MokEfication: Transformer Feed-forward Layers are Mixtures of Experts
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Abstract

Recent work has shown that feed-forward net-
works (FFNs) in pre-trained Transformers are
a key component, storing various linguistic
and factual knowledge. However, the compu-
tational patterns of FFNs are still unclear. In
this work, we study the computational patterns
of FFNs and observe that most inputs only ac-
tivate a tiny ratio of neurons of FFNs. This
phenomenon is similar to the sparsity of the
human brain, which drives research on func-
tional partitions of the human brain. To ver-
ify whether functional partitions also emerge
in FFNs, we propose to convert a model into
its MoE version with the same parameters,
namely MokEfication. Specifically, MoEfica-
tion consists of two phases: (1) splitting the
parameters of FFNs into multiple functional
partitions as experts, and (2) building expert
routers to decide which experts will be used
for each input. Experimental results show
that MoEfication can conditionally use 10%
to 30% of FFN parameters while maintain-
ing over 95% original performance for differ-
ent models on various downstream tasks. Be-
sides, MoEfication brings two advantages: (1)
it significantly reduces the FLOPS of infer-
ence, i.e., 2x speedup with 25% of FFN pa-
rameters, and (2) it provides a fine-grained
perspective to study the inner mechanism of
FFNs. The source code of this paper can
be obtained from https://github.com/
thunlp/MoEfication.

1 Introduction

Recent years have witnessed great success of
Transformer-based pre-trained language models

T Corresponding authors
Part of the work was done while Peng Li was working at
Tencent.

(PLMs) (Devlin et al., 2019; Brown et al., 2021;
Han et al., 2021), attracting many efforts to inter-
pret the inner mechanism of Transformer (Man-
ning et al., 2020; Kovaleva et al., 2019). However,
most of these works focus on the attention mecha-
nism but ignore the feed-forward networks (FFNs),
which constitute nearly two-thirds of model pa-
rameters. Although recent work has shown that
FFNs can be viewed as memory networks storing
amounts of knowledge (Geva et al., 2021; Dai et al.,
2021), the computational patterns of FFNs are still
unclear.

In this work, we study the activation patterns
of FFNs in Transformer models and find a phe-
nomenon of sparse activation, i.e., only a tiny
fraction of neurons are activated for a single input.
For example, when we perform inference on a fine-
tuned T5-Large model (Raffel et al., 2020) with
700-million parameters, 90% inputs only activate
less than 5% neurons'. This phenomenon is similar
to the sparsity in the human brain (Olshausen and
Field, 1996; Gross, 2002), which drives research
on functional partitions of the human brain (Garey,
1999). Inspired by such observation, we further
raise up a question: do the functional partitions
also emerge in artificial neural models, i.e., FFNs
in pre-trained Transformer?

To investigate this problem, we explore whether
a Transformer can be converted into an equiv-
alent Mixture-of-Experts (MoE) model (Bengio,
2013), which regards different functional partitions
in FFNs as different experts conditionally activated.
Specially, we propose MoEfication to discover the
functional partitions (experts) in FFNs and build
routers for selecting experts. It consists of two

'T5 uses ReLU as the activation function. We treat the
neurons having positive outputs as activated neurons.
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phases. (1) Expert Construction: Split a whole
feed-forward layer into multiple experts. The goal
is to group those neurons that are often activated
simultaneously into the same expert network. (2)
Expert Selection: Select those experts that con-
tain as many activated neurons as possible for each
input to approximate to the original results.

In the experiments, we evaluate MoEfication on
two typical kinds of downstream tasks, including
GLUE and QA benchmarks (Wang et al., 2019;
Rajpurkar et al., 2016; Lai et al., 2017), using T5
and BERT (Raffel et al., 2020; Devlin et al., 2019).
Experimental results verify that FFNs in Transform-
ers can be converted to mixtures of experts, and
thus we can use only 10% to 30% of FFN param-
eters to maintain over 95% original performance,
which verifies that the pre-trained Transformers
also learn the functional partitions in FFNs. Be-
sides, MoEfication brings two advantages: (1) It
can significantly speed up the inference of Trans-
formers. Using 25% of FFN parameters brings 2x
speedup on CPU and 1.2x speedup on GPU. (2)
We can study MoEfied models to interpret the in-
ner mechanism of FFNs at a fine-grained level. In
this work, we study their routing patterns and hope
these findings can help future work on the design
and training of MoE models.

2 Related Work

Interpretation of Large-scale Transformers.
Due to the success of Transformer-based PLMs,
there are many studies on the interpretation of
Transformer, including the functionality of differ-
ent layers (Tenney et al., 2019; Jawahar et al., 2019;
Wang and Tu, 2020; Ramnath et al., 2020), and
the mechanisms of both attention networks and
FFNs (Manning et al., 2020; Kovaleva et al., 2019;
Wallace et al., 2019). Recent work find that the
FFNs of Transformers can be viewed as memory
networks storing lots of knowledge learned from
language modeling (Geva et al., 2021; Dai et al.,
2021; Suau et al., 2020). Meanwhile, researchers
explore to modify the knowledge stored in FFNs
and achieve promising results (De Cao et al., 2021;
Meng et al., 2022). In this work, we show that how
the knowledge stored in FFNs is used, that is, most
FFNs can be viewed as a MoE network where the
knowledge is conditionally activated.

