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Abstract

Taking into account background knowledge as
the context has always been an important part
of solving tasks that involve natural language.
One representative example of such tasks is
text-based games, where players need to make
decisions based on both description text previ-
ously shown in the game, and their own back-
ground knowledge about the language and com-
mon sense. In this work, we investigate not
simply giving common sense, as can be seen
in prior research, but also its effective usage.
We assume that a part of the environment states
different from common sense should constitute
one of the grounds for action selection. We pro-
pose a novel agent, DiffG-RL, which constructs
a Difference Graph that organizes the environ-
ment states and common sense by means of
interactive objects with a dedicated graph en-
coder. DiffG-RL also contains a framework for
extracting the appropriate amount and repre-
sentation of common sense from the source to
support the construction of the graph. We vali-
date DiffG-RL in experiments with text-based
games that require common sense and show
that it outperforms baselines by 17% of scores.
We will make our code publicly available.

1 Introduction

Taking into account background knowledge as the
context has always been an important yet challeng-
ing part of solving tasks that involve natural lan-
guage. One illustrative example of such challenges
is text-based games. Text-based games are com-
puter games where game states and action spaces
are represented in pure texts. To play them, players
have to not only understand in-game texts correctly
but also make appropriate action decisions from
given options according to the context. Computa-
tional agents required to solve such games naturally
arise in the form of natural language processing
(NLP) systems trained with reinforcement learning
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Observation Common Sense

You’ve entered a kitchen. Here’s

a dishwasher and a fridge.You

see a dirty fork on the floor.
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DiffG-RL
dirty fork

floor dishwasher

Action Plans
1. take dirty fork from floor
2. insert dirty fork into dishwasher

Figure 1: An example of text-based games. Our pro-
posed DiffG-RL summarizes the difference between the
environment states and common sense in a graph and
uses it as a basis for predicting a plan of action.

(RL) algorithms. However, the intrinsic properties
of text-based games such as partial observability,
long-term dependencies, sparse reward signals, and
large action spaces make it extremely challenging
for RL agents to learn. Specifically, the chance of
agents discovering optimal actions from the vast
combinatorial action spaces is astronomically low.

Previous approaches (Ammanabrolu and Riedl,
2019b; Murugesan et al., 2021b; Sahith et al., 2020;
Murugesan et al., 2021a; Kimura et al., 2020;
Tanaka et al., 2022) have used external knowl-
edge to constraint agents’ action outputs in order to
shrink the size of search space. Recently, Muruge-
san et al. (2021a) and Tanaka et al. (2022) utilized
human common sense which improved sample effi-
ciency and enabled agents to perform look-ahead
planning. However, these approaches have not
yet clarified how common sense should actually
be used. Specifically, a huge amount of common
sense is given at once, regardless of the environ-
ment states, and the correspondence between the
states and common sense is unclear. This prevents
agents from learning which common sense to use
in which state, and the agents remember only the
results after using common sense.
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In this paper, as usage of common sense, we as-
sume that differences between environment states
and common sense can provide a basis for action se-
lection and further improve sample efficiency. For
example, consider the environment state of “dirty
fork on the floor” and the common sense of “dirty
fork should be in the dishwasher”. The difference
between floor and dishwasher in the location of the
dirty fork helps agents plan their actions to pick it
up from the floor and put it in the dishwasher. We
construct a difference graph that maps environment
states to common sense and explicitly represents
their differences. Further, we develop an encoder
dedicated to this graph and propose an agent that
can effectively concentrate on learning which com-
mon sense to use in which state. An example is
shown in Fig. 1.

Inevitable problems in constructing the differ-
ence graph are extracting the right amount and
unifying the representation. For the first prob-
lem, large amounts of common sense cannot be
encoded, and small amounts are insufficient for
learning. In prior work, the amount of common
sense is reduced by extracting only common sense
that contains representations that exactly match the
objects that appear in the environment, but in some
tasks, there may be no common sense available due
to mismatches of representations. In contrast, we
extract the appropriate amounts of common sense
based on semantics and the circumstances, indepen-
dent of linguistic representations. For the second
problem, to help agents recognize the difference
between common sense and environmental states,
their representations should be aligned. Therefore,
we propose an extraction framework for common
sense that includes an acquisition of appropriate
amounts based on meanings and circumstances and
a representation transformation that facilitates the
mapping to environment states.

