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Abstract

Knowledge-enhanced methods have bridged
the gap between human beings and machines in
generating dialogue responses. However, most
previous works solely seek knowledge from a
single source, and thus they often fail to obtain
available knowledge because of the insufficient
coverage of a single knowledge source. To this
end, infusing knowledge from multiple sources
becomes a trend. This paper proposes a novel
approach Knowledge Source Aware Multi-Head
Decoding, KSAM, to infuse multi-source knowl-
edge into dialogue generation more efficiently.
Rather than following the traditional single
decoder paradigm, KSAM uses multiple inde-
pendent source-aware decoder heads to alle-
viate three challenging problems in infusing
multi-source knowledge, namely, the diversity
among different knowledge sources, the indef-
inite knowledge alignment issue, and the in-
sufficient flexibility/scalability in knowledge
usage. Experiments on a Chinese multi-source
knowledge-aligned dataset demonstrate the su-
perior performance of KSAM against various
competitive approaches.

1 Introduction

Conversational AIs play an indispensable role in
the human-computer interaction (Chen et al., 2017).
Humans can use their learned knowledge to under-
stand the context, reason the intrinsic semantic,
and generate informative responses. However, tra-
ditional dialogue generation methods can only use
dialogue history that carries limited knowledge to
generate responses (Sutskever et al., 2014), bring-
ing meaningless responses and frustrating user
experience (Li et al., 2016; Ghazvininejad et al.,
2018). To bridge such a gap, incorporating exter-
nal knowledge into the dialogue generation is a
feasible way (Zhou et al., 2018).

∗ Corresponding author: Ying Li, li.ying@pku.edu.cn.
The email of the first author: wusixing@pku.edu.cn

Commonsense

CameraA camera is 

an optical ins

trument that 

captures a 

visual image.
Lens

Ha
sA

DSLR

Related
To

Plain Text Table
Entity iPhone 13 Pro

OS iOS 15

Display
6.1-inch
ProMotion

… …

Dialogue 1

Q: Can you recommend
a camera?
R: I think DSLR is a
good choice.

Dialogue 2

Q: Apple just released
the new iPhone 13 Pro.
R: Yep, ProMotion 
finally came to iPhone!

TBA

Dialogue 3

Q: Do you know how 
to get bitcoin?
R: I don't know what 
you're talking about.

Figure 1: Examples. Diversity: the above three knowl-
edge sources have different structures; Indefinite Align-
ment: each case uses different knowledge sources. Scal-
ability: case #3 may require a new knowledge source.

Compared to the traditional non-knowledge-
enhanced methods, the advantages of knowledge-
enhanced methods come from the adopted exter-
nal knowledge source (Wu et al., 2022). If a
knowledge-enhanced model fails to seek available
knowledge from the given knowledge source, it can
only degenerate into a traditional manner. How-
ever, most previous works (Zhang et al., 2020a;
Yu et al., 2020) only seek knowledge from a sin-
gle source. The knowledge coverage 1 of a single
knowledge source is always insufficient (Wu et al.,
2021a); thus, dialogues often can not benefit from
the given knowledge source. Meanwhile, a single
knowledge source is also difficult to meet the var-
ious requirements in the real scenarios (Liu et al.,
2019). Recently, researchers began to seek knowl-
edge from multiple sources to alleviate such issues.
GOKC generates dialogues conditioned on both
the background knowledge and the goal knowl-
edge (Bai et al., 2021); The recent MSKE leverages
heterogeneous knowledge from multiple sources
(Wu et al., 2021a). With more knowledge sources,
they have successfully improved the performance
of knowledge-enhanced dialogue generation.

Nonetheless, as illustrated in Figure 1, many
challenges in infusing multi-source knowledge into

1In other words, how many dialogues can be aligned to a
knowledge source.

353



dialogue generation have not been well solved:
1) Knowledge Diversity: Notable differences in-
evitably appear among different types of knowl-
edge sources, which can be attributed to the differ-
ent structures (i.e., text knowledge (Dinan et al.,
2019) vs. commonsense knowledge graph (Zhang
et al., 2020a)), different domains (i.e., open-domain
(Speer et al., 2017) vs. specific-domain (Liu et al.,
2018a)), and many other factors (Yu et al., 2020).
Previous works only considered the difference in
the encoding stage by using different knowledge-
specific encoders, but failed to handle the differ-
ence in the decoding stage; 2) Indefinite Alignment:
Due to the limitation of knowledge coverage, a sin-
gle dialogue usually can not fully use all n provided
knowledge sources. Depending on the situation,
each case may use an arbitrary number ∈ [0, n]
of sources, bringing more complexities; 3) Insuf-
ficient Flexibility and Scalability: A model itself
should not be limited to a knowledge combination
of specific types and a specific amount.

