to measure the relation-
ship between each entity and the procedure si Then,
we use the prior entity distribution to weighted sum
the entity representations as selected entity repre-
sentation Eprior:

Eprior =
∑Le

j=1 ejp(ej |si). (10)

In the posterior entity distribution, we calculate
it by adding the ground truth summary Y i, denoted
by p(e|si, Y i). We use the same BART encoder
(Equation 2) to obtain the representation Yi of the
ground truth summary Y i.

p(e|si, Y i) =

MHAttn({e1, . . . , eLe}, [si ⊕ zi ⊕Yi]).
(11)

Similarly, we also obtain the selected entity repre-
sentation Epost

i by posterior distribution using the
same method as Equation 10. Different from the
prior information, the posterior information con-
tains more accurate entity selection information
which is predicted by the ground truth summary.

In the training phase, we employ the selected
entity representation by the posterior distribution
in the summary generation, and in the testing, we
use the selected entity representation by the prior
distribution since the ground truth summary is not
available. Intuitively, there is a discrepancy be-
tween prior and posterior that will lead to the mis-
match between the training and testing. Thus, we
employ the KL divergence as the training objective
to minimize the distance between between the prior
and posterior distribution:

LiKL =

Le∑

j=1

p
(
ej |si, Y i

)
log

p
(
ej |si, Y i

)

p (ej |si)
. (12)
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Inspired by Zhao et al. (2017), to ensure the accu-
racy of the selected entity, we enforce the relevance
between the selected entity and the ground truth
summary. Specifically, we apply a fully connected
layer which uses the selected entity representation
by posterior distribution as input and predicts the
the bag-of-word (BOW) of the ground truth sum-
mary Y i:

p(Y i|Epost
i ) = softmax(WEpost

i + b), (13)

Libow =
∏Ly

j=1 p(Y
i|Epost

i ), (14)

where W, b are the trainable parameters.

4.6 Summary Generation
We employ the pre-trained language model
BART (Lewis et al., 2020) as the decoder to gen-
erate the summary. In order to incorporate the
selected salient entity and the contextualized pro-
cedure representation from the graph model, we
propose to insert an additional attention layer in
the BART. We first apply the self-attention on the
masked output summary embeddings and result in
the self-attention output as. This process is the
same as the original Transformer (Vaswani et al.,
2017) and we omit it due to the limited space. In
the original BART, we should use the output as

to cross-attend to the word-level procedure hidden
states {hi,1, · · · ,hi,Ls} produced by the BART-
based procedure encoder (Equation 2). To aggre-
gate salient information from both of the updated
graph node zi and selected entity representations
Epost
i or Eprior

i , we concatenate these vector repre-
sentations with the word-level procedure hidden
states in the cross-attention layer:

aq = MHAttn(as, {hi,1, · · · ,hi,Ls , E*
i , zi}),

(15)

where E*
i denotes the selected salient entity by prior

or posterior distribution in testing or training phase
respectively. Finally, we apply a fully connected
feed-forward network on ag to predict the distribu-
tion over the vocabulary of the generated summary.
We use the cross-entropy loss Lice between gener-
ated summary Ŷ i and ground truth summary Y i to
optimize all the parameters of ESGS, and the final
loss function Li for i-th procedure is defined as:

Li = Libow + LiKL + Lice. (16)

4.7 Model Variant for Global-View Setting
In the global-view procedural text summarization,
we should summarize all the procedures instead of

WikiHowproc PsyStory

Task Type Step-View Global-View
# of training samples 13612 4200
# of test samples 2917 900
# of validation samples 2917 900
Avg. steps 6.67 5.00
Avg. words of procedure 40.81 8.74
Avg. words of summary 9.42 14.57
Avg. entities per step 2.03 0.87
Avg. states per step 2.37 1.66

Table 1: Dataset Statistics.

summarizing each procedure separately. There are
two small differences in the model for global-view
procedural text summarization. First, in the en-
tity selection module, instead of selecting a salient
entity for each procedure, we use all the proce-
dure graph nodes to predict the salient entity for
the whole procedural text. Second, we modify
the cross attention in decoder (Equation 15) that
concatenates all the procedures graph nodes rep-
resentation {z0, . . . , zLp} instead of only use one
procedure graph node.

5 Experimental Setup

5.1 Dataset
To validate the effectiveness of the procedural text
summarization methods, we propose two datasets:
WikiHowproc and PsyStory. Detail statistics are
shown in Table 1. We show the performance of
some summarization baselines on these datasets in
Table 2.