Our contributions in this work are as follows.
(1) We introduce a difference graph with an ex-
plicit representation of the difference between the
environment states and common sense and a novel
agent with a dedicated graph encoder. (2) We de-
velop a framework for extracting common sense
from sources to facilitate comparing the environ-
ment states with common sense. (3) We perform
experiments with text-based games that require
common sense and demonstrate that our approach
outperforms baselines, and evaluate the effect of
each component in our approach through ablation

studies.

2 Background

Text-based Games: Text-based games can be for-
mally framed as partially observable Markov de-
cision processes (POMDPs), represented as a 7-
tuple of (S, T, A,Q,O, R,~) denoting the set of
environment states, conditional transition probabil-
ities, actions, observations, conditional observation
probabilities, reward function, and discount factor.
We target choice-based games, where the player
receives a textual observation o; € €2 and sends
a short textual phrase from action choices A to
the environment as an action a;. Most text-based
games contain entities (e, es, ...,epsr € Fy) such
as items and location, and players often take ac-
tions on themselves (“go east”) or on items (“take
dirty fork™).

Common Sense and Text-based Games: Given
common sense, an agent receives an observation o,
to determine the next action by comparing it with
the common sense. Common sense is represented
by an external knowledge graph stored as triplets
of (subject, relationship, object), which is called a
common sense graph. While the recently proposed
TWC agent (Murugesan et al., 2021a) uses multi-
ple graphs obtained from ConceptNet (Speer et al.,
2017) and combines them, (Tanaka et al., 2022)
showed that just a single graph can suffice if Visual
Genome (VG) (Krishna et al., 2017) is used, as it
contains more grounded graphs. We therefore use
VG as a common sense source. There are two chal-
lenges when it comes to using VG with common
sense: first, how to extract common sense from the
source, and second, how agents use the common
sense. In this work, we propose two methods to
individually address these challenges.
Environment States Extractor: In this study, the
current states of the environment are extracted from
the observation o;. Since states in text-based games
have a graph-like structure, prior works (Am-
manabrolu and Riedl, 2019a; Ammanabrolu and
Hausknecht, 2020; Murugesan et al., 2021b; Ad-
hikari et al., 2020) have represented environment
states as a dynamic knowledge graph. KG-A2C in-
troduced interactive objects (01, 102, ..., 10p € I),
which are items that allow agents to interact directly
with the surrounding environment. We connect
these interactive objects to their state nodes (e.g.,
the locations they are in) in the knowledge graph
and then separate them from the entities (Iy C Ey).
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tween vectors obtained by word embedding instead
of spell matching. The similarity sim is repre-
sented as
sim(si, ej) = 56 , (D
|sille;]
where s; is a subject in a triple of common sense
graph c;, and e; represents an entity in text-based
games. The bolded terms also represent vectors
obtained by word embedding. If the similarity is
greater than a preset threshold, it is considered to
have a similar meaning. We calculate this for all
combinations and then replace s; with an object
in the triple of common sense graph and calculate
them again. If both s; and o; are similar to one of
E, its triple of common sense graph c¢; is extracted.
Note that because this component relaxes the
constraints on common sense much more than with
exact matching, the number of extracted triples of
common sense graphs will be enormous. ' In most
cases, it is necessary to use it in combination with
the twc components introduced in 3.2.2 and 3.2.3.

3.2.2 Narrowing by Circumstances

We leave only triples of graphs that are in line
with the circumstances of games, i.e. “interactive
object — object’s state”. In many text-based games,
“interactive object — location” (e.g., dirty fork —
dishwasher) remains, while “location — location’
(agents do not move the dishwasher into the fridge)
etc. is removed.