This paper proposes a KSAM (Knowledge Source
Aware Multi-Head Decoding) approach for multi-
source knowledge-enhanced dialogue generation,
which explicitly considers the three challenges
mentioned above. Besides the dialogue history,
KSAM uses three different knowledge sources, i.e.,
plain text knowledge, commonsense fact knowl-
edge, and table attribute knowledge, to generate the
target response. We propose four Source-Specific
Encoders to encode such four input sources2. In
the decoding stage, unlike previous works that only
adopt a single-head decoder, we assign an inde-
pendent Source-Aware Decoder Head for each in-
put source. Each decoder head is a source-aware
and fully functional decoder network, generating
a source-aware response independently. Thus, we
can handle the differences among multiple sources
by tuning the source-specific encoder or the source-
aware decoder head without impacting other en-
coders/heads. Subsequently, we propose a Source
Fusion Network (SFN) to make the final prediction
by collecting and fusing the outputs from decoder
heads. With source-aware decoder heads and the
fusion gates outputted by SFN, KSAM can alleviate
the issue of indefinite knowledge-alignment. Mean-
while, SFN does not limit the number of decoder
heads or the type of a decoder head; thus, KSAM
theoretically supports the use of any combination
of knowledge sources.

2source means the dialogue context or a knowledge input.

We evaluate KSAM and baseline models on a pre-
viously released Chinese dataset (Wu et al., 2021a),
which is aligned to three knowledge sources, i.e., a
plain text knowledge base, a commonsense knowl-
edge base, and a table knowledge base. Both the
automatic and human evaluation results demon-
strate the superior performance of KSAM against
various competitive baselines. We also conduct
extensive experiments to analyze KSAM further.

2 Approach

2.1 Problem Statement and Overview

The goal is to generate a response Y condi-
tioned the dialogue history X and a set of knowl-
edge {Ki}. Each X = (x1, · · · , xlX ) / Y =
(y1, · · · , ylY ) is a word sequence; each knowledge
Ki = (ki,1, · · · , ki,lKi

) is a set/list of entries that
are retrieved from the i-th knowledge source.

As illustrated in Figure 2, this paper proposes
a novel Knowledge Source Aware Multi-Head De-
coding approach (KSAM), which consists of three
parts: 1) Source-Specific Encoders: We propose
a history encoder EncX and several knowledge
encoders {EncKi} to encode the X and {Ki} into
HX and {Ki}; 2) Source-Aware Decoder Heads:
For alleviating the interference among sources and
improving the scalability, each X or Ki has an
independent and fully functional decoder head
DecH/Ki

; 3) Source Fusion Network: It step-
wisely collects the predicted outputs from decoder
heads and makes the final prediction.

2.2 Source-Specific Encoders

2.2.1 Dialogue History Encoder

Dialogue history encoder EncX aims at encoding
the dialogue history X into hidden states; thus, a bi-
directional GRU (g) (Cho et al., 2014) is adopted.
At each time step t, the forward/backward GRU
reads xt and the last state hf

t−1/hb
t+1:

ht = [hf
t;h

b
t ] =[

→
g (xt,h

f
t−1);

←
g (xt,h

b
t+1)]

(1)
where x is the word embedding of x, [·; ·] is the
concatenation. The result is H = (h1, · · · ,hlX).

2.2.2 Knowledge Encoders

This paper studies three knowledge sources: plain
text knowledge KP , commonsense fact knowledge
KC , and table key-value attribute knowledge KT .
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Figure 2: The architecture of KSAM. In this paper, the implementation considers three knowledge sources, i.e., text
knowledge, commonsense knowledge, and table knowledge; thus, there are four source-specific encoders and four
source-aware decoder heads. Each source-specific encoder or source-aware decoder has its own unique internal
independent network. At each time step, the Source Fusion States first gathers the predictions of all decoder heads,
then makes a fused final prediction.

Plain Text: Each text KP is a word sequence
(kP,1, · · · , kP,lP ); therefore, we embed KP to
Ke

P = (ke
P,1, · · · ,ke

P,lP
) using word embedding.