Large-scale PLMs with MoE. Jacobs et al.
(1991) propose mixture-of-experts to build a sys-
tem composed of many separate networks, which

learn to handle a subset of the training examples in-
dependently. When deep neural networks achieve
great success (Hinton et al., 2012; Krizhevsky et al.,
2012; Goodfellow et al., 2013), Bengio (2013)
thinks the model size is a key factor and MoE
is an important technique to scaling model com-
putation and proposes the idea of “conditional
computation”. The first large-scale MoE lan-
guage model is proposed by Shazeer et al. (2017),
which adds an MoE layer between two LSTM lay-
ers and independently assigns tokens to combi-
nations of experts. Recently, GShard (Lepikhin
et al., 2021), Switch-Transformer (Fedus et al.,
2021), BASELayer (Lewis et al., 2021), and Hash-
Layer (Roller et al., 2021) study how to build large-
scale Transformer-based models with MoE and op-
timal training strategies, which can fully utilize the
model capacity. Different from them, we utilize the
naturally-existing sparse activation phenomenon
to convert a model into its MoE version for better
efficiency during inference.

Model Acceleration for PLMs. Model acceler-
ation aims to reduce the time and space complexity
of PLMs. There are several techniques including
knowledge distillation (Sanh et al., 2019; Sun et al.,
2019; Jiao et al., 2020), model pruning (Voita et al.,
2019; Michel et al., 2019; Zhang et al., 2021), at-
tention approximation (Wang et al., 2020; Kitaev
et al., 2020; Zaheer et al., 2020),and model quanti-
zation (Zafrir et al., 2019; Zhang et al., 2020; Bai
et al., 2021), and dynamic inference (Xin et al.,
2020; Li et al., 2021; Ye et al., 2021; Hou et al.,
2020). Among these techniques, dynamic inference
explore to selectively omit unnecessary computa-
tion for acceleration, which is similar to the target
of MoEfication. Previous work usually focuses on
how to dynamically drop layers to accelerate in-
ference (Huang et al., 2018; Wu et al., 2020; Li
et al., 2021), which introduces additional training
objectives and prediction strategies. In contrast,
MokEfication simplifies models in a finer granular-
ity, and does not change the process of training
and inference. In summary, MoEfication can be
regarded as a novel direction diagonal with the
above-mentioned approaches.

3 MokEfication

In this section, we will introduce the general idea of
MokEfication and divide it into two phases: expert
construction and expert selection.

878
2



O Positive Neuron O Negative Neuron @ Unactivated Neuron O Input or Output [ Matrix Element X Unused Element or Neuron

| |
F() l
| it g o }
| \
o(h)l0000]Ion|W; |
| O oo }
\

- h }
[ i3 !
| |
T oooo|Wr |
! 0ooo |
o 1
(a) FFN Computation Process (b) Unused elements and neurons (c) Expert Construction (d) FFN with MoE

Figure 1: An example of the sparse activation phenomenon and MoEfication. (a) shows the computation process
of an FFN for a given input. (b) shows the unused elements and neurons for this input. (c) shows how to construct
experts. (d) shows how the MoEfied model handles this input efficiently.

3.1 Overall Framework For MokEfication, we first split the FFN into sev-
eral independent parts, namely expert construction,
and then design a router to select suitable experts
for each input, namely expert selection.

MokEfication aims to utilize the sparse activation
phenomenon in the FFNs of Transformers to reduce
the computation cost.

We first formally describe the sparse activation
phenomenon. The FFNs of Transformers are two-
layer fully connected networks, which process an  In this subsection, we introduce how to split an

3.2 Expert Construction

input representation & € R%medel by FFN into several parts. The core idea is to group
h=aWi + b1, " together the neurons that are of.ten activated simul-
F(z) = o(h)Wa + by, taneously. In this way, for each input, we can select

a small number of experts to cover all its activated
where Wy € Rémoderdss and Wy € RUs*model ayrons. To achieve better parallel computation
are the weight matrices, by € R%/ and by € performance, we set the size of each expert to be
R?modet are the bias vectors, and o (-) is anon-linear  the same. If the number of experts is k, the input

activation function, which prefers to retain positive  and output dimension of experts is still d;,oq¢; and
values and discard negative ones. In this work,

we study the activation function ReLLU (Nair and
Hinton, 2010), which is used by the original Trans-

their intermediate dimension is d, = d%. Then,
the parameters of i-th expert are denoted by

former (Vaswani et al., 2017) and some widely- W, € RimoderXde pi o e pyi ¢ RdeXdmoder ()
used Transformer-based PLMs (Sun et al., 2020;
Raffel et al., 2020). Given the result of splitting, we construct the cor-
Since there are many inactive (zero) values in  responding permutation of intermediate neurons by
the intermediate output o(h), the computation of 12 .. dyy ; :
put o(h) p (f(l) o) f(dff))’ where f(n) is the mapping

these values can be omitted for acceleration. Mean-
while, different inputs will activate different neu-
rons. Hence, we explore to select the possiblely-
activated neurons of h before the FFN computation f(n) = (e(n) — 1)de + [{m|m < n,e(m) = e(n)}|, (3)
instead of model pruning.