’

3.2.3 Transforming into Grounded
Representation

We transform the subject and object in the extracted
triple of common sense graph into the entities to
which they correspond in the first component, the
EbM (Section 3.2.1). In the case of Eq. 1, s; is
transformed into e;. This eliminates the influence
of differences between the extracted common sense
and games’ representations and clarifies the cor-
respondence between the environment states and
common sense.

3.3 Difference Encoder

3.3.1 Difference Graph

We introduce the difference graph to represent the
difference between the environment states and com-
mon sense to select common sense according to

'We tried doing the extraction with an NVIDIA TITAN X
(Pascal) with 12 GB of memory, but the triples extracted from
VG overwhelmed the available memory.

VO .
\~
o Y oo R,

Figure 3: Concept of the difference graph. Pink nodes,
green nodes, and blue nodes represent interactive ob-
jects, environment states, and common sense, respec-
tive.

the states and to obtain the basis for the next ac-
tion plan, as shown in Fig. 3. We define the dif-
ference graph as a representation of the situation
where “an interactive object should be placed at
A based on common sense, but is now placed
at B” (a dirty fork should be placed at the dish-
washer but is currently on the floor). The out-
puts of the current state extractor and the common
sense extractor are organized by interactive objects
(i01,109, ...,70p € I;). The difference graph con-
tains three types of nodes, with multiple current
state nodes (st1, sto, ..., sty € U(p)) and common
sense nodes (co1, o2, ..., coy € V(p)) correspond-
ing to one interactive object node (i0,,). For edges,
there are two types: interactive object-current state
and interactive object-common sense. After the
TGR (Section 3.2.3), the common sense node has
the same representation as the entities in games.
The difference graph is updated in accordance with
the observation texts at each time step.

3.3.2 Node Encoder

We convert the words in a node of the difference
graph into a series of vectors by word embedding
and obtain a fixed-length vector using the node
encoder. We use the fixed-length vector as the
initial feature of each node in the difference graph
encoder. We use bidirectional GRU (Cho et al.,
2014) for the node encoder.

3.3.3 Difference Graph Encoder

We develop a graph encoder to encode the differ-
ence graph. Similar to recent graph neural net-
works, we update the features of a node by aggre-
gating the features of its neighbors. The aggregate
of our encoder is based on the Graph Isomorphism
Network (GIN) (Keyulu et al., 2019) and is calcu-
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lated as

hiy) = MLP{¢(1 + Wp)h{, "

10p
+ ¢(Werh®—D)

+é(Weohs, )} @)
where hglg) represents the feature of X node with
k iterations of the aggregation, ¢ represents an ac-
tivation function, and MLP represents multi-layer
perceptrons.

To distinguish between the three types of node
and represent the difference between the current
state and common sense, different learnable param-
eters are provided for each type: W;, Wgsr, and
Weo. Since the actions are based on the interactive
objects, the encoder only aggregates for the inter-
active object 70,. In GIN, one MLP is used after
the product with the learnable parameter because
MLPs can represent a composition of functions,
but we add an activation function ¢ for output sim-
plification and training stability.

The aggregation can be repeated to reflect the
features of distant nodes. As a results, the differ-
ence graph encoder can handle the environment
states and common sense even if they become sub-
graphs consisting of multiple nodes. Note that we
assume the maximum distance of 1 from the inter-
active object in the following experiments.

3.4 Action Selector

The action selector calculates the probability of
each action from the concatenation of the vec-
tor representation a? of the admissible command
at € A; and the output dy of the difference graph
encoder. a% is obtained by word embedding and
the command encoder, similar to the node encoder
in the difference graph encoder. We use the bidi-
rectional GRU for the command encoder and share
weight with the node encoder. The scorer con-
sists of two MLP layers, a dropout layer, and
an activation layer and calculates the probability
Pai = Scorer(at, dy).

4 Experiments

4.1 Environment

We conduct experiments with the TWC game (Mu-
rugesan et al., 2021a) to verify the difference be-
tween common sense and the environment states.
The goal of the TWC game is to tidy up a house
by putting items where they should be and requires

Table 1: Specifications of TWC game that we use.

