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Abstract

Question answering-based summarization
evaluation metrics must automatically deter-
mine whether the QA model’s prediction is
correct or not, a task known as answer verifi-
cation. In this work, we benchmark the lexical
answer verification methods which have been
used by current QA-based metrics as well
as two more sophisticated text comparison
methods, BERTScore and LERC. We find
that LERC out-performs the other methods
in some settings while remaining statistically
indistinguishable from lexical overlap in
others. However, our experiments reveal that
improved verification performance does not
necessarily translate to overall QA-based
metric quality: In some scenarios, using a
worse verification method — or using none at
all — has comparable performance to using
the best verification method, a result that we
attribute to properties of the datasets.1

1 Introduction

A recent trend in summarization metrics is evalu-
ating the quality of a summary via question an-
swering (QA; Eyal et al., 2019; Scialom et al.,
2019, 2021; Durmus et al., 2020; Wang et al., 2020;
Deutsch et al., 2021a). These metrics compare the
semantic content of two texts (e.g., the reference
and candidate summaries) by generating questions
from one and answering those questions against the
other. The amount of common semantic content is
proportional to the number of questions which are
answered correctly.

A critical step of QA-based evaluation metrics
is to verify whether the QA model’s prediction is
correct, a task known as answer verification (see
Fig. 1). This helps to both suppress noisy output
from the QA model as well as identify inconsistent
information across the texts.

1Our code is available at http://cogcomp.org/
page/publication_view/966.

… He was rescued by his parents before  emergency 
responders  arrived on the scene …

Source Text

BERTScore: 0.20EM: 0.0 F1: 0.0 LERC: 0.62

… His parents jumped in and pulled him to safety 
before  paramedics  arrived …

Answer Verification Scores

Target Text

He was rescued by his parents before what arrived on 
the scene?

Question

Figure 1: In the answer verification task, the metrics
score how likely two phrases from different contexts
have the same meaning. Here, the metrics at the bot-
tom score the similarity between “emergency respon-
ders,” which was used to generate the question from
the source text, and “paramedics,” the predicted answer
from a QA model in the target text.

Answer verification is typically done by compar-
ing the prediction to the expected answer by the
exact match or token F1 string comparison methods
(Rajpurkar et al., 2016). However, more sophisti-
cated text comparison methods have been proposed
in recent years, and it is unknown whether they
provide a benefit in this particular scenario.

In this work, we benchmark various answer
verification strategies for QA-based summariza-
tion evaluation metrics. Our goal is to understand
whether methods that are more advanced than lex-
ical overlap are better able to classify phrases as
having the same or different meaning as well as
whether any such improvements result in the over-
all QA-based metric being better at replicating hu-
man judgments of summary quality.

We analyze four answer verification methods,
exact match, token F1, BERTScore (Zhang et al.,
2020), and LERC, (Chen et al., 2020) in combina-
tion with two QA-based metrics, QAEval (Deutsch
et al., 2021a) and FEQA (Durmus et al., 2020).

Based on a set of human annotations across two
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datasets, we find that LERC performs the best at
the actual task of answer verification in general,
although in some settings it is statistically indis-
tinguishable from token F1 (§4.1). However, our
results also show that any such improvement in
verification performance does not always translate
to a better QA-based evaluation metric (§4.2).

We believe these results can be explained by
properties of the QA metrics and the datasets.
When the QA model performance is high or the
verification task is in some sense easy to do, it may
not be necessary to have a sophisticated verifica-
tion method or even use one at all. Despite this,
our recommendation is to use both token F1 and
LERC for answer verification since F1 may suffice
in some situations and we suspect LERC does pro-
vide additional benefits, although they are difficult
to measure.

2 Related Work & Background

The majority of summarization evaluation metrics
can be viewed as estimating how similar in mean-
ing two pieces of text are. For instance, ROUGE
(Lin, 2004) does this by calculating the number of
overlapping n-grams between the two texts.