Commonsense Facts: Each KC is a set of facts
{kC,i}, where each kC,i has a head entity eC,i,h, a
relation eC,i,r, and a tail entity eC,i,t. Thus, kC,i

can be embed as ke
C,i = [eC,i,h; eC,i,r; eC,i,t] us-

ing embedding pretrained by TransE (Bordes et al.,
2013) or other learning approaches. Finally, KC is
embed to a set of embedding, i.e., Ke

C = {ke
C,i}

Table Attributes: Each table KT is a set of key-
value attribute pairs {kT,i = (aki , a

v
i )}, where

the key aki is a word and the value avi =
(awi,1, · · · , awi,j · · · ) is a text sequence. Such a struc-
ture is inconvenient for the encoding. Thus, fol-
lowing (Wu et al., 2021a), KT is first decomposed
into to a set of key-word pairs {kkwT,i,j}, and each
key-word pair is embedded as:

kkw
T,i,j = [aki ;a

w
i,j;posi,j] (2)

where aki is the word embedding of the i-th key,
awi,j is the word embedding of the j-th word of the
i-th value, posi,j is the positional embedding to
indicate the structure information. Finally, KT is
embed to a set of embedding, Ke

T = {kkw
T,i,j}.

Encoders: Three knowledge encoders EncKP
,

EncKC
, EncKT

are implemented as three indepen-
dent Transformer networks (Vaswani et al., 2017):

KP = EncKP
(POS(Ke

P))

KC = EncKC
(Ke

C)

KT = EncKT
(Ke

T)

(3)

where an output K∗ can be viewed as a list or a set
of vectors depending on the input Ke

∗. We use a
set to pack Ke

C/Ke
T because no strong sequential

correlation appears; thus, their encoders do not use
the positional layer POS. While the plain text Ke

P

is a sequence, unlike encoding the dialogue history
X , we use a Transformer with POS because Ke

P

has a significantly longer length.

2.3 Multi-Head Decoding

Previous knowledge-enhanced works (Wu et al.,
2020; Bai et al., 2021) often use the single decoder
paradigm. However, when using multiple sources,
a single decoder always faces more challenges;
namely, Knowledge Diversity, Indefinite Alignment,
and Insufficient Flexibility and Scalability.

Thus, we propose to use multiple source-aware
decoder heads, allocating one independent and
fully functional decoder head for using the dia-
logue history or each knowledge source. The re-
sults of such decoder heads are subsequently fused
by Source Fusion Network. The advantages can
be summarized as 1) Each decoder head is inde-
pendent; we can easily tune each network based
on the source-specific characteristics without im-
pacting other heads; 2) Each head does not need to
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consider the complex combinations of knowledge
usage. Each head only considers the usage of the
corresponding input source. Thus, we can employ
the more professional Source Fusion Network to
alleviate the impact of indefinite alignment more
efficiently; 3) Higher flexibility and scalability be-
cause Source Fusion Network does not limit the
number and the knowledge-type of heads.

2.3.1 Source-Aware Decoder Head
Each decoder head Dec∗ ∈ {DecH , DecKP

,
DecKC

, DecKT
}3 uses the corresponding source-

specific dialogue/knowledge memory M∗ ∈
{H,KP,KC,KT} to predict the target response
with own networks/parameters θ∗:

Dec∗(M∗; θ∗), ∗ ∈ {H,KP ,KC ,KT } (4)

State Updating: At time t, each Dec∗ first up-
dates its state z∗ with a GRU network (g∗):

z∗,t = g∗(z∗,t−1,yt−1,a∗,t), z∗,0 = hlX (5)

where each initial state z∗,0 is universally initial-
ized by the last dialogue history state hlX , yt−1 is
the embedding of the last generated token, a∗,t is
the attentive readout of the corresponding M∗.

Memory Selection: To obtain the attentive read-
out a∗,t by selecting the memory M∗, we propose
a Single-Side Attention for selecting the X or KP

(i.e., M∗ = H/KP), and a Dual-Side Attention for
selecting the KC/T (i.e., M∗ = KC/T).

1. Single-Side Attention: we use a distribution
align∗,t to measure the relevance between each
memory slot4 m ∈ M∗ and the current context:

align∗,t ∈ R1×lM∗ = FS([yt−1; z∗,t−1]W
A
∗ M

T
∗ )

(6)
where FS is softmax, WA

∗ is a parameter,
align∗,t is an align distribution, i.e., weights.
Then, the attentive readout a∗,t = align∗,tM∗ is
the weighted sum of the memory M∗ ∈ RlM∗×dim.

2. Dual-Side Attention: The commonsense
knowledge KC and the table knowledge KT

have two value sides (head/tail entities, attribute
key/words). Considering this, similar to the multi-
head attention, the corresponding attentive readout
adopts two different side-aware align distributions:

aKC,t = [alignhead
KC,tKC;align

tail
KC,tKC]

aKT,t = [alignkey
KT,tKP;align

value
KT,t KP]

(7)

3∗ refers to a source
4In other words, each slot is an encoded vector ∈ K∗

The computations of aligns in Equation 7 still
follow the same way in Equation 6. In each head,
two aligns use the same network but the different
parameters; the differences and the uniqueness of
two aligns come from the following copy mecha-
nism.