Level Interactive objects Rooms

Easy 1 1
Medium 3 1

Hard 7 2

common sense about the relationships between
objects and their locations. We generate a new
game set using the scripts from the original TWC
study (Murugesan et al., 2021a). There are three
difficulty levels depending on the number of rooms
and the number of interactive objects, as shown
in Tab. 1. Because the agent performance is af-
fected by the number of objects/rooms, we unify
the different numbers of these included in the same
difficulty level in the original dataset.

To test the generalization performance, we in-
troduce a supervised learning paradigm and split
the dataset into three subsets: train, test, and valid.
The original dataset (Murugesan et al., 2021a) con-
tains only five games each in the train and test sets,
but we generate 100 games and split them into
train : test : valid = 50 : 40 : 10.

The TWC game contains two test sets: an IN set
with the same entities as the train set and an OUT
set consisting of entities that do not appear in the
train set. The OUT set cannot be solved simply
by memorizing the results (i.e., pairs of interactive
objects and locations) after using common sense.
Depending on the situation, such as the type of
room the agents are in now, the same thing may
be placed in different places between the train set
and the OUT set. Therefore, the OUT set is used
for the validation and ablation study because it is
suitable for evaluating the ability to use common
sense in a given situation.

4.2 Methods and Metrics

We use four baselines.

* KG-A2C (Ammanabrolu and Hausknecht,
2020) is a method with our implementa-
tion that organizes the environment states ob-
tained from observation texts into a knowl-
edge graph.

* TWC agent-CN (Murugesan et al., 2021a) is
a method that uses common sense obtained
from ConceptNet.

* TWC agent-VG (Tanaka et al., 2022) is
a method that utilizes the same model as
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Table 2: General results for two test games: IN within the training distribution of entities and OUT outside
the distribution. All experiments were performed with five random seeds. Each value is a pair (average) +

(standard deviation). We highlight the best model in bold.

Method Easy Medium Hard
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.89£0.02 0.76 £0.02 0.33 £ 0.01
TWC agent-CN (Murugesan et al., 2021a) 091£0.02 0.75+£0.02 0.31+£0.01
Z TWC agent-VG (Tanaka et al., 2022) 0.92£+£0.01 0.69+0.03 0.32+0.02
TWC agent-VG+KG-A2C 0.95+0.01 0.82+0.02 0.26+0.01
DiffG-RL 0.95+0.00 0.82+0.02 0.38 + 0.02
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.78+£0.03 0.724+0.02 0.33 £0.01
~ TWC agent-CN (Murugesan et al., 2021a) 0.77+0.03  0.69+0.02 0.29 +0.02
% TWC agent-VG (Tanaka et al., 2022) 0.78+£0.03 0.674+0.02 0.25+£0.02
TWC agent-VG+KG-A2C 0.824+0.03 0.724+0.02 0.25+0.01
DiffG-RL 091 +0.04 0.76 = 0.02  0.35 + 0.02

TWC agent-CN but with VG as the common
sense source.

* TWC agent-VG+KG-A2C is a method that
naively combines the TWC agent-VG and KG-
A2C without our proposed difference encoder
and common sense extractor.

We evaluate performance on the normalized
score computed by dividing the actual score by
the maximum possible score. The scores range
from O to 1, and higher is better.

4.3 Implementation and Training Details

In all methods, we use GloVe (Pennington et al.,
2014) provided by GENSIM 2 for word embed-
ding. The hidden size is set to 512 for DiffG-
RL and to 300 for the baselines. The activation
function is ELU (Clevert et al., 2016) for DiffG-
RL and ReLLU (Nair and Hinton, 2010) for the base-
lines. The threshold of similarity for the EbM (Sec-
tion 3.2.1) is set to 0.3.