We show an example in Figure 1. In this FFN,  where e(n) is the expert index of the n-th neuron,
diodel 18 2, dfy is 4, and the bias vectors are omit-  which varies from 1 to k, and [{m|m < n,e(m) =
ted for simplification. For a given input representa-  e(n)}| is the index of the n-th neuron in the expert.
tion x, there are two positive values in h. Hence, = Then, we use its permutation matrix P € Rdrsxdss
we only need to compute part of the FFN, i.e., a  to permute the rows or columns of parameters and
2 x 2 submatrix of W7 and a 2 x 2 submatrix of  have the following split:

W), to obtain the same output F'(x). Correspond-

function from the original neuron index to the per-
muted neuron index. We compute f(n) by

ingly, we can MoEfy the original FEN to have an (Wi, WE,... W] = WP,
MOE layer with two experts and select the one on blabld...ob =b P, )
the right-hand side for this input @. (WHT, (W, ..., (WET] = (PTW,)T,
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where & represents the vertical concatenation.
Note that the permutation will not influence the
output representation:

o(h)Ws + by = o(h)PPT Wy + bs,
= o(hP)P"W; + bs, ®)
o(xW.P + b, P)P" W, + by.

In this work, we propose two methods to split an
FFN into k parts.

Parameter Clustering Split. To take the pa-
rameter information into consideration, we treat
the columns of W7 as a collection of vectors with
dmoder dimension. Based on the intuition that the
neurons with similar vectors will be activated simul-
taneously, we apply balanced K-Means (Malinen
and Frinti, 2014) to the vector collection to obtain
k clusters to construct the mapping function.

Co-Activation Graph Split. To directly use
the information of co-activation, we construct a
co-activation graph by counting co-activations of
PLMs for the samples of the training set. Each
neuron will be represented by a node in the graph,
and the edge weight between two nodes are their
co-activation values. The co-activation value is
computed by

co-activation(n, m) = Z hff)hff)]lh@)w R@ <o (6)

x

where h%m), hgif ) are the n-th and the m-th neurons

of h for the input  and ﬂhﬁ{")>0,h§,f>>0 indicates

h%w) and thf ) are activated simultaneously. Then,
we apply graph partitioning algorithms (Karypis
and Kumar, 1998) to the co-activation graph to ob-
tain the split, where the internal connections for
each group will be strong. Please refer to Ap-
pendix F for the details of the partitioning algo-
rithm. It means that the neurons splitted into the
same group are often activated simultaneously for
the training samples.

3.3 Expert Selection

In this subsection, we introduce how to create a
router for expert selection. An MoEfied FEN pro-
cessed an input & by

Fn(x) =Y o(@W] + b)W; + b, (7)

i€S
where S is the set of the selected experts. If all ex-
perts are selected, we have F,,,(x) = F(x). Con-
sidering that o (z W/ +b} ) W4 equals to 0 for most
experts, we try to select n experts, where n < k,

minimize ||F,(x) — F(x)||2. The selection meth-
ods will assign a score s; to each expert for the
given input & and select the experts with the n
highest scores by

S = arg max Z Si- (8)

Ac{1,2,..k},Al=n {4

Groundtruth Selection for the intermediate
output o(h). We can obtain the groundtruth se-
lection, which minimizes ||concat({f(o(zW7} +
b%))1(i € S)}) — o(h)||2, by a greedy algorithm.
f is a padding function with zeros to match the
dimension between o(zW7{ + b}) and o(h). We
calculate the sum of positive values in each expert
as s; and select experts using Equation 8. This
selection should approximate to the lower bound
of || Fy () — F(x¢)||2. Correspondingly, its perfor-
mance will approximate to the ideal performance of
an MoEfied model. Meanwhile, it is intractable to
directly optimize ||F}, (x) — F'(x)||2 because there
are too many possible combinations of experts.

Similarity Selection. To utilize the parameter
information, we average all columns of W and
use it as the expert representation. Given an input
x, we calculate the cosine similarity between the
expert representation and x as s;.

MLP Selection. We train a multi-layer percep-
tron (MLP), which takes the x as input and predicts
the sum of positive values in each expert. Then,
we use the prediction as s;. This method tries to
approximate to the performance of groundtruth se-
lection.