Instead of directly comparing the entire texts,
QA-based metrics identify specific phrases within
the texts which should be compared, as follows.
First, a set of questions is automatically generated
from one text. Then, those questions are automat-
ically answered against a second text to obtain a
set of predicted answers. The final score is pro-
portional to the number of correct predictions, but
determining whether those predictions are correct
(the task of answer verification) is done by compar-
ing the text of the prediction to the expected answer.
Therefore, instead of directly comparing the entire
contents of the two texts, QA-based metrics instead
reduce the scope of the problem to only comparing
specific pairs of phrases.

Current QA-based metrics perform the answer
verification step by lexical comparison, either ex-
act match or token F1. Such metrics include QA-
Eval (Deutsch et al., 2021a), FEQA (Durmus et al.,
2020), and more (Eyal et al., 2019; Wang et al.,
2020; Scialom et al., 2019, 2021). However, any
such function which calculates the similarity of
arbitrary text can be used instead. This includes
embedding-based methods such as BERTScore
(Zhang et al., 2020) or metrics which have been
trained specifically to do this task, such as LERC

(Chen et al., 2020). Evaluating how these methods
perform as answer verification methods for QA-
based metrics compared to the lexical baselines is
the scope of this work.

Other, related work has also benchmarked vari-
ous answer verification methods (Chen et al., 2019),
but do so as a method for evaluating QA perfor-
mance rather than as part of a downstream task, as
we do in this work. Some concurrent work also
tries to improve answer verification by expanding
the set of possible expected answers via mining
additional aliases from knowledge bases (Si et al.,
2021).

3 Definitions & Methods

We define the answer verification task as the follow-
ing: Given a question, answer, the source text from
which the QA pair was generated, a prediction, and
the target text the prediction comes from, score
how similar the meanings of the answer and pre-
diction are (see Fig. 1 for an example).2 Answer
verification is used by QA-based metrics to sup-
press noisy outputs from the QA model as well as
identify when the QA prediction is correct with re-
spect to the target text but incorrect with respect to
the expected answer (e.g., unfaithful information).

We analyze four different answer verification
methods.

Exact Match The exact match (EM) method
compares the two phrases to see if they are identi-
cal (after light normalization). EM assigns a score
of 1 if the phrases are identical and 0 otherwise.

Token F1 The token F1 comparison calculates an
F1 score based on the number of unigrams the two
phrases have in common. This is equivalent to the
F1 variant of ROUGE-1.

BERTScore BERTScore (Zhang et al., 2020)
compares two pieces of text by aligning the texts’
tokens according to which pairs have the high-
est BERT embedding cosine similarity. We adapt
BERTScore to answer verification by encoding
the answer and prediction using their respective
contexts, then calculating the BERTScore only be-
tween the two phrase encodings. Since the output
of BERTScore is often in a narrow range of values,

2This is slightly different from the task defined by Chen
et al. (2020) which does not include the source text because no
such text exists in the standard definition of the reading com-
prehension task. However, we include it because the source
text can be used to create a representation for the answer which
may be better than using the question alone.
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we rescale the scores by defining 0 and 1 as the
2.5th and 97.5th percentiles of the BERTScores
calculated over the whole dataset. These changes
were made to make the score more interpretable as
well as prevent outliers from influencing the score
rescaling. In practice, we compute the BERTScore
using embeddings obtained from RoBERTa-Large
(Liu et al., 2019).

LERC Chen et al. (2020) proposed LERC, a
learned metric for scoring how similar the expected
and predicted answers to a question are conditioned
on the question and the target text the prediction
comes from. The metric takes as input the tar-
get context, question, expected answer, and pre-
dicted answer and concatenates them into a single
sequence separated by speical tokens. Because it
was designed for scoring reading comprehension
predictions, it does not use the source text. It then
encodes the entire sequence with BERT and trains a
regression layer on top of the encodings to predict a
similarity score. The learned metric was fine-tuned
on 40k human annotations of how similar the two
answers are on a scale from 1 to 5. We rescale the
output from LERC to be in the range [0, 1].