Token Perdition: Each source-aware decoder
head in KSAM can generate a complete probability
distribution to predict the next token.

First, a decoder head can generate a token by
selecting a word from the fixed vocabulary V using
the distribution PV

∗,t(w), which is given by:

FS(tanh([z∗,t;yt−1;a∗,t]W
V1
∗ )WV2

∗ ) (8)

Next, to address the OOV issue and improve the
informativeness, a decoder head can also copy a
word from the corresponding source by using the
previous attentive distribution align∗. In DecH
and DecKP

, alignH/KP,t(w) points out the prob-
ability to copy the word w from X/KP . In DecKC

,
align

head/tail
KC,t (w) points to the head/tail entity of

the corresponding commonsense fact w. In DecKT
,

align
head/tail
KT,t (w) points to the attribute key/word

of the corresponding attribute key-word pair w.
Finally, we use the following fusion gate f∗ to

fuse all generation modes for each head:

f∗ ∈ R1×2/3 = FS([z∗,t;yt−1;a∗,t]W
M
∗ ) (9)

then, the aggregated probability is given by:

P∗,t(w) =
∑
i

f∗[i]align
i
∗,t(w)+ f∗[−1]PV

∗,t(w)

(10)

2.3.2 Source Fusion Network
Each head takes the responsibility for a single-
source-aware prediction. For generating multi-
source knowledge-enhanced responses, we propose
a Source Fusion Network, which uses two gates,
fh and f st , to fuse the probability distributions out-
putted by decoder heads:

Pt(w) =
∑

Pi,t
fh[i]f st [i]Pi,t(w)

Pi,t ∈ {PH,t,PKP,t,PKC,t,PKT,t}
(11)

where the decoder head gates fh ∈ R1×4 are:

FS(tanh([{a∗,1}]WH1)WH2)) (12)

and the step-wise gates f st ∈ R1×4 are given by:

FS(tanh([yt−1; {z∗,t}; {a∗,t}]WS1)WS2))
(13)
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Training: The objective function has two terms:

L = Lfused +
∑
headi

Lheadi (14)

The first adopts the aggregated Pt(w) to com-
pute the overall negative log-likelihood (NLL) :

Lfused = −
∑
t

logPt(yt|y1:t−1, X, {K}) (15)

The next term sums the NLLs of all heads:∑
headi

Lheadi = −
∑
headi

∑
t

logPi,t(yt|y1:t−1, X,Mi)

(16)
The first Lfused can optimize the whole model,

and the second
∑

headi
Lheadi makes sure that each

head can move towards a better direction.

3 Experiment

3.1 Settings
Dataset: As reported in Table 1, we use a multi-
source knowledge-aligned conversational dataset5

released by Wu et al. (2021a), which collected di-
alogues from three weibo datasets (Shang et al.,
2015; Ke et al., 2018; Cai et al., 2019), common-
sense knowledge from ConceptNet (Speer et al.,
2017), and plain text/table knowledge from the
Wikipedia. The vocab size is 21,924.

Baselines: Depending on the knowledge source:
1.Traditional: The attentive Seq2Seq (Luong

et al., 2015), and the improved Pointer-Generator
Network (PGN) (See et al., 2017); a GPT-based
model CDial-GPT (Wang et al., 2020b) , which has
been pre-trained on 1.3B words+6.8M dialogues.

2.Plain Text: RefNet uses a reference network to
use the text-based knowledge (Meng et al., 2020).

3.Commonsense: The first work CCM (Zhou
et al., 2018), and two prior STOAs ConcpetFlow
(Zhang et al., 2020a), ConKADI (Wu et al., 2020).

4.Table: SA-S2S (Liu et al., 2018b) and
TransInfo (Bai et al., 2020) use table knowledge
via a SA-LSTM/Transformer encoder, respectively.

5.Heterogeneous: GOKC is a recent knowledge-
enhanced approach (Bai et al., 2021). It supports a
variety of knowledge types. We disable the use
of goal knowledge because we study the open-
domain dialogue and no goal is provided in the

5https://github.com/pku-sixing/
EMNLP2021-MSKE_Dialog)

dataset. MSKE (Wu et al., 2021a) is a multi-source
knowledge-enhanced approach, which supports to
use multiple sources at the same time.