For training, we optimize all models for 100
epochs with Adam (Kingma and Ba, 2015) opti-
mizer using a learning rate of 3.0 x 10~ and the
default hyperparameters in PyTorch (Paszke et al.,
2017). For tests, the model with the largest normal-
ized score and the smallest number of steps in the
validation is used. DiffG-RL can train 100 epochs
in two and a half days using a single NVIDIA TI-
TAN X (Pascal) GPU.

4.4 General Results

Similarity Threshold: Table 2 lists the results
of the IN and OUT test sets achieved by the base-
lines and the proposed approach (DiffG-RL) trained

“https://radimrehurek.com/gensim/
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Figure 4: Performance evaluation for the medium level
in the training. (Smoothing is performed to clarify the
differences in the results of a single run.)

for each difficulty level. DiffG-RL using the dif-
ference graph outperforms the baselines in all re-
sults. Specifically, DiffG-RL improves 40% in the
hard level using the OUT set from TWC agent-VG,
which uses only common sense, and 17% in the
easy level using the OUT set from KG-A2C (pre-
vious SOTA), which uses only a knowledge graph.
We can observe high performances on OUT, which
cannot be solved by simply memorizing the results
after using common sense in the training. This
suggests that the representation of the difference
between the environment states and common sense
in the proposed approach contributes to learning
how to use common sense.

Table 2 also shows that TWC agent-VG+KG-
A2C struggles on the hard difficulty level and is
less than or equal to KG-A2C and TWC agent-VG,
which use only a knowledge graph of the envi-
ronment states or common sense (not both). We
believe this approach is vulnerable to an increase
in the environment states and common sense as
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Table 3: Comparison of performance to evaluate the components, EbM, NbC, TGR (Section 3.2), and DE (Sec-

tion 3.3) in DiffG-RL. We use hard level games in OUT.

No. EbM NbC TGR DE Precision Recall Scores
1 23 /896 (2.6%) 23 /257 (6.4%) 0.25 £ 0.02
2 v 2.80M / 11.00M (25.6%) 343 /357 (96.1%) N/A
3 v v 2.80M / 6.05M (37.1%) 343 /357 (100%) N/A
4 v v v 343 /5414 (6.3%) 343 /357 (96.1%)  0.26 + 0.01
5 v v v v 343 /5414 (6.3%) 343 /357 (96.1%)  0.35 + 0.02

Table 4: Ablation results for the relationship between
the similarity threshold (TH) in EbM and the extracted
common sense graphs. CE denotes the common sense
extractor (Section 3.2). We use goal graphs of hard level
games in the OUT set.

No. CE TH Precision Recall

1 - 23 /896 (2.6%) 23 /357 (6.4%)
2 v 0.6 268/3707(72%) 268/357 (75.1%)
3 v 0.5 321/2984 (10.8%) 321/357 (89.9%)
4 v 04 341/5151(6.6%) 341/357 (95.5%)
5 v 0.3 343/5414 (6.3%) 343 /357 (96.1%)

the number of interactive object increases. In con-
trast, DiffG-RL shows a solid improvement over
KG-A2C and TWC agent-VG, indicating that it
is able to effectively utilize a combination of the
environment states and common sense to deal with
increased interactive objects.

Figure 4 shows the training curves at the medium
level for the baselines and DiffG-RL, where it is
clear that DiffG-RL performs the best. We believe
the difference between the environment states and
common sense has a positive impact on the decision
making and improves the sample efficiency.

Considering both Tab. 2 and Fig. 4 together,
in the medium level games, we can see that
TWC agent-VG has a low performance on both test
sets, despite its high performance in the training.
In contrast, DiffG-RL performs well on all of the
training and the two test sets. This reinforces our
intuition that the difference graph of our proposed
approach improves the generalization performance.

4.5 Ablation Study

Effect of Components: We investigate the effect
of the components in DiffG-RL, and show the re-
sults in Tab. 3. Based on the field of information
retrieval, we add precision and recall to the met-
ric to evaluate how well the extraction method can
extract the common sense needed to achieve the
game goals. We first introduce the concept of a
goal graph g1, g2, ..., gL € G directly connecting

interactive objects and their goal locations. The
precision is calculated by dividing the number of
triples of common sense graphs that correspond to
the triple of goal graph C,; C C by the total number
N of C. The recall is calculated by dividing the
number of triples of goal graphs that are covered
by the triples of common sense graphs GG. C G by
the total number L of G.