4 Experiment

4.1 Experimental Setups

Models and Hyperparameter. We use four vari-
ants of T5 (Raffel et al., 2020), which are the
60-million-parameter T5-Small, the 200-million-
parameter T5-Base, the 700-million-parameter T5-
Large, and the 3-billion-parameter T5-XLarge. The
non-linear activation function is ReLU (Nair and
Hinton, 2010). We use Adam as the optimizer and
a learning rate of 10~ for fine-tuning T5 models
on downstream tasks. The batch size is set to 64
and the number of epochs is set to 3.

Datasets. We use several natural language
understanding datasets to evaluate our models.
We use SST-2 (Socher et al., 2013), MNLI-
matched (Williams et al., 2018), and RACE (Lai
et al., 2017) as the main evaluation datasets, which
cover single-sentence classification, sentence-pair
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classification, and reading comprehension. We re-
port the results on their development sets. We also
report the results of MoEfication in other datasets
in Appendix A including the tasks in GLUE bench-
mark (Wang et al., 2019) and SQuAD (Rajpurkar
etal., 2016).

Expert Construction. For balanced K-Means,
we use an open-source implementation”. Besides
Parameter Clustering Split and Co-activation Graph
Split, we also implement Random Split as a naive
baseline, which uses an identity matrix as P. For
the number of neurons in each expert, if the number
is small, there will be a lot of experts, making the
routing computation cost high. Meanwhile, if the
number is large, there will be more inactive neurons
in each expert for a given input, which is harmful to
the performance with the same amount of selected
neurons. Hence, selecting the number of neurons in
each expert is a trade-off between computation cost
and accuracy. According to our pilot experiments,
we set the number of neurons in each expert d, to
32. Correspondingly, the number of experts varies
from 64 to 512 (k = d({—f) for different TS variants.
With the same expert sieze, the relative computation
cost of routing for different models is the same as
shown in Appendix E.

Expert Selection. Besides Similarity Selection
and MLP Selection, we also implement Random
Selection, where we treat each expert as a col-
lection of vectors with d,,,4.; dimension and ran-
domly select one of them as the expert represen-
tation. For Random Selection and Similarity Se-
lection, the computation complexity for routing
is O(kd,noder). For MLP Selection, we use a two-
layer feed-forward network as the architecture. The
input dimension is d,,04e;, the intermediate dimen-
sion is k, and the output dimension is k. The non-
linear activation function is tanh(-). Its computa-
tion complexity is O(kd,node; + k2). Compared to
the computation complexity of FENs of the origi-
nal model, O(d;,04e1 - d ), the computation cost
of routers is ignorable because k is much smaller
than dy;. For example, k is 128 and d s is 4096
for T5-Large. For the training of our MLP routers,
we adopt cross-entropy as the training objective
and use the Adam optimizer with the learning rate
of 1072, The batch size is set to 512 and the num-
ber of epochs is set to 10. We sample nearly 500
thousand input representations from the training

https://github.com/ndanielsen/
Same-Size-K-Means

Model SST-2 MNLI RACE
Small 90.9 82.4 44.7
Small-Distill 91.9 82.6 50.6
Base 94.0 86.4 71.7
Large 96.2 89.5 81.3
XLarge 96.9 90.5 85.6

Table 1: Original Performance of different models on
three downstream tasks. The model architecture is T5.

data and split them into the training and develop-
ment sets with the ratio of 9 : 1. Note that we only
use the activation information as supervision. The
training time of each FFN is about several minutes
on a single GPU.

4.2 MoEfy ReLU-based Models

In this subsection, we evaluate MoEfication on dif-
ferent TS models. We consider two factors: the
model size and whether the model is compressed.
For the model size, we use five variants of TS (Raf-
fel et al., 2020), from T5-Small to T5-XLarge. For
convenience, we directly use the scale names as
the abbreviations. To investigate the influence of
model compression, we compress T5-Large to T5-
Small by classic knowledge distillation (Hinton
et al., 2015). Specifically, the teacher model is
a fine-tuned T5-Large and the student model is a
pre-trained T5-Small. The distilled model is de-
noted by T5-Small-Distill. The expert construction
and selection methods used here are Co-activation
Graph Split and MLP Selection, which are proved
to be the best combination in Section 4.4.

We report the performance of these models on
three datasets, SST-2, MNLI, and RACE, in Ta-
ble 1. They are the representative datasets for
single-sentence classification, sentence-pair clas-
sification, and reading compression, respectively.
The original performance of PLMs grows as the
model size grows, and knowledge distillation im-
proves the performance of TS5-small.

We first calculate the activation statistics of dif-
ferent models by inputting the training data of each
dataset. The results are shown in Figure 2. From
the figure, we have three observations. (1) The acti-
vations of these models are sparse. Different from
the previous study on models trained with smaller
datasets, where the activation ratios are range from
10% to 50% (Geva et al., 2021)3, we find most

3Since the activation ratios of a randomly-initialized model
are around 50%, we guess these models do not make full use
of their parameters.
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Figure 2: CDF of the ratio of activated neurons for each input with different models on three datasets.
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Figure 3: Relative performance of MoEfied models with different sizes on three datasets. Dynamically selecting
10% to 20% neurons can recover nearly 98% original performance for large models such as T5-XLarge.

inputs activate less than 10% of the neurons. (2)
The activations of larger models are sparser than
those of smaller models. For example, 80% inputs
only activate less than 3% neurons in T5-XLarge
while 40% inputs activate more than 3% neurons
in T5-Small. (3) The sparsity is less related to dis-
tillation than the model size. The CDF curve of
T5-Small-Distill is close to that of T5-Small.

