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Abstract

Cross-lingual transfer between a high-resource
language and its dialects or closely related lan-
guage varieties should be facilitated by their
similarity. However, current approaches that
operate in the embedding space do not take
surface similarity into account. This work
presents a simple yet effective strategy to im-
prove cross-lingual transfer between closely
related varieties. We propose to augment the
data of the high-resource source language with
character-level noise to make the model more
robust towards spelling variations. Our strat-
egy shows consistent improvements over sev-
eral languages and tasks: Zero-shot transfer of
POS tagging and topic identification between
language varieties from the Finnic, West and
North Germanic, and Western Romance lan-
guage branches. Our work provides evidence
for the usefulness of simple surface-level noise
in improving transfer between language vari-
eties.

1 Introduction

Recent research has achieved impressive results
in zero-shot cross-lingual transfer based on multi-
lingual pre-training (Devlin et al., 2019; Conneau
and Lample, 2019) or monolingual transfer of em-
beddings (Artetxe et al., 2020). However, these
methods require large amounts of unlabeled data
in the target language (Lauscher et al., 2020) and
do not take into account surface similarity between
languages except for the sharing of subword units
in multilingual models. For the transfer between
closely related languages and dialects, we deem it
desirable to exploit the similarity of surface rep-
resentations. Specifically, we target orthographic
variations that commonly result from pronuncia-

tion differences between closely related languages.
1

"Note that there are also differences on different levels as
described in Hollenstein and Aepli (2014) and partly observ-
able in Figure 1 which illustrates a German example sentence
with a closely related variant.

GSW di beede Satz sind néd dirdkt ggloge gsi

V2N R N

DE diese beiden Satze waren nicht wirklich gelogen

Figure 1: Swiss German (GSW) sentence with corre-
sponding standard German (DE) and trans-
lations. The sentence shows various spelling differences
on the word level, and reordering occurs on the sentence
level due to different past-tense formation.

In this paper, we propose to augment the training
data of a high-resource language with character-
level noise to simulate spelling variations and thus
facilitate generalization to closely related” low-
resource languages.

We test this strategy on two tasks and several
language regions. The considered tasks are part-of-
speech (POS) tagging on the word level and topic
classification on the sentence level; the languages
are from the Finnic, West and North Germanic, and
Western Romance language branches. We observe
that our baseline method for cross-lingual transfer
learns undesirable heuristics, e.g., assigning un-
seen words to open word classes in POS tagging
and that injecting noise reduces this bias. Our ex-
periments show absolute accuracy improvements
between 1.4 and 22 percentage points over the state
of the art, providing evidence that a simple data-
augmentation strategy can boost transfer learning
for language varieties and dialects with a closely
related high-resource language.

2 Related Work

Zero-shot cross-lingual transfer based on mul-
tilingual language models (Devlin et al., 2019;
Conneau and Lample, 2019) or machine transla-
tion models (Siddhant et al., 2020) has turned out

*Language relatedness is on a continuum, and the differ-
ence between dialects and distinct languages is often political.
Hence we use a broader term to indicate that the method is
not limited to dialects.
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to be surprisingly effective. Such representations
proved themselves beneficial for a range of diverse
tasks (Hu et al., 2020). However, they still require
large-scale data sets to train, making them imprac-
tical for low-resource languages, to which dialects
and language varieties typically belong.

Artetxe et al. (2020) introduce zero-shot cross-
lingual transfer by mapping monolingual repre-
sentations between languages. They also propose
adding Gaussian noise to the embeddings during
the fine-tuning step. Huang et al. (2021) also op-
erate in the embedding space by constructing ro-
bust regions in the embedding space to tolerate
noise in the contextual embedding. These are not
ideal strategies for closely related languages be-
cause words with similar surface forms could still
be far from each other in an embedding space.

Surface-level noise such as character substitu-
tions, insertions, and deletions has been proposed
as an effective data augmentation strategy for ma-
chine translation (Sperber et al., 2017; Heigold
et al., 2018; Belinkov and Bisk, 2018; Karpukhin
et al., 2019; Vaibhav et al., 2019; Anastasopou-
los et al., 2019). Authors report improvements
in system accuracy due to more robustness to-
wards speech recognition errors, spelling mis-
takes, and other naturally occurring noise in text
data. Even though cross-lingual transfer between
closely related languages has received some atten-
tion (Muller et al., 2020; Sakaguchi et al., 2017;
Zeman et al., 2017, 2018), it has not been investi-
gated whether this transfer can be improved with
character-level noise inserted at training time. We
tackle this in our work by adding random character-
level noise to the training data of a standard lan-
guage and applying the model to closely related
languages.