We believe that an agent’s performance can be
improved by giving it a computationally feasible
number of commonsense knowledge triples, which
cover the common sense needed to solve the prob-
lem. Thus, higher both precision and recall are
better, but there is a tradeoff between the two. We
also use TWC agent-VG+KG-A2C as the most
naive method (no.1), and since the performance
difference between the proposed method and no.1
is the largest in Tab. 2, we use the hard level games
in the OUT set for the score.

We can see that using EbM significantly im-
proves the recall. This reinforces the effective-
ness of our idea that common sense should be ex-
tracted by meaning independent of linguistic rep-
resentation. We also see that the precision is also
greatly improved by using NbC together. However,
the number of triples of common sense graphs ex-
tracted is still huge, as indicated by the denomina-
tor values of the precision in no.3. No.2 and no.3
could not be executed because the number of triples
exceeds the available GPU memory. Since TGR
unified the representation of goal graphs and the
extracted common sense graphs, multiple triples
can be combined into one and the number of the
extracted triples can be reduced. Therefore, we
believe that the proposed components should not
be used individually but as a framework that brings
them together.

We also see from the difference in scores that
both CE and DE contribute to the performance
improvement. Comparing their respective contribu-
tions, we can see that DE has a greater impact on
performance than the other components (4 — 5).
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Room Score
1 | take ditry singlet from ground Laundry Room
2 | insert dirty singlet into washing machine +1
3 | take slippers from suspended shelf
4 | insert slippers into washing machine
5 | go south Corridor
6 | go north Laundry Room
7 | go south Corridor
8 | go north Laundry Room

-~ <

TWC agent-CN

"

Room Score
take slippers from suspended shelf Laundry Room
go south Corridor
insert slippers into shoe cabinet +1
go north Laundry Room
take ditry singlet from ground
+1

insert dirty singlet into washing machine

DiffG-RL

Figure 5: An comparison of agents’ behavior. TWC agent-CN (left) and DiffG-RL (right) performed the task of
placing a dirty singlet and slippers, which is in the hard difficulty level and uses the OUT set.

This leads us to believe that the difference graph is
relatively critical in DiffG-RL for its impact on the
agents’ decision-making.

We investigate the relationship between the sim-
ilarity threshold in EbM and the number of the
extracted triples of common sense graphs. We com-
pute the precision and the recall between the ex-
tracted common sense graphs and the goal graphs
in the same way as in Tab. 3 and show the results in
Tab. 4. We can observe that the precision and the
recall are a tradeoff tendency when the threshold
exceeds 0.5. To maximize the performance of DE
by providing common sense graphs that correspond
to the goal graphs in all games, we focus on the
recall in our experiments and set the threshold at
0.3. Note that lowering the threshold increases the
noise (the precision decreases), so a method to in-
crease the recall while keeping the threshold high
will be required in the future (see Section 7).

4.6 Qualitative Results

Figure 5 shows a comparison of the agent’s be-
havior between TWC agent-CN and DiffG-RL. The
tasks are to put the dirty singlet in the laundry room
(north) ground into the washing machine and to put
the slippers in the suspended shelf in the laundry
room into the shoe cabinet in the corridor (south).

TWC agent-CN puts the dirty singlet into the
washing machine correctly, but it also puts the
slippers into the washing machine wrongly. We
assume that this is because by giving the agent a
single vector that aggregates common sense knowl-
edge triples about all interactive objects, the agent
has been strongly affected by common sense for
the dirty singlet. We also observe that for slippers
where the goal exists in another room, it repeats
the move commands (such as “go south” and “go
north””) and does not reach the correct location.
This can be considered an incorrect understanding

of the current state. However, DiffG-RL can put the
three interactive objects back where they should be
in order, even if it requires moving the room. We
believe DiffG-RL is robust to such effects of com-
mon sense about other interactive objects because
it explicitly encodes the correspondences between
the current location and common sense for each
interactive object using a difference graph.