Implementations: For Seq2Seq and PGN, we
use our re-implemented PyTorch codes; for
ConKADI, GOKC, and MSKE, we use the official
codes; for the remaining baselines, the experimen-
tal results are collected from MSKE (Wu et al.,
2021a). Therefore, in our (re-)implementations, we
keep the same hyper-parameter setting as MSKE if
available. In short, all dialogue history encoders
are a 512-dimensional bi-GRU, all Transformers
of knowledge encoders are 2-layer 8-head and 512-
dimensional, all decoders are a 512-dimensional
GRU. We use a 200-dimensional pretrained Chi-
nese embedding (Song et al., 2018) to initialize all
word embedding matrix, a 100-dimensional pre-
trained TransE embedding (Bordes et al., 2013)
to initial the embedding of commonsense knowl-
edge entities/relations. We use Adam as the op-
timizer. The mini-batch size is 32; the learning
rate is 0.0001. If the loss on the validation set
starts to increase after an epoch, the learning rate
will be halved. The training will be automatically
stopped if the loss on the validation set increases in
two successive epochs. Consequently, our model
costs about two days on an Nvidia RTX 3090 GPU.
In the inference stage, we apply the beam-search
decoding strategy, where the beam width is 10.

3.2 Automatic Metrics
For measuring the relevance between the ground-
truth response and the generated responses. We
use the sentence-level embedding-based Embed-
A/G/X (Average / Greedy / Extreme) (Liu et al.,
2016; Bai et al., 2021), the character-level uni-gram
CharF1, the word-level BLEU-1/2/3/4 (Papineni
et al., 2002), and the word-level Rouge-L (Lin,
2004). Following Zhang et al. (2020a), we use
the uni/bi-gram DISTINCT (DIST-1/2) to evaluate
the word-level diversity, and the 4-gram Ent-4 to
evaluate the word-level informativeness.

3.3 Results
3.3.1 Automatic Evaluation
We report the results in Table 2. For MSKE and our
KSAM, we evaluate their single-source ablated vari-
ants at the same time. For KSAM, we additionally
evaluate some ablated/modified variants.

Single-Source Knowledge: Compared to tradi-
tional models, most single knowledge-enhanced

357

https://github.com/pku-sixing/EMNLP2021-MSKE_Dialog
https://github.com/pku-sixing/EMNLP2021-MSKE_Dialog


Dialogues #Training Set / #Dev Set/ #Test set 70K/ 4K/ 4K Knowledge Coverage in Three Sets
Commonsense #Entities/ #Relations/ # Facts 27K/ 26/ 696K 48.8%/ 48.8%/ 48.8%

Text #Paragraphs 1,663K 24.7%/ 24.2%/ 24.4%
Table #Infobox Tables 1,581K 26.9%/ 26.9%/ 27.6%

Any of them At least one type of knowledge can be matched N/A 79.6%/ 79.8%/ 79.8%

Table 1: Dataset Statistics. The coverage reports the ratio of how many dialogues can be aligned to a source.

Model Know. Usage PPL ↓ Embed-A/G/X CharF1 ROUGE-L BLEU-1/2/3/4 DIST-1/2 Ent-4
Seq2Seq X 100.48 0.848 0.689 0.635 17.49 13.30 14.07 4.95 1.91 0.80 1.93 10.14 9.87

PGN X 95.54 0.842 0.684 0.635 19.37 14.08 13.85 5.43 2.38 1.16 7.24 28.07 10.64
CDialGPT* X + Pretrain - 0.836 0.678 0.631 - 12.88 15.03 5.96 2.86 1.56 5.07 23.97 11.03

RefNet* X +KP - 0.829 0.682 0.622 - 11.92 14.25 4.67 1.62 0.59 2.75 14.53 10.16
GOKCPlain X +KP 94.53 0.842 0.698 0.644 17.07 13.80 15.03 6.11 2.97 1.61 2.54 16.75 8.54
MSKEPlain X +KP 89.81 0.852 0.700 0.647 20.45 15.11 15.04 5.90 2.54 1.19 5.38 21.25 10.18
KSAMPlain X +KP 84.48 0.851 0.689 0.642 20.94 15.23 15.79 6.79 3.51 2.04 6.95 33.69 11.10

CCM* X +KC - 0.840 0.697 0.635 - 13.03 14.16 4.97 1.98 0.82 1.42 9.01 8.88
ConceptFlow* X +KC - 0.845 0.696 0.637 - 12.82 14.95 5.10 2.00 0.84 1.56 9.89 8.90

ConKADI X +KC - 0.849 0.688 0.633 18.32 13.55 15.90 5.75 2.44 1.11 3.35 18.97 10.69
GOKCCSK X +KC - 0.846 0.689 0.642 20.58 15.03 14.57 6.27 3.12 1.77 7.04 31.94 11.03
MSKECSK X +KC 86.14 0.850 0.694 0.647 20.71 15.23 14.73 6.25 3.09 1.73 6.52 27.53 10.52
KSAMCSK X +KC 83.13 0.849 0.686 0.643 20.91 15.20 15.49 6.75 3.52 2.05 7.56 36.34 11.19