WikiHowproc is a modified version based on
WikiHow dataset (Koupaee and Wang, 2018) which
contains articles describing procedural tasks about
various topics (from arts and entertainment to
computers and electronics) with multiple steps.
Many existing procedural text state analysis meth-
ods (Tandon et al., 2020; Zhang et al., 2020c,a;
Dalvi et al., 2019; Goyal et al., 2021) have con-
ducted experiments on the WikiHow dataset, and
this is the benchmark dataset on procedural text
modeling. Each article consists of multiple para-
graphs and each paragraph starts with a sentence
summarizing it. As illustrated in previous sec-
tions, we use the ProcGPT (Tandon et al., 2020)
to annotate entity and state changes of WikiHow
dataset, and then remove the low-quality data sam-
ples which do not have any entity or only a few
entities.

Rashkin et al. (2018) propose a story dataset with
the explanation of characters’ naive psychology as
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fully-specified chains of mental states for motiva-
tions and emotional reactions. This annotation is
in sentence-level, and we can see the character as
an entity and mental state as the entity state. We
use an outsourcing human annotation service (we
paid $1 for each data sample) with the independent
annotation quality control to write the summary
for procedural text. Since the service vendor have
independent quality control, we deem the summary
as a high-quality ground-truth summary.

5.2 Evaluation Metrics
We adopt ROUGE score (Lin, 2004) and BLEU (Pa-
pineni et al., 2002) which are widely applied for
summarization and text generation evaluation (Gao
et al., 2019; Chen et al., 2018). The ROUGE met-
rics compare generated summary with the reference
summary by computing overlapping lexical units,
including ROUGE-1/2 (n-gram), and ROUGE-L
(longest common subsequence).

5.3 Comparison Methods
To prove the effectiveness of each module, we con-
duct ablation studies that remove each key mod-
ule in ESGS, and then form 3 baseline methods:
(1) ESGS-MsgPass uses the original Heterogeneous
Graph Attention Network (HAN) as the graph en-
coder which removes the entity state-aware mes-
sage passing module in ESGS. (2) ESGS-KLLoss
removes the KL-divergence loss from the training
objective and only uses the prior information in
training and testing. (3) ESGS-BOWLoss removes
the bag-of-word loss from the training objective.

Apart from the ablation study, we also compare
with the following baselines: (1) TextRank (Mi-
halcea and Tarau, 2004) is a graph-based rank-
ing model for extractive document summariza-
tion. (2) S2SA is the Sequence-to-Sequence frame-
work (Sutskever et al., 2014) which is equipped
with the attention mechanism (Bahdanau et al.,
2015) as a baseline method. (3) PGNet (See
et al., 2017) propose the copy mechanism to di-
rectly copy out-of-vocabulary words from input
document to summary. (4) BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) are large-scale
pre-trained language models, and we fine-tune
these models on our procedural text summarization
task. (5) PEGASUS (Zhang et al., 2020b) is a large-
scale pre-trained Transformer model with a new
self-supervised summarization objective, and this
method achieves the state-of-the-art performance
on many summarization benchmark datasets. (6)

Method R1 R2 RL BLEU

W
ik

iH
ow

pr
oc

TextRank 1.10 0.25 1.04 0.03
S2SA 7.81 0.43 7.64 0.18
PGNet 9.47 1.08 9.06 0.32

PEGASUS 17.08 4.71 15.98 2.71
T5 19.92 5.61 18.98 1.28

BottomUp 22.69 3.37 16.09 1.03
BART 21.94 6.70 20.47 2.37

BART+CTX 22.37 6.95 20.85 2.34
ESGS 23.90 7.56 22.17 2.73

Ps
yS

to
ry

TextRank 24.28 7.00 22.35 3.34
S2SA 11.46 0.48 9.99 0.20
PGNet 23.29 3.68 19.83 1.68

BottomUp 24.51 4.21 19.22 0.97
PEGASUS 28.27 8.74 25.38 4.63

T5 42.51 16.18 35.46 8.72
BART 42.60 16.59 35.39 8.62
ESGS 44.28 18.31 36.90 9.95

Table 2: Automatic metrics comparison between base-
lines on two datasets.

BottomUp (Gehrmann et al., 2018b) is an entity-
driven summarization method. (7) BART+CTX is
based on BART and concatenates the surrounding
two procedures with the original input procedure
as contextual information.

5.4 Implementation Details

The batch size is 16 with gradient accumulation
to simulate a large batch size. We pad or cut the
procedure to contain 200 words, and the maximum
decoding length is 200. We initialize BART with
BARTbase

1 with 16 attention heads, 768 hidden
size and 6 Transformer layers.