4 Experiments

The answer verification methods are evaluated inde-
pendently (§4.1) as well as in combination with two
QA-based metrics (§4.2), QAEval (Deutsch et al.,
2021a) and FEQA (Durmus et al., 2020). QAEval
measures the content quality of a summary (does
the summary contain “summary-worthy” informa-
tion) by using a reference summary as the source
text and candidate summary as the target text. In
contrast, FEQA estimates the faithfulness of the
summary (does the summary contain information
consistent with the input) by using the candidate
summary as the source text and the input document
as the target text.

The experiments are run on two datasets,
TAC’08 (Dang and Owczarzak, 2008) and Summ-
Eval (Fabbri et al., 2021). These datasets have
summaries generated by 58 and 16 models for 48
and 100 inputs, respectively, which are annotated
with expert judgments. Both QAEval and FEQA
are evaluated on SummEval because it contains
annotations for both summary quality and faithful-
ness, whereas only QAEval is evaluated on TAC’08
since it does not have faithfulness judgments.

Ans. Verif.
QAEval FEQA

TAC’08 SummEval SummEval
Acc MSE Acc MSE Acc MSE

Majority Cls 51.5 .49 78.5 .22 56.5 .44
EM 64.5 .36 78.5 .46 76.0 .24
F1 84.0 .19 79.5 .25 91.0 .10
BERTScore 81.0 .16 79.5 .20 82.5 .16
LERC 85.0 .13 88.0 .11 88.5 .09

Table 1: The binary accuracies and mean squared errors
of the answer verification methods evaluated on three
metric-dataset combinations with 200 manually labeled
examples each. Underlined values are statistically in-
distinguishable from those in bold under a single-tailed
pairwise permutation test with α = 0.05.

4.1 Answer Verification Performance

First, we examine how well each answer verifica-
tion method accurately scores manually labeled
answer pairs from the summarization datasets. For
each QA metric and dataset combination, we ran
the metric on the summaries, then randomly sam-
pled 200 QA predictions (making 600 total). Each
prediction and expected answer were manually an-
notated by the authors for whether or not the two
phrases share the same meaning. See Appendix A
for additional details on the annotation procedure.

Ideally, the answer verification methods should
both successfully classify phrases based on their
meaning as well as provide a score close to 1 for
phrases with the same meaning and close to 0 with
different meanings. These properties are quantified
by the binary classification accuracy (assigning la-
bels based on a threshold which maximizes this
score) as well as the mean squared error (MSE) of
the predicted scores, show in Table 1.

We find that LERC is the only method with
the best (or tied for the best) performance across
all three metric-dataset combinations. Despite
LERC’s significant improvement on the SummEval
data with QAEval predictions, it is statistically in-
distinguishable from F1 on the same dataset with
FEQA predictions. We believe this can be ex-
plained by which texts are being compared for each
metric. FEQA compares the generated summary to
the input document. Recent summarization mod-
els are known to copy heavily from the input with
little high-level abstraction or rephrasing, so com-
paring phrases with token F1 is likely to be quite
successful. In contrast, QAEval compares the ref-
erence and generated summaries. The reference
summaries are written by humans, and thus more
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likely to contain information from the input doc-
ument which is expressed differently. In such a
scenario, the learned metric, LERC, shows strong
improvements over F1.

In general, we find that when BERTScore and
LERC do improve over F1, they do so by identi-
fying paraphrases that have no tokens in common,
which sometimes requires world knowledge. Ex-
amples of this are included in Appendix C.