Exploiting orthographic similarity to improve
cross-lingual transfer between closely related lan-
guages is currently an understudied area. Relevant
previous work has been done by Sharoff (2018),
who used orthographic similarity to refine bilingual
dictionary induction.

Transliteration is another line of related work
that focuses on improving the transfer between
closely related languages with different alpha-
bets (Durrani et al., 2014; Lin et al., 2016; Muriki-
nati et al., 2020; Han and Eisenstein, 2019). On the
other hand, our work focuses on languages using
the same script. The recent report by Muller et al.

unseen data: Y

BERT continued fine-tuning
pre-training on task
( a .> ) Language q Task
Model Model
e onX
e onY on X + noise

® on X + noise
0-shot result

Figure 2: Methodology for zero-shot cross-lingual trans-
fer: We first continue the pre-training of a language
model (LM) on text. Then, we fine-tune the adapted LM
to task 7" in high-resource language X. We augment the
training data for continued pre-training or fine-tuning
with character-level noise and apply the model to task
T in a closely related low-resource language Y.

(2021) investigating transfer between the same and
different alphabets involves a zero-shot task trans-
fer which is, however, preceded by a language
model training on (unlabeled) target language data.
To the best of our knowledge, we are the first to
focus on zero-shot transfer learning techniques for
closely related languages.

3 Method

Consider a high-resource language X and a closely
related low-resource language Y. We perform zero-
shot cross-lingual transfer by pre-training a model
on unlabeled data from X (and optionally Y if
available), then fine-tuning on task 7" in language
X. The resulting model is applied to task 7" in lan-
guage Y. This procedure is illustrated in Figure 2.
Thus, our question is: How can we best make the
model trained on X generalize to Y'?

Ideally, such a model would take surface sim-
ilarity of words into account for generalization.
We hypothesize that in closely related languages,
unknown words in the low-resource language are
likely to correspond to similar known words in
the high-resource language in function and mean-
ing.> However, state-of-the-art language models
represent words through subwords (Sennrich et al.,
2016). This representation is sensitive to slight sur-
face variations: minor changes to a string will lead
to different segmentations and internal representa-
tions.

To account for this problem, we apply noise to
the surface representation of words in language X.
We implement this through character-level noise,
i.e., we randomly* select 10% — 15% of the tokens

3Please refer to Table Al for examples.
*We tested more linguistically motivated constraints on the
character replacements but did not find it to have a big effect.
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DE-BERT | DE-BERT | DE-BERT | DE-BERT
Noise + GSW + DE + DE + Noise
X 50.66 72.1 52.08 53.88
(4 72.77 82.11 71.13 70.45

Table 1: POS tag accuracy for Swiss German (GSW) on
different language models fine-tuned on German (DE)
training data with and without noise.

of a sentence® excluding numbers and punctuation.
One randomly selected character of the chosen to-
ken undergoes one of three possible operations:
delete, replace, insert, each with equal probability.
The latter two operations work with an additional
randomly selected character of the (extended) Latin
Alphabet for the source language. The following
sentence This is a short example. will end up with
some sort of a “typo”, e.g., as This ius a short ex-
ample. Noise can be applied during pre-training
on X, and/or during fine-tuning on a task 7' for
language X.

Another possibility to alleviate the subword rep-
resentation problem is BPE-dropout (Provilkov
et al., 2020), which applies different segmenta-
tions to words in a randomized fashion. BPE-
dropout was originally motivated to increase ro-
bustness for morphological variance. We hypoth-
esize that it is similarly effective for orthographic
variance; see Table A1l for examples. Overall, both
character-level noise and BPE-dropout encourage
the model to learn generalizations across similar
surface strings via shared subwords.