SA-S2S* X +KT - 0.824 0.690 0.636 - 12.83 14.24 5.42 2.26 0.99 3.22 12.70 7.77
TransInfo* X +KT - 0.825 0.689 0.638 - 13.16 14.18 5.45 2.26 1.01 3.78 15.34 8.38

GOKCTable X +KT 89.86 0.843 0.699 0.647 17.56 14.13 15.38 6.16 2.92 1.55 2.51 17.45 8.50
MSKETable X +KT 87.02 0.850 0.694 0.647 20.71 15.23 14.73 6.25 3.09 1.73 6.52 27.53 10.52
KSAMTable X +KT 83.85 0.851 0.689 0.644 21.25 15.35 15.74 6.84 3.58 2.10 7.51 35.97 11.19

MSKE X +KP+C+T 81.10 0.854 0.700 0.653 21.70 16.14 15.73 6.82 3.40 1.92 6.04 27.50 10.82
KSAM X +KP+C+T 77.65 0.856 0.697 0.649 21.86 16.09 16.95 7.30 3.72 2.15 6.31 30.20 10.96
−PV

K∗ X +KP+C+T 85.70 0.849 0.690 0.644 21.70 15.72 16.23 7.03 3.61 2.08 7.87 36.25 11.26
+Link X +KP+C+T 83.07 0.858 0.702 0.654 21.47 16.01 16.84 7.05 3.45 1.88 5.23 21.77 10.20

Table 2: Automatic results. The last section evaluates the ablated/modified KSAM variants. * is collected from Wu
et al. (2021a), - is not available or comparable ( GOKCCSK outputs a abnormally large PPL ) , ↓ indicates lower is
better, and PPL refers to perplexity. We use different colors to indicate the best performance in each group; and we
use colored to indicate the best score among models except the ablated/modified KSAM .

models have notable improvements, indicating the
external knowledge is quite helpful in the open-
domain dialogue generation. The recent GOKC,
MSKE, and our KSAM are not limited to a specific
type of knowledge, and such three models are al-
most the best three in each group. It implies that
they do not improve flexibility at the expense of
performance. Meanwhile, our KSAM is undoubt-
edly better: 1) KSAM has more the best results in
every group; 2) The results among the three knowl-
edge sources are pretty stable and deliver similar
trends; on the contrary, GOKC is not stable be-
cause it has quite different results with different
knowledge. Consequently, we can say that every
source-specific encoder and source-aware decoder
in KSAM are well-designed and more efficient.

Multi-Source Knowledge: Only MSKE and
KSAM can use all three knowledge sources at the
same time. Two models have the best and the most
balanced performance among all models. Compar-
ing them, MSKE only achieves slight advantages
in three metrics (Embed-G/X & ROUGE-L), but

KSAM has more notable leaderships in the remain-
ing metrics. In addition, the automatic evaluation
can not fully reflect our advantages. Compared to
MSKE, KSAM has better scalability and flexibility
in using knowledge sources, due to the design of
independent source-aware heads.

The Partial Degradation of KSAM: The full
KSAM brings notable improvements except in
DIST-1/2 (diversity) and Ent-4 (informativeness).
Such performance degradation does not surprise
us: 1) Copying words besides the fixed vocabulary
is a crucial way to improve diversity and infor-
mativeness. In KSAM, the probability distribution
used to copy is already fused in each decoder head;
therefore, Source Fusion Network can not explicitly
perceive all copy distributions when fusing single-
source distributions to make the final prediction.
This may impact the enthusiasm/chance of copy-
ing words when appending more decoder heads;
2) The adopted beam-search decoding algorithm
can only consider one distribution; thus, we have
no chance to leverage such source-aware distribu-
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tions. 3) DIST and Ent do not consider fluency
and rationality, higher is not always better. For
example, DIST/Ent will give high scores if we ran-
domly generate some disordered sentences. We
should comprehensively consider every dimension.
We verified 1) and 3) in our model variant −PV

K∗
,

where three knowledge source-aware heads only
output the copy probability without being fused
with the vocab probability PV

K∗
. It can be seen that

−PV
K∗

increased diversity/informativeness, but de-
creased the relevance and fluency. We will continue
to improve this in the future.

The Coupling among Heads: In KSAM, each
decoder head Dec∗ is an independent and fully
functional network. The internal state of a head
can not communicate with each other. Does
KSAM need to strengthen the coupling between
heads? To verify this, we design a model vari-
ant +Link. Similar to the (Kim et al., 2020;
Zhao et al., 2020), we use a GRU to manage a
global sequential state st, which is updated with
the memory readouts and the states of heads: st =
GRU(st−1, [yt−1; {z∗,t}; {a∗,t}]). Then, we re-
place yt by [st−1;yt−1] when operating each head,
where st can be regarded as a link to strengthen
the coupling. As reported in Table 2, the perfor-
mance has decreased. It indicates that there may
be interference among different sources, and our
decoupled design is helpful to alleviate this issue.