Then, we compare the performance of MoEfied
models with different sizes and ratios of selected
neurons and report the results in Figure 3. To mea-
sure the performance of MoEfication, we calculate
the relative performance of the MoEfied model to
the original model. From the figure, we have four
observations. (1) MoEfication works well with
all models on all three datasets. MoEfied models
use 10% to 30% of FFEN parameters while main-
taining over 95% original performance. (2) The
larger models can use fewer neurons to recover the
original performance. For example, T5-XLarge
achieves nearly 98% relative performance on SST-
2 and MNLI with 10% neurons while T5-Small
achieves the same results with 30% to 40% neu-
rons. This result is consistent with the activation
statistics, that is, larger models are sparser. We
can expect that MoEfication can provide better effi-

=
3
=)
3

R
80 s < 9
s 2
- 4 s .
g 60 S £ 80 :
= / &
8 40 /, = 70
g — sst2 | s E —— SST2
20 p’ -== MNLI | E ¢ .~ -+= MNLI
A RACE | & | e RACE
(el - 50
5 10 10 20 30 40

Ratio of Activated Neurons (%) Ratio of Selected Neurons (%)

() (®)

Figure 4: (a) CDF of the ratio of activated neurons in
BERT-Large on SST-2, MNLI, and RACE. (b) Relative
performance of MoEfied BERT-Large.

ciency with super large models. (3) Difficult tasks
require models to select more experts to maintain
the performance. From Table 1, we can see that the
accuracy of RACE is much lower than the other
two tasks, and hence we think RACE is more dif-
ficult. Correspondingly, the relative performance
with 10% neurons on RACE is also lower than
those on the other tasks. (4) MoEfication works
similarly on T5-Small and T5-Small-Distill, which
indicates that MoEfication can work with knowl-
edge distillation for more efficient inference.

4.3 MoEfy GeLU-based Models

In addition to using ReLLU as the activation func-
tion, many PLMs use GeLU (Hendrycks and Gim-
pel, 2016), including BERT (Devlin et al., 2019)
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and GPT (Brown et al., 2021). In this subsec-
tion, we study whether BERT, which is the most
representative GeLU-based model, can be MoE-
fied. Considering that GeLU gives negative inputs
small activations instead of 0, we first transform
a GeLU-based BERT into a ReLLU-based BERT,
and then MoEfy the ReLU-based model. Specifi-
cally, we initialize a ReLU-based BERT using the
pre-trained parameters of a BERT-Large* and train
the ReLU-based BERT on the pre-training corpus
for the adaptation of the change of activation func-
tions. In this work, we use the pre-training frame-
work provided by NVIDIA> and keep all hyper-
parameters unchanged. Wikipedia and Bookcor-
pus are used as the pre-training corpus. In the
experiments, after 400 optimization steps, the pre-
training loss is close to that of the original model.
Hence, the adaptation cost is much smaller than the
pre-training cost (about 10000 steps). Meanwhile,
the downstream performance of the ReLU-based
model is comparable to the original model (93.1
v.s 93.5 on SST-2 and 84.8 v.s 85.2 on MNLI).
Based on this ReLU-based BERT-Large, we study
the sparse activation phenomenon and the effect of
MoEfication and report the results in Figure 4.

From this figure, we have two observations: (1)
The sparse activation phenomenon still exists in
BERT. For example, more than 80% of inputs ac-
tivate less than 10% of neurons. It reveals the
generality of the sparse activation phenomenon in
pre-trained Transformers. It will be an interesting
direction to explain this phenomenon empirically
or theoretically in the future. (2) MoEfication also
archives good performance on BERT. For exam-
ple, selecting 30% to 40% of neurons can recover
97% performance. Since the activation of BERT
is slightly denser than that of TS5, it requires more
neurons to recover most performance.

4.4 Comparisons of MoEfication Strategies

To find the most effective MoEfication strategy, we
evaluate different combinations of expert construc-
tion and selection methods. We use T5-Large and
also set the ratio of selected neurons to 20%. The
results are shown in Table 2. From the table, we
have two observations:

(1) For expert construction, Co-activation Graph

*https://catalog.ngc.nvidia.com/orgs/
nvidia/models/bert_pyt_ckpt_large_
pretraining_amp_lamb

Shttps://github.com/NVIDIA/
DeepLlearningExamples

Construction | Selection | SST-2 MNLI RACE
- ‘— ‘ 96.2 89.5 81.3

Groundtruth 95.9 87.3 80.0
Random R.anfion.l 65.9 36.3 29.2
Similarity 90.3 75.9 56.7
MLP 94.1 841 750
Groundtruth 95.5 88.8 80.9
Parameter Random 70.6 36.4 41.8
Clustering Similarity 86.7 66.3 63.6
MLP 959 875 787
Groundtruth 96.3 89.1 80.8
Co-Activation | Random 85.3 68.5 54.7
Graph Similarity 922 81.4 71.0
MLP 954 875 79.0

Table 2: Comparisons of different combinations of
expert construction and selection methods using T5-
Large. The first row is the original performance. The
best results in each group are underlined and the best
results on each dataset are in boldface.