A second motivation for character-level noise
is that we aim to imbue the model with different
inductive biases. For example, a model for POS
tagging might learn that only a small set of words
can map to closed word classes such as articles,
whereas unknown words are likely to belong to an
open word class such as named entities. Training
with character-level noise will reduce this bias.

4 Experiments

We design our experimental procedure® to answer
the following question: Does character-level noise
improve zero-shot transfer to closely related lan-
guages? Within three controlled experiments, we

SWe relied on previous work by Vincent et al. (2008) where
similar choices were made regarding the amount of noise.

%We work with code bases by Wolf et al. (2020) and Wang
et al. (2021), multilingual BERT (mBERT), and the data sets’
default splits. Most of the corpora we work with were provided
by the Universal Dependency project (UD, Nivre et al. (2016));
refer to Appendix A.2 for details.

ablate the importance of the noise-augmentation
strategy. We select two cross-lingual tasks: 1)
POS tagging (15% noise) and 2) topic classifica-
tion (10% noise). While the former task illustrates
the strategy’s potential on word level, the latter
provides insight into how much it helps on text
level.

4.1 POS Tagging for Swiss German Dialects

As base models, we use the German “dbmdz”
BERT’ (DE-BERT) and mBERT (Devlin et al.,
2019). We continue pre-training on the SwissCrawl
corpus (Linder et al., 2020) for the Swiss German
(GSW) LM-adaptation and the DE part of The
Credit Suisse News Corpus (Volk et al., 2018) for
the German LM-adaptation. For task fine-tuning,
we use a DE UD treebank and for the evaluation
a part of NOAH’s Corpus (Hollenstein and Aepli,
2014).

As shown in Table 1, all settings profit from
fine-tuning with noise and bring about improve-
ments of up to 22 percentage points (DE-BERT
without pre-training). The best result with an accu-
racy of 82.11% for zero-shot GSW POS tagging is
achieved with a GSW-adapted language model and
task fine-tuning on a noised DE corpus. Consider-
ing the case where no GSW text data is available
for language model adaptation, we still achieve an
accuracy of 77.11% for zero-shot GSW POS tag-
ging with mBERT fine-tuned on noised DE data
(see Table 2).

4.2 POS Tagging with mBERT

We fine-tune mBERT on a UD corpus of a lan-
guage already seen during mBERT pre-training:
DE, Finnish (I1), Swedish (SV), French (%),
or Icelandic (IS, Arnardéttir et al. (2020)) and
test on a closely related language variety absent
from mBERT: GSW, OId French ( ), Livvi
( , Pirinen (2019)), Karelian ( , Pirinen
(2019)), or Faroese (FO, Tyers et al. (2018)). In
addition to noise, we added experiments with a
BPE-dropout of 0.1 (empirically selected) during
the fine-tuning step.

Table 2 illustrates that the method works well
for closely related language varieties (upper part)
but less for other language pairs, which are more
distant (lower part). We do see an occasional im-
provement for more distant language pairs, but they

"https://github.com/dbmdz /berts#
german—-bert
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BPE- BPE-Drop-

Languages | Baseline Dropout Noise -out+Noise
DE—GSW | 73.14 76.48 77.11 78.13
— 69.32 69.66  73.03 71.76
— 72.44 76.35 79.18 78.57
SV—FO 84.76 86.20 87.63 87.31
IS—FO 85.94 86.80 87.43 87.46
— 63.42 66.65 66.73 67.27
DE—FO 81.74 81.34  81.38 82.27
DE— 52.63 52.09 51.10 49.26
DE— 57.51 5747 5571 53.37
DE— 44.08 39.17 38.32 40.03
— 56.49 56.72  58.59 56.64
— 59.46 62.27 64.52 64.15
—FO 81.13 82.09 81.81 82.62

Table 2: Zero-shot POS tagging accuracy of different
strategies for several languages (TRAIN—TEST). The
training and test languages are closely related in the
upper but not in the lower part of the table as indicated
by the colors ( , West Germanic, North Germanic,
and language branches.) Noise con-
sistently adds additional accuracy points beyond BPE-
dropout performance increase.

are generally smaller and less consistent than the
improvements for the closely related languages we
evaluated.

Furthermore, we have to consider the (much)
lower baseline where an accuracy gain does not
have the same impact. Hence, the two strategies
BPE-dropout and noise improve the zero-shot per-
formance for POS tagging over several closely re-
lated language pairs. While BPE-dropout shows
some performance gain over the baseline, character-
level noise adds additional accuracy points.