4.2 Overall Metric Evaluation

Next, we investigate whether the differences in clas-
sification performance of the verification methods
translate to downstream improvements in the over-
all quality of the QA-based metrics. To do so, we
evaluate different variants of the metrics that use
each answer verification method. For both QAEval
and FEQA, the final score for the summary is the
output of the answer verification method averaged
over all of the QA pairs.3

QAEval For QAEval, we report the standard
system- and summary-level correlations of the met-
rics’ scores to human judgments in Table 2 (due to
space constraints, we refer the reader to Deutsch
et al. (2021b) for definitions of the correlations).
We also compare against the standard BERTScore
and ROUGE metrics as well as a QAEval variant
which uses no answer verification by always mark-
ing the phrases as correct if the QA model predicts
the question is answerable, denoted QAEval-IsAns.

In general, all of the answer verification meth-
ods work comparably well, although BERTScore
and LERC do statistically improve over the lexical
methods in some settings, but not by large margins.
We believe the performance of QAEval-IsAns of-
fers an explanation as follows.

Answer verification is not necessary if the QA
model is perfect and the summaries are faithful
(i.e., the QA prediction is always correct). For
SummEval, Deutsch et al. (2021a) demonstrated
that QAEval’s QA performance was reasonable,
and the summaries are very faithful with an aver-
age consistency score of 4.7 / 5 according to Fab-
bri et al. (2021). Therefore, it may be difficult to
demonstrate an improvement with any answer veri-
fication method even if it is high quality since the
need for answer verification is low. Indeed, we see
QAEval-IsAns statistically ties the best methods.

3QAEval can also predict a question is unanswerable. In
such cases, the score of the prediction is 0.

Metric
TAC’08 SummEval

Sys Sum Sys Sum

BERTScore .68† .40† .75† .27†

ROUGE-1 .60 .39† .50 .20
ROUGE-2 .67 .39† .43 .14

QAEval-IsAns .63 .37 .70† .26†

QAEval-EM .74† .29 .77† .19
QAEval-F1 .68 .36 .77† .22
QAEval-BERTScore .68† .38† .77† .26†

QAEval-LERC .68† .39† .80† .24†

Table 2: System- and summary-level Kendall’s τ (re-
sults with Pearson and Spearman are included in Ap-
pendix B). Underlined QAEval values are statistically
indistinguishable from the best QAEval scores (bot-
tom) in bold. Values marked with † are statistically
indistinguishable from the best metric overall (top and
bottom). Statistical testing done using the single-tailed
PERM-BOTH permutation test (Deutsch et al., 2021b)
with α = 0.05.

Metric r ρ τ

ROUGE-1 .13 .13 .11
ROUGE-2 .25 .25 .19
BERTScore .17 .17 .14
FactCC .34† .36† .29†

FactCCX .29 .31 .24

FEQA-EM .17 .14 .11
FEQA-F1 .20 .16 .13
FEQA-BERTScore .15 .12 .10
FEQA-LERC .18 .15 .12

Table 3: The Pearson r, Spearman ρ, and Kendall τ cor-
relations on the SummEval dataset. Values in bold are
the best FEQA variants (bottom) with those underlined
being statistically indistinguishable. † marks the best
results across all metrics (top and bottom).

On TAC’08, we expect it should be easier to
show answer verification helps since Deutsch et al.
(2021a) showed the QA performance is poor, sug-
gesting answer verification could help to suppress
noisy predictions. Indeed, we do see QAEval-
IsAns is statistically out-performed by the veri-
fication methods. We suspect the improvements
are larger at the system-level than the summary-
level because the system quality is estimated over a
larger number of QA pairs than an individual sum-
mary’s quality is. A larger number of questions
reduces any noise introduced by the verification
methods, resulting in a more accurate estimate of
summary quality and a better metric.

FEQA We report the direct correlations between
the human judgments and the FEQA variants,
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ROUGE, BERTScore, and FactCC (Kryscinski
et al., 2020) in Table 3. FactCC is a learned model
to predict the factual consistency between two texts
that was trained on synthetically generated data.