Ratio FLOPS CPU GPU
50.0% 1.50 143 1.15
25.0% 200 198 1.20
12.5% 240 228 147

Table 3: Speedup of FLOPS, CPU and GPU with dif-
ferent ratios of selected neurons.

Split is the best method according to the overall
performance. Compared to the other two meth-
ods, Co-activation Graph Split directly uses the
co-activation information to group the neurons ac-
tivating simultaneously into the same expert.

(2) For expert selection, the performance of
Groundtruth Selection is close to that of the origi-
nal model, which indicates that 20% parameters of
FFNss are sufficient to achieve good performance on
T5-Large. Meanwhile, MLP Selection is the best
expert selection method and can work well with
both Parameter Clustering Split and Co-activation
Graph Split.

S Analysis

In this section, we analyze the efficiency and rout-
ing patterns of MoEfied models.

5.1 Efficiency Improvement

In this subsection, we show the efficiency im-
provement brought by MoEfication. We synthe-
size a batch of sequences with the input and output
lengths of 64 and evaluate T5-Large on the data. To
comprehensively show the efficiency improvement,
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Figure 5: Selection Frequency of 64 experts in each
encoder layer of MoEfied T5-Small. The frequency of
ideal balance selection is 0.2 while the distribution is
much unbalanced.

we report the relative speedup based on FLOPS,
CPU, and GPU in Table 3. The FLOPS is estimated
according to the statistics provided by Brown et al.
(2021). The results of CPU and GPU are tested
on an Intel Broadwell CPU and an NVIDIA Tesla
V100 GPU, respectively.

From this table, we have three observations:
(1) MoEfication can significantly reduce the total
FLOPS, such as 2x speedup in the ratio of 25%.
Meanwhile, the speedup on CPU is close to that
on FLOPS. Considering that CPU is widely used
for model inference in real-world scenarios, MoEfi-
cation is practical for the acceleration of various
NLP applications. (2) The smaller the ratio, the
smaller the gain. For example, the gain of halving
25% (to 12.5%) is 1.2x while the gain of halving
50% (to 25%) is 1.3x. Although the FLOPS re-
duction of feed-forward networks is linear in the
ratio, the cost of attention networks is unchanged
and becomes the bottleneck. Hence, 20% is a good
ratio, which can have a significant speedup (2x)
and maintain most performance. (3) Since some
of the operations of MoE cannot be easily paral-
leled, the speedup on GPU is smaller than that
on GPU. Recently, some packages such as Fast-
MoE (He et al., 2021) and Deepspeed-MoE (Rajb-
handari et al., 2022) are working on paralleling the
inference of MoE models on distributed computing
platforms and already have some promising results.
We believe the bottleneck of parallel computing in
MoE models will be well solved in the future.
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Figure 6: Input similarities between experts in the last
encoder layer of MoEfied T5-Small. For the most
selected experts, both the self-similarities and inter-
similarities are low. For the least selected experts, the
self-similarities are much higher than inter-similarities.

5.2 Routing Patterns

In this subsection, we investigate the routing pat-
terns of MoEfied models. First, we count the se-
lection frequency of each expert. Previous work
introduces training objectives to ensure balance se-
lection to make full use of model parameters (Lep-
ikhin et al., 2021; Fedus et al., 2021). We report the
results of the MoEfied T5-Small with 20% experts
on SST-2 in Figure 5. From the figure, we observe
that the frequency distribution of expert selection is
much unbalanced. There are some commonly-used
experts, whose frequencies are higher than 80%.
Meanwhile, there are also some long-tail experts
whose frequencies are lower than 10%.

Then, we calculate the self-similarities and inter-
similarities of inputs between experts by sampling
10, 000 inputs for each expert. We report the results
of the last layer in Figure 6. For the most selected
experts, which are selected by most inputs, the
self-similarities are close to the inter-similarities.
For the least selected experts, the self-similarities
are much higher than the inter-similarities, which
suggests that the inputs of each expert have obvious
cluster structure.

From these results, we can conclude the routing
patterns of MoEfied models: there are some gen-
eral experts, which can work for most inputs, and
some input-specific experts, which are seldom used
and may work in specific domains or tasks. This
observation may inspire future work on training
MoE models from scratch.