5 Related Work

Common Sense for Text-based Games: Many re-
cent methods have focused on providing common
sense to agents to efficiently explore the vast obser-
vation and action spaces of text-based games. Mu-
rugesan et al. (2021a) proposed a text-based game
TextWorld Commonsense (described as the TWC
game in this paper) that requires common sense
from agents and a baseline TWC agent that utilize
common sense obtained from ConceptNet (Speer
et al., 2017). Tanaka et al. (2022) proposed us-
ing scene graph datasets such as VG (Krishna
et al., 2017) as a more grounded common sense
source base on the TWC agent. BiKE (Murugesan
et al., 2021b) shares information between the state
graph and the common sense graph by means of
a bidirectional attention mechanism, but focuses
only on information that is similar between nodes.
Ammanabrolu and Riedl (2019b) transfer com-
mon sense trained in other games into the target
game strategy. Sahith et al. (2020) utilize com-
mon sense obtained in large-scale models such as
COMET (Bosselut et al., 2019) and BERT (Devlin
et al., 2019) based on KG-A2C (Ammanabrolu and
Hausknecht, 2020). Common sense also has a high
affinity with logic rules, and some studies (Kimura
et al., 2020, 2021a,b; Chaudhury et al., 2021) com-
bine them to solve text-based games. Since these
methods do not clarify the correspondence between
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the environment states and common sense, it is dif-
ficult to learn how to use common sense according
to the situation.

In contrast, our work extracts common sense by
meaning and graphically represents the difference
between common sense and the environment states.

Knowledge Graph Extraction: Some prior works
have utilized state representations using knowledge
graphs to effectively prune the vast observation and
action space of text-based games. KG-DQN (Am-
manabrolu and Riedl, 2019a) and KG-A2C use
OpenlE (Angeli et al., 2015) to create a knowl-
edge graph of the game’s belief state from obser-
vation texts. GATA (Adhikari et al., 2020) uses
self-supervised learning to train the construction
and update the belief graph. Worldfromer (Am-
manabrolu and Riedl, 2021) uses the world models
to simultaneously tasks agents with a next-step be-
lief graph prediction as well as the usual action gen-
eration. These methods utilize knowledge graph
representation of the environment states, but do not
use prior knowledge such as common sense.

Our work differs in that we utilize a knowledge
graph to represent not only the environment states
but also the correspondence with common sense in
the form of the different graphs.

Usage of Common Sense Extraction of suitable
commonsense statements is well-studied (Ma et al.,
2019; Lin et al., 2019), and recall of commonsense
knowledge for a task receives much attention (Lin
et al., 2019; Ilievski et al., 2020) in QA. However,
as mentioned in 1, we focus on the denominator
of precision as well as recall, which we believe is
a new perspective. In addition, existing extraction
methods (Ma et al., 2019; Lin et al., 2019) use
triples with matched words. However, in this study,
we use triples that are close in the distance between
vectors after transformation by word embedding.

The filtering of common sense statements based
on common sense is also studied in works related
to the affordance of objects or defeasible reason-
ing (Qasemi et al., 2022; Rudinger et al., 2020;
Do and Pavlick, 2021). They argue that the perfor-
mance of state-of-the-art language models drops
significantly in updating inferences when the con-
text changes from the general situations by using
their original tasks and datasets. In contrast, this
paper proposes a model that explicitly represents
the dynamically changing context of environmen-
tal states and common sense differences in RL and
argues for its effectiveness through experiments.

6 Conclusion

In this work, we investigated the difference be-
tween the environment state and common sense
as a basis for RL agent decision-making in text-
based games. We proposed DiffG-RL, a novel agent
that constructs a graph that represents the differ-
ence, along with a dedicated encoder, also contains
a common sense extraction framework to obtain
the appropriate amount and representation of com-
mon sense to facilitate the comparison between the
environment states and the common sense. Our
experimental results showed that DiffG-RL outper-
formed baselines that used only a knowledge graph,
only common sense, or a naive combination of the
two. These findings demonstrate the effectiveness
of the difference graph, which is a representation
of the difference between the environment states
and common sense, for text-based games.