Among the FEQA variants, F1 is the best or in-
distinguishable from LERC. This result is expected
given how similarly they perform at answer verifi-
cation on this QA metric and dataset split. This is
again likely due to the fact that the summarization
models copy heavily from the input documents, so
the expected answers and QA model predictions
are likely to be quite lexically similar. Overall, the
FEQA correlations are still lower than those by
FactCC by a large margin.

It is also worth nothing that FEQA’s correlations
are lower than ROUGE-2’s, a result which contra-
dicts the findings of Durmus et al. (2020). How-
ever, our experiments were conducted on a differ-
ent dataset than theirs, and the two datasets’ faith-
fulness scores were annotated in different ways.
Thus, we suspect the different conclusions are due
different experimental setups; the results cannot
necessarily be fairly compared.

5 Conclusion

In this work, we benchmarked four different answer
verification methods for QA-based summarization
evaluation metrics. Although we were able to iden-
tify that some methods perform better than others
at verification, any such improvement does not nec-
essarily translate a better overall metric quality. We
hypothesize that several factors, including the qual-
ity of the QA model and properties of the datasets,
likely explain this result. Even though token F1

may be sufficient in some scenarios, we also rec-
ommend that practitioners also use LERC since it
is likely to provide additional benefits, even if they
are not easily measured.
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A Annotation Details

In total, 600 pairs of expected and predicted an-
swers were annotated by one of the authors for
whether or not they shared the same meaning. The

0
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Same Meaning Different Meaning
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BERT-
Score
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Metric Value
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Figure 2: The distributions of score values for three
metrics on the SummEval dataset for ground-truth an-
swer and QA model prediction pairs from QAEval with
the same (blue) and different (orange) meanings.

600 pairs were sampled as follows: QAEval was
used to generate and predict questions on TAC’08
and SummEval and likewise for FEQA on Summ-
Eval. Then, 200 questions were sampled uniformly
at random from each metric and dataset combina-
tion.

The criteria for determining whether the two an-
swers conveyed the same meaning was whether
they could both be appropriately be used as syn-
onyms given the input context and question. In
general, the annotation procedure was relatively
straightforward with the majority of the answer
pairs being clear synonyms of each other. Example
pairs are shown in Table 5. Some decisions did re-
quire world knowledge (e.g., “Luis Enrique’s side”
and “Barcelona”), whereas others were clear syn-
onyms (“EU” and “European Union”) or required
resolving pronouns. Decisions in cases which were
not clear were based on the author’s judgment of
whether the two phrases seemed equally acceptable
to use to answer the question, erring on the side of
deciding the phrases are not semantically equiva-
lent. These cases were relatively uncommon.

B Additional Results

Fig. 2 contains the distributions of score values for
token F1, BERTScore, and LERC on the Summ-
Eval dataset grouped by phrases that have and do
no have the same meaning. LERC most confidently
separates the positive and negative examples. F1

performs similarly, except it fails in a large number
of cases when the two phrases have no tokens in
common. BERTScore tends to mix the scores of
the positive and negative classes, although they are
separated on average.
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TAC’08 SummEval

Metric System-Level Summary-Level System-Level Summary-Level

r ρ τ r ρ τ r ρ τ r ρ τ

BERTScore .83 .85† .68† .50† .50† .40† .84† .91† .75† .37† .35† .27†

ROUGE-1 .79 .80 .60 .49† .48† .39† .61 .62 .50 .28 .26 .20
ROUGE-2 .83 .87† .67 .48† .48† .39† .64 .60 .43 .23 .19 .14
ROUGE-L .74 .77 .57 .46 .45 .36 .61 .48 .32 .21 .18 .14
ROUGE-SU4 .80 .83 .63 .49† .48† .39† .62 .56 .38 .23 .19 .15
QAEval-IsAns .87 .82 .63 .48† .47 .37 .76 .86† .70† .33† .32† .26†
QAEval-EM .92† .89† .74† .35 .35 .29 .80† .91† .77† .23 .23 .19
QAEval-F1 .90† .86† .68 .46 .45 .36 .82† .91† .77