6 Conclusion

In this work, we verify that Transformer FFNs are
naturally mixtures of experts and propose MoEfi-
cation, which utilizes the sparse activation phe-
nomenon in FFNs to convert a normal model to
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its MoE version with the same parameters. Ex-
perimental results show that MoEfied models can
achieve comparable performance to the original
models using only 10% to 30% of FFN parame-
ters. Correspondingly, it significantly reduces the
FLOPS of inference, e.g., 2x speedup with 20%
of FFN parameters. Besides, by studying the rout-
ing patterns of MoEfied models, we find that there
are general and input-specific experts, which may
inspire future work on training MoE models. We
hope MokEfication can benefit real-world applica-
tions of PLMs with better efficiency and benefit the
interpretation of the inner mechanism of FFNS.
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A MokEfication on Other Datasets

For text classification, we use GLUE bench-
mark (Wang et al., 2019), including MNLI-
matched (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), QQP6, RTE (Dagan et al., 2006), SST-
2 (Socher et al., 2013), MRPC (Dolan and Brock-
ett, 2005), CoLA (Warstadt et al., 2019), and STS-
B (Giampiccolo et al., 2007). For reading compre-
hension, we use SQuUAD (Rajpurkar et al., 2016)
and RACE (Lai et al., 2017), which are the rep-
resentative datasets for span extraction and multi-
choice QA, respectively. We report the results on
their development sets. For MNLI, QNLI, QQP,
RTE, SST-2, MRPC, RACE, we use accuracy as
the metric. For CoLA, we use matthews correla-
tion coefficient as the metric. For STS-B, we use
pearson and spearman correlation as the metrics.
For SQuAD, we use F1 score as the metric.

We evaluate MoEfication on several downstream
natural language understanding tasks with T5-
Large. The ratio of selected neurons is set to 20%,
which is sufficient for T5-Large as show in Fig-
ure 2. In practice, there is still a gap between the
performance of MoEfied models and that of origi-
nal models because selected experts cannot cover
all positive neurons with a limited computation
budget. Hence, the outputs of MoEfied models will
be slightly different from those of original models.
To calibrate MoEfied models, we further fine-tune
the models on the training set, namely parameter
calibration. Considering that current routers are
based on the first layers of FFNs (W7 and b,),
we only optimize the second layers of FFNs (W5
and by) to ensure routers can also work well af-
ter fine-tuning. We use a small learning rate of
107 for calibration. The other hyper-parameters
remain the same as fine-tuning. The results are
shown in Table 4. MoEfied refers to the combi-
nation of Co-activation Graph Split and MLP Se-
lection. MoEfied+GT refers to the combination of
Co-activation Graph Split and Groundtruth Selec-
tion. MoEfied+Calib is the calibrated version of
MokEfied. To calculate the average performance,
we also include SST-2, MNLI, and RACE.

We observe that MoEfication introduces small
performance loss (about 1.5% on average) with an
80% reduction of the computation cost in FFNs.
Meanwhile, calibration can effectively deal with
the issue of the precision errors brought by MoEfi-
cation. For example, MoEfied+Calib improves

*https://data.quora.com

MokEfied by nearly 4% on CoL A and achieves the
same average performance as MoEfied+GT.

B Activation Statistics before
Fine-tuning

We count the activation statistics of PLMs be-
fore fine-tuning on the pre-training data containing
about 50, 000 input tokens. The results are shown
in Figure 7. We observe that PLMs before fine-
tuning also have the sparse activation phenomenon
and fine-tuning brings little change.
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Figure 7: CDF of the ratios of activated neurons for
each input with different models before fine-tuning.

Then, we compare the activations of pre-trained
models and those of fine-tuned models. We use
the average ratio of activated neurons as the index.
The results are shown in Table 5. We observe that
fine-tuning increases the average activation ratio
for most models. The reason may be that differ-
ent neurons start to learn the same task-specific
patterns during fine-tuning. Interestingly, the in-
crease on RACE is smaller than that on the other
datasets. Since RACE is more difficult than the
other datasets, there should be more task-specific
patterns in RACE and less neurons learn the same
patterns. Moreover, the pre-training task MLM re-
quires more patterns than RACE so the ratios of
MLM are lowest.

C Results of Graph Partition

Co-activation Graph Split achieves good perfor-
mance in expert construction. Here, we study
whether the co-activation graph is suitable for parti-
tioning. We report the results of graph partition of
T5-Large on SST-2 in Figure 8. Smaller ratios of
edgecuts, which straddle partitions, mean that more
co-activation pairs are included in experts. We only
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| MNLI QNLI QQP RTE SST2 MRPC CoLA STS-B  RACE SQuAD1.1| Avg.
Original | 89.5 944 917 87.1 962 880 594 91.2/909 813 932 | 872
MoEfied | 87.5 932 902 864 954 875 555 90.6/903  79.0 922 85.7 (-1.5)
+GT 89.1 941 914 864 963 883 588 90.9/90.8 80.8 93.2 86.9 (-0.3)
+Calib | 887 936 913 875 962 893 594 91.0/90.6 79.9 92.3 86.9 (-0.3)

Table 4: Results of T5-Large on GLUE benchmark and two QA datasets. The last row reports the differences
between the original model and MoE+Calib. MoEfied models with parameter calibration achieve comparable

performance to original models.