3.3.2 Human Evaluation:
The comparison is pair-wise and we select 5 bet-
ter baselines in the automatic evaluation. We em-
ployed 3 well-educated native speakers as volun-
teers to score 200 sampled cases (1,000 compar-
isons in total) from three criteria: 1) Fluency con-
siders the fluency; 2) Rationality measures the rele-
vance and rationality; 3) Informativeness measures
the quality of the information offered in the gen-
erated response. Following (Wu et al., 2021a), we
count the agreement among volunteers. The 2/3
agreements for three metrics are 98.7%, 93.7%,
and 94.1%; the 3/3 agreements are 61.0%, 52.7%,
51.6%.

Table 3 reports the averaged human evaluation
score. Notably, KSAM significantly outperforms
baselines in all dimensions, demonstrating the
same advantage as in the automatic evaluation. In
terms of fluency, the results are less distinguishable
than the other two metrics (except GOKCCSK ),
indicating most models can already generate fluent

(%) Fluency Rationality Informativeness
vs. - 0 + - 0 + - 0 +

Seq2Seq 11.2 55.2 33.6 21.8 25.6 52.5 21.0 24.0 55.0
PGN 7.7 57.8 34.5 2.0 26.0 54.0 20.3 20.7 59.0

GOKCCSK 3.0 20.0 77.0 5.7 9.3 85.0 9.8 10.8 79.4
ConKADI 7.5 64.3 28.2 26.5 20.8 52.7 34.5 16.7 48.8

MSKE 7.7 65.7 26.7 18.7 32.8 48.5 19.6 26.2 54.2

Table 3: Human evaluation. -/0/+ means the ratio that
KSAM is worse/tie/better. Score means significantly
better (sign test, p-value < 0.0001, ties are removed).

responses in most cases. In terms of rationality and
informativeness, the results are more distinguish-
able and can reflect the advantage of using external
knowledge. GOKCCSK does not perform well in
human evaluation because the generated responses
are always disordered and unnatural.

3.4 Analyses and Discussions

Fused Each Head Dec Case-Level Bounds
SFN X KC KP KT Best Worst Upper Lower
77.7 104.5 124.3 116.7 119.4 93.1 133.7 47.9 258.0

Table 4: Perplexities. ‘Fused’ considers the prob (prob-
ability) fused by SFN . ‘ Dec’ considers the prob pre-
dicted by each head. ‘Case-Level’ selects the best/worse
prob from four source-aware heads for each response.
‘Bounds’ uses the ground-truth to select the best/worse
prob from four heads for each token, which can roughly
show the theoretically best/worst fusion performance.
All results are computed on the same full KSAM.

Metrics Base DecH DecKP DecKC DecKP Full
PPL↓ 98.0 92.1 96.6 94.6 95.3 77.7

Embed-A 0.848 0.848 0.852 0.850 0.851 0.856
BLEU-4 0.95 2.03 1.04 0.99 1.03 2.15
DIST-2 8.56 36.8 10.4 12.5 9.9 30.2

Table 5: Head Ablation. Each is trained separately.

Source Fusion Network (SFN): We analyze it
with Table 4: 1) The PPL of each source-aware
head, even we select the best head case by case,
is significantly worse than the fused one, which
shows a) SFN can effectively and step-wisely se-
lect/fuse results from various heads; b) independent
source-aware decoder heads can work together; 2)
Although SFN has achieved promising results, the
upper bound is still significantly better. It means
fusing multiple complete distributions is quite chal-
lenging, there is still have great potential to study.
We will continue to explore this in the future.

Decoder Head Ablation: Table 5 reports the per-
formance if only using a single source-aware head.
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Case #1:

History:吃什么可以瘦身？ How to lose weight through diet?
Text Know.: 节食指限制吃的食物分量，通常是以减肥瘦身作为目的。
Dieting refers to limiting the amount of food eaten, usually with the goal of losing weight.
Commonsense:(多喝水 Drinking more water, MotivatedByGoal,瘦身 Loosing weight )

Seq2Seq 吃减肥药最容易发胖. Taking diet pills is the easiest way to gain weight.
ConKADI 可以吃一些东西喝就可以了. You can eat something and drink on it.
MSKE 少吃什么都可以瘦身. You can lose weight if you eat less.
KSAM 多喝水,多吃蔬菜,少吃油腻的食物. Drink more water, eat more vegetables, and eat less greasy food

Case #2:
History: 您认为“吸烟有害健康”的宣传教育有效果吗？ Do you think the publicity and education of "Smoking
is harmful to health" is effective?
Table Attributes of Smoking:(Category,习惯 habit), (Category,烟草 tobacco)

Seq2Seq 吸烟有害健康。 Smoking is harmful to health.
ConKADI 吸烟有害健康,不知道[...]吗？Smoking is harmful to health. Don’t you know smoking is harmful to health?
MSKE 吸烟有害健康。 Smoking is harmful to health.
KSAM 吸烟有害健康，戒烟戒酒！Smoking is harmful to health. Quit smoking and alcohol!