4.3 Cross-dialect Topic Identification

We work with mBERT and MOROCO: The Molda-
vian and Romanian Dialectal Corpus (Butnaru and
Ionescu, 2019). The data set contains 33,564 news
domain text samples, each belonging to one of six
topics (culture, finance, politics, science, sports,
tech). We fine-tune mBERT on topic identification
on Moldavian (MD) and evaluate on Romanian
(RO) and vice versa. We emphasize the difference
between this sentence-level task and the previous
word-level task. While POS tagging works on the
word form and can benefit from transferring prior
information about probable POS sequences, topic
classification is mainly meaning-oriented, making
a transfer more challenging.

Topic identification results in Table 3 show that

Training ‘ Noise ‘ Test ‘ Accuracy

X 63.34
MD ‘ v ‘ RO ‘ 68.48
X 81.65
RO ‘ v ‘ MD ‘ 83.01

Table 3: Results for Moldavian (MD) vs. Romanian
(RO) cross-dialect topic identification. Training with
noise improves the transfer by 5.1 (MD—RO) respec-
tively 1.3 (RO—MD) percentage points.

fine-tuning with noise consistently improves the
accuracy. However, noise-augmented training data
appears to have a more substantial effect when
transferring from MD to RO (5.1 percentage points)
than vice-versa (1.4 percentage points). This is in-
teresting given that RO represents the high-resource
standard language in this context (being one of
the languages used to train mBERT), while MD is
its low-resource variety. We conjecture that this
is caused by the fact that the model trained in
MD struggles with word meaning and is, therefore,
more sensitive to variations than its RO counter-
part.

5 Analysis

Figure 3 illustrates the prediction differences of a
model trained with and without noise. We observe
that the models trained without noise have learned
a tendency towards labeling unknown words as
open-class words such as names (NE) or adjectives
(ADJD), with the label for foreign words (FM) be-
ing massively overpredicted, while it tends to under-
generate closed-class tags such as articles (ART) or
adverbs (ADV). In contrast, the model trained with
noise comes much closer to the gold standard tag
distribution. It has learned to rely more on probable
POS tag sequences than on the surface form of a
token. Consider e.g. the GSW article d (DE die;
the). In the DE training corpus, the token appears
only as a foreign word (FM) because it also happens
to be a French word, but the model trained with
noise is more likely to correctly tag it as an article,
relying more on context than just strict mappings.®

Figure 4 depicts the per-type F1 change for the
most frequent STTS (Schiller et al., 1999) tags.
The past participles of the auxiliary verbs (VAPP)
form another closed class which profits substan-
tially from a model focusing on tag sequences given
the compound structure of the perfect tense. As
Swiss German does not have a simple past, the

8For more examples, please refer to the Appendix A.1.
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Figure 3: Number of tokens per POS tag in the gold
standard vs. predictions of two models, fine-tuned with
and without noise. Only the most frequent STTS tags
are displayed.
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Figure 4: Per-type F1 change of the most frequent STTS
tags illustrating which tags profit the most when the
model is fine-tuned with noise.

perfect tense is much more frequent than it is in
German.

5.1 Conditional Random Field

Given that one potential consequence of adding
noise is that the model relies more on surrounding
context and probable POS tag sequences (rather
than strict word-level mappings), we compare our
results to a method that explicitly models tag
sequences, Bi-LSTMs+CRF (bidirectional long-
short-term memory + conditional random field).
This method was used to achieve state-of-the-art
performance for POS tagging (Huang et al., 2015).
For the implementation, we added a CRF layer on
top of BERT.”

The added CREF layer did not improve the per-
formance of the fine-tuned mBERT model for zero-
shot POS tagging for Swiss German trained on
German, as presented in Table 4. In contrast, noise
injection has proven effective in both configura-

"Making use of the TorchCRF library:
github.com/s14t284/TorchCRF.

https://

Noise | mBERT | mBERT+CRF

X 70.24 69.26
v 78.57 76.90

Table 4: Zero-shot POS tag accuracy for Swiss German
on mBERT & mBERT+CRF models trained on German
with and without noise.

tions.