Small Base Large XLarge
MLM 418 285 217 1.52
SST-2 553 224 250 2.46
MNLI 559 325 244 245
RACE 494 3.08 198 1.79

1.0
0.8
2
0.6
=
30.4
<
0.2

0.0- S MUNEE

10 15
Layer

20

Table 5: Average ratio of activated neurons for each
input. MLM represents the pre-trained models with
masked language modeling. SST-2, MNLI, RACE rep-
resent the fine-tuned models on each dataset.

report the results of encoder layers because all ra-
tios of decoder layers are smaller than 0.001. From
this figure, we can see that the overall ratio is small
and these graphs are suitable for partitioning.
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Figure 8: Ratio of edgecuts in different layers.

D Accuracy of MLP Selection

MLP selection trains MLPs to fit the groundtruth
selection. In this part, we report the accuracy of
MLPs in T5-Large fine-tuned on SST-2. The results
are shown in Figure 9 and 10. The overall accuracy
of the encoder is about 0.8 and the overall accuracy
of the decoder is about 0.7.

E Relative Cost of Routing

In this work, we set the number of neurons in each
expert to 32. Then, the number of experts in each
layer k is %. In most Transformer models, dy; =

4d 04e1- The computation complexity of Similarity

Figure 9: Accuracy of MLPs of encoder layers.
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Figure 10: Accuracy of MLPs of decoder layers.

Selection for each input is

2
dmodel ) )

O(kdmodel) = O( 3

©)
The computation complexity of FFNs for each in-
put is

O(dmodel : dff) - O(4d2 ) (10)

model

Then, the relative cost of routing to that of FFNs is
constant for different models. It is also similar to
MLP Selection.

F Graph Partitioning Algorithm

The goal of graph partitioning is to divide a graph
into several sub-graphs where the number of edges
crossing sub-graphs is minimized. In this work,
we use the graph partitioning algorithm proposed
by Karypis and Kumar (1998). The graph partition-
ing algorithm consists of three phases: coarsening
phase, partitioning phase, and refinement phase.
(1) In the coarsening phase, we create new super
nodes by grouping nodes that are highly connected
together. For example, if the weight of the edge

889

13



100 =

i\/

3

g

g 80 —— MoEfication

5 e Pruning

o X

5

2

g 60 .

[3} ...

m ............ -
50 70 90

Reduction Ratio of FFNs (%)

Figure 11: Comparison between MoEfication and
model pruning.

Model MLM Loss

MoE Pre-training 3.09

Standard Pre-training  2.88 (-0.21)
+MokEfication 3.02 (-0.07)
+GT 2.95 (-0.14)

Table 6: Comparisons of MoE models pre-trained from
scratch and modified by MoEfication. We report the
MLM loss on the validation set. Standard pre-training
with MoEfication is better than pre-training a MoE
model from scratch.

between two nodes is large, these two nodes will be
grouped together. In the setting of coarsening co-
activation graphs studied in this work, two neurons
that often activate simultaneously will be treated as
a new super neuron. (2) In the partitioning phase,
we start with an initial bipartition of the super node
graph and then iteratively search for super nodes
from each part of the graph, such that swapping
them leads to a partition with a smaller number of
crossing edges. To divide a graph into k parts, we
need log k rounds of bipartition. (3) In the refine-
ment phase, we project super nodes to the original
nodes and then continue to iteratively swap nodes
to reduce the number of crossing edges.

G Comparisons with Model Pruning

Based on the fine-tuned T5-Large on SST-2, we
compare MoEfication with model pruning, which
omits the weight having small values. The results
are shown in Figure 11. We observe that model
pruning significantly degrades the performance.
However, MoEfication achieves good performance
by selectively activating parts of the network ac-
cording to input.

H MokEfication vs. MoE pre-training

In this subsection, we compare the performance
of two kinds of MoE models. The first one is
pre-trained from scratch. The second one is trans-
formed from a standard model by MoEfication. For
fair comparisons, we pre-train one MoE model and
one standard model with the same model size from
scratch using WikiText-103 (Merity et al., 2017).
The pre-training objective is masked language mod-
eling (MLM). The model architecture is the same
as T5-Small. For pre-training, we use the batch size
of 4096, the learning rate of 0.01, the maximum
sequence length of 512, and the Adam optimizer.
The number of experts is set to 64 and the router
will select 32 of them for a single input.

We report the MLM loss on the validation set in
Table 6. From the table, we have two observations.
(1) The loss of the standard pre-trained model is
lower than that of the pre-trained MoE model. We
guess that the optimization of MoE models is diffi-
cult than that of the standard models because of the
restricted selection of MoE models. (2) MoEfied
models achieve better performance than the pre-
trained MoE model. It indicates that pre-training a
standard model then conducting MoEfication can
be a better option than pre-training an MoE model
from scratch.
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