7 Limitations

An important aspect of our approach is that it
utilizes the difference between the environment
states and common sense as the basis for decision-
making. However, the TWC game does not con-
sider the relationships with other objects, which
means the agents were sometimes not provided suf-
ficient context. For example, it is difficult for an
agent to determine whether a dirty fork should be
placed in a dishwasher or on a dining table based
solely on the information that it is holding a dirty
fork in its hand. The location depends on fur-
ther contexts, such as whether there is food left
on the plates or whether the person eating is full.
Since agents can only repeat their attempts based
on scores in the TWC game, we hope to validate
agents in games that provide more context, such
as ALFWorld (Shridhar et al., 2021) and Science-
World (Wang et al., 2022). Our approach should be
able to support such high-context situations if we
extend the representation of the environment states
in the difference graph from node to sub-graph
(details are provided in Section 3.3.3).

In addition, although we used GloVe for word
embedding, this is slightly outdated considering the
recent development of natural language processing.
The performance of our approach could be further
improved by using more up-to-date word embed-
ding. This may also allow us to obtain a sufficient
number of graphs even if we raise the similarity
threshold, which was set to 0.3 in our experiments.
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8 Broader Impact

Our model does not use sensitive contexts such as
legal or medical data. In addition, the dataset and
common sense sources used in our experiments do
not contain sensitive information. Since the actions
taken by agents in the proposed model are based
on the difference between the environment states
and common sense, we can analyze the difference
to reveal the reasons behind the actions. For exam-
ple, if the model is biased, it can help to identify
the cause of the biased behavior. However, when
adding new common sense, it is necessary to thor-
oughly examine the model for bias, including that
which has already been added.
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A Appendix

A.1 Additional Results

Hidden Size: We investigate the optimal hidden
size for DiffG-RL by training five agents with dif-
ferent hidden sizes at the medium level and testing
them in the OUT set. The results are shown in
Fig. 5. Since we could not find a consistent trend,
we used 512 in this work, which had the best per-
formance throughout the experiments in this work.

Table 5: Ablation results to evaluate the hidden size of
DiffG-RL. All results are in the medium difficulty level
using the OUT set.

Hidden size Scores
128 0.71 & 0.02
256 0.70 £+ 0.02
300 0.67 + 0.02
512 0.76 + 0.02
1024 0.68 £+ 0.03

Activation Function in Difference Graph En-
coder: We investigate the effectiveness of the
activation function in our proposed difference
graph encoder (Section 3.3.3) added from the base
GIN (Keyulu et al., 2019). Table 6 shows that the
performance is better with the activation function
than without.

Table 6: Ablation results to evaluate the activation func-
tion in the difference graph encoder (Section 3.3.3). All
results are in the medium difficulty using the OUT set.

Method Scores
DiffG-RL (w/o activation) 0.64 + 0.01
DiffG-RL 0.76 + 0.02

Common Sense Source: We investigate common
sense sources. Table 7 shows that in the hard
difficulty level using the OUT set, TWC agent
with ConceptNet performs better than that with
VG, but DiffG-RL does the opposite. Tanaka et al.
(2022) propose that Visual Genome contains more
grounded common sense, but TWC agent shows
that it does not have the structure to take advan-
tage of it. In contrast, DiffG-RL is able to fully
utilize VG. Based on this result, we use VG in our
experiments.

Table 7: Ablation results to evaluate common sense
sources. All results are in the hard difficulty using the
OUT set. CN and VG denote ConceptNet (Speer et al.,
2017) and Visual Genome (Krishna et al., 2017), respec-
tively.

Method Source Scores

TWC agent-CN CN 0.29 4 0.02
TWC agent-VG VG 0.25 £0.02
DiffG-RL-CN CN 0.31 +0.02
DiffG-RL-VG VG 0.35 + 0.02
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