6 Discussion

Our investigation into cross-lingual zero-shot trans-
fer between closely related languages demonstrates
that simple data augmentation with character-level
noise can successfully improve transfer, with ab-
solute improvements ranging from 1.4 (RO—MO
transfer of topic identification) to 22 (DE—GSW
transfer of POS tagging in the case of DE-BERT
without pre-training) percentage points.

The examination of prediction errors shows that
a baseline BERT model has learned heuristics for
unseen words that are undesirable for transfer be-
tween closely related languages. In contrast, a
model trained with noise can combat this bias with-
out substantial performance losses in the source
languages.

We expect that the final effectiveness of using
character-level noise for zero-shot cross-lingual
transfer depends on the task and language charac-
teristics. We plan to evaluate the effect of character-
level noise in a broader range of settings in future
work. More broadly, we encourage further research
that exploits surface-level word similarity for cross-
lingual transfer between related languages and di-
alects, rather than focusing purely on vector space
representations.
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A Appendix

A.1 Analysis

Table A1l shows Swiss German (GSW) words (and
their corresponding standard German (DE) form
and English (EN) translation) that had the high-
est accuracy increase when using a part-of-speech
(POS) tagging model trained with character-level
noise compared to the model trained without noise.
These words were wrongly tagged with open-class
tags by the baseline model. However, the model
trained with noise was able to reduce this bias and
thus correctly tag them with their closed-class tag.

Furthermore, in most cases, one substitu-
tion/insertion/deletion-operation on the DE word
would not suffice to get an exact match with the
GSW word. This indicates that it is unnecessary
to design a noise function that closely mirrors the
linguistic differences between variants.

A.2 Data Sets

A.2.1 Universal Dependencies

Table A2 contains the Universal Dependencies
treebanks (UD, Nivre et al. (2016)) we used in
this work. The treebanks can be downloaded
via https://universaldependencies.
org/#download.

A.2.2 Other Data Sets

Table A3 shows data sets apart from UD that we
used in this work.
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Most frequent

Error reduction with

GSW | DE EN POS without noise Correct POS noise (relative/absolute)
ond und and FM KON 99.00% (-104)
worde | geworden become VVPP, ADJD VAPP 98.73% (-156)
dr der the FM, NE, NN ART 98.46% (-128)
hid hat had VVFIN, FM VAFIN 98.21% (-55)
gsi gewesen  been VVPP, FM VAPP 98.19% (-434)
vu von from FM, NE APPR 98.18% (-108)
eme einem a ADJA, FM ART 97.96% (-48)
grad | gerade just ADJD ADV 97.59% (-81)
vum vom from the FM, APPR APPRART 96.49% (-55)
de der the FM, NE, ADJA ART 95.76% (-1558)

Table A1: Swiss German (GSW) words (and their corresponding standard German (DE) form and English (EN)
translation) with the highest error reduction using a part-of-speech (POS) tagging model trained with character-level
noise compared to the model trained without noise.

Usage ‘ Language (ISO) Language Branch Treebank # Sentences
Finnish (FI) Finnic TDT 15K
French (FR) Western Romance  GSD 16K
Training | German (DE) West Germanic HDT 190K
Icelandic (IS) North Germanic IcePaHC 39K
Swedish (SV) North Germanic Talbanken 5K
Faroese (FAO) North Germanic OFT 1208
Test Karelian (KRL) Finnic KKPP 228
Livvi (OLO) Finnic KKPP 125

Old French (OFR) Western Romance =~ SRCMF 1927

Table A2: Universal Dependency treebanks we used for our experiments with the number of sentences ("#
Sentences") we used for training or testing (specified in "usage").

Corpus name (Language) Size Link

Moroco (MD & RO) 33.5K text samples https://github.com/butnaruandrei/MOROCO

NOAH’s Corpus (GSW) 7.3K sentences https://noe-eva.github.io/NOAH-Corpus/

SwissCrawl (GSW) 500K sentences https://icosys.ch/swisscrawl

The Credit Suisse News Corpus (DE) | 105K sentences https://pub.cl.uzh.ch/projects/bdc/en/corpora.php

Table A3: Data sets we used for our experiments in addition to the UD treebanks in Table A2.
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