Table 6: Case Study. ‘[...]‘=吸烟有害健康’ in #2. Besides the history, we show the related available knowledge.

Base removes the usage of the history memory
H from DecH , and we regard it as the baseline.
1) Compared to Base, DecK∗ further adopts a
single-source memory and achieves improvements.
The dialogue history memory H is undoubtedly
more crucial than the external knowledge; 2) Com-
monsense knowledge memory KC brings more
improvements than the other two knowledge mem-
ories; 3) Using all heads (Full) has the best per-
formance, indicating the necessity of using multi-
source knowledge. Meanwhile, the improvement
of PPL is significantly more than other metrics,
indicating the decoding algorithm (beam search)
should be improved in the future.

Case Study: Table 6 provides two cases for four
better models in human evaluation. As a whole,
we can find the Indefinite Alignment issue ap-
pears, where case #1 is aligned to both plain text
knowledge and commonsense knowledge, and #2
is aligned to table knowledge. In addition, we can
also notice the Knowledge Diversity, where such
three knowledge sources have different characteris-
tics. In case # 1, Seq2Seq and ConKADI generated
irrational responses. The response generated by
KSAM is more informative than MSKE while both
two responses are acceptable. In case # 2, the pro-
vided knowledge is not straightforward; all base-
lines repeated the question. KSAM provided new
information by reasoning on the table knowledge.

4 Related Work

Dialogue Systems: Dialogue systems have
achieved promising results (Vinyals and Le, 2015;
Chen et al., 2017). However, traditional models
tend to generate safe but meaningless responses

(Li et al., 2016). To this end, massive efforts are
devoted to diversity the generated dialogues: lever-
aging the large-scale pretrained model (Zhang et al.,
2020b; Gu et al., 2021), incorporating visual fea-
tures (Das et al., 2017; Wang et al., 2021), employ-
ing topics (Xu et al., 2021; Zhong et al., 2021), and
many others (Zhao et al., 2021).

Knowledge-Enhanced Methods: Recently, re-
searchers noticed that a crucial reason that results
in meaningless responses is the insufficient knowl-
edge carried by the dialogue history (Ghazvinine-
jad et al., 2018; Yu et al., 2020). Thus, infusing ex-
ternal knowledge into the dialogue generation has
become a trend. Knowledge sources are diverse.
The text knowledge can be easily collected and can
provide rich information (Dinan et al., 2019; Ren
et al., 2020; Meng et al., 2020). The commonsense
knowledge includes the every knowledge (Speer
et al., 2017; Zhou et al., 2018; Zhang et al., 2020a;
Wang et al., 2020a). The table knowledge (Wu
et al., 2019, 2021b) provides the entity-centric in-
formation. To improve the knowledge coverage and
combine the advantages of different sources. (Liu
et al., 2019) uses both text+commonsense knowl-
edge; (Liang et al., 2021) uses different emotional
sources; (Bai et al., 2021) treats goal knowledge
as an additional source. (Wu et al., 2021a) does
not limit the number/type of knowledge in theory;
however, it ignored the Knowledge Diversity / In-
definite Alignment issue. In addition, the proposed
multi-head decoding is different from the multi-
processor decoding (Zhao et al., 2020): 1) our head
is a fully functional decoder rather than a partially
functional module; 2) we do not use a sequential
state to strengthen the decoupling of heads; 3) our
approach is not a single-source method.
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5 Conclusion & Future Work

This paper studies the multi-source knowledge-
enhanced dialogue generation. We find three chal-
lenging problems, i.e., 1) Knowledge Diversity, 2)
Indefinite Alignment, and 3) Insufficient Flexibility
and Scalability. Consequently, this paper proposes
a novel Knowledge Source Aware Multi-Head De-
coding approach, KSAM, which employs multiple
source-aware decoder heads to handle each knowl-
edge source more efficiently. In the future, we
will continue to improve the applicability and the
performance of multi-source knowledge-enhanced
dialogue generation. For example, improving the
fusing the predictions of heads.

Ethical Considerations: We did not propose a
new dataset or use any private dataset. In addition,
this work did not involve any sensitive topic. Thus,
we believe no ethical concern in this paper.
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