6 Experimental Result

6.1 Overall Performance

In Table 2, we examine the performance of our
model and baseline methods on two datasets in
terms of ROUGE score. We can see that ESGS
achieves a 39.93%, 60.51%, and 38.74% increment
over the state-of-the-art summarization method
PEGASUS in terms of ROUGE-1, ROUGE-2, and
ROUGE-L on the benchmark dataset WikiHowproc.
On the global-view procedural text summarization
task, we can find that ESGS also outperforms other
baseline methods in terms of three metrics. It is
worth noticing that the baseline model BART+CTX
which also incorporates the contextual information
of a procedure outperforms other baselines, which
demonstrates the effectiveness of using the con-
textual information. However, the performance

1https://huggingface.co/facebook/bart-base
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Method R1 R2 RL BLEU

W
ik

iH
ow

pr
oc ESGS-MsgPass 20.81 6.23 19.93 0.9

ESGS-KLLoss 21.34 6.61 20.18 1.72
ESGS-BOWLoss 21.52 6.24 19.99 2.25

ESGS 23.9 7.56 22.17 2.66

Ps
yS

to
ry

ESGS-MsgPass 42.55 17.11 35.71 9.61
ESGS-KLLoss 43.22 17.84 36.28 9.50

ESGS-BOWLoss 43.34 17.69 36.28 9.32
ESGS 44.28 18.31 36.90 9.95

Table 3: Comparison between ablation models.

Method R1 R2 RL BLEU

W
ik

iH
ow

pr
oc ESGS-Entity 21.18 6.26 19.65 2.24

ESGS-Proc 21.53 6.37 20.09 1.92
ESGS 23.90 7.56 22.17 2.66

Ps
yS

to
ry ESGS-Entity 42.83 17.11 36.43 9.30

ESGS-Proc 43.39 18.30 36.86 9.50
ESGS 44.28 18.31 36.90 9.95

Table 4: Comparison between different metapaths.

of BART+CTX is still 3.33% worse than ESGS in
terms of ROUGE-1 score, which indicates that the
change of entity state is important for summarizing
the procedural text and such a simple concatena-
tion method cannot fully explore the relationship
between procedures. And the observation that the
ESGS outperforms the BART on PsyStory also ver-
ifies this assumption, since BART also uses all the
procedures in summarization.

6.2 Ablation Study
To verify the effectiveness of each module in ESGS,
we conduct several ablation models (shown in
§ 5.3) on both datasets, and the result is shown
in Table 3. All ablation models perform worse
than ESGS in terms of all metrics on both datasets,
which demonstrates the preeminence of ESGS. We
can find that the ESGS-MsgPass performs worse
among all the ablation models, and it confirms that
the entity state information can help the model to
identify whether the message is salient for passing
among procedure nodes.

6.3 Effectiveness of Different Metapath
In our ESGS model, we employ a metapath-based
heterogeneous graph that passes messages among
nodes along two metapaths. In this section, we
conduct experiments of removing each metapath
from the model to prove the effectiveness metap-
aths. Table 4 shows the ROUGE scores for each
ablation model. We can find that the metapath
“sentence-entity-sentence” contributes most to the

Pr
oc

ed
ur

es

#1. Use a soft cloth and only dampen it rather
than soak it, so that the carpet or rug is not made
wet, only moistened. (cloth, dry, wet)
#2. Keep to the pile of the carpet and wipe in
this direction at all times. (carpet, dirty, clean),
(cloth, wet, hold), (hand, empty, holding cloth)
#3. Rub warm breadcrumbs through the surface
of carpet. This will bring out the colour again.

Ref.
Wipe across the carpet or rug using even, long
strokes

B.+C. Wipe the carpet

ESGS
Wipe down the surface of the carpet with a damp
cloth

Table 5: Examples of the generated summary by ESGS
and BART+CTX for procedure #2. Text in blue denotes
the contextual information from other procedures.

summarization performance since it connects dis-
adjunct procedures using the common entity and
models the transition trace of the entity state which
is important for summarizing the salient entity and
its state changes.

6.4 Case Study

Table 5 shows a procedural text from WikiHowproc
dataset and its corresponding summaries generated
by different methods in the step-view task. Due to
the limited space, we show an example with short
procedures. We can observe that BART based base-
lines generate a fluent summary with incomplete
facts. On the contrary, ESGS produces a fluent
summary that is consistent with the main step of
the procedural, since the relationship between step
#1 and #2 is captured by the “procedure-entity-
procedure” metapath.

7 Conclusion

In this paper, we propose the procedural text sum-
marization task which aims to generate two granu-
larity summaries (step-view and global-view). We
propose to use the heterogeneous graph model
Entity-State Graph-based Summarizer (ESGS) to
construct the relationship between procedures us-
ing the trace of entity state changes. To focus on
the salient entities, we also propose an entity selec-
tion module that is trained by using posterior infor-
mation to provide effective guidance. Finally, we
generate the summary by incorporating the updated
graph and selected salient entities. And we conduct
experiments on a modified version of benchmark
dataset WikiHowproc, and we also construct a new
procedural text summarization dataset PsyStory
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with global-view summary. ESGS achieves the
state-of-the-art performance on both datasets.

8 Limitations

Since we use a large pretrain language model as
the backbone of our proposed medthod, it is hard
to deploy on the edge devices or mobile phones.
We can employ the model compression method to
accelerate the inference speed on the server and
provide services to the user through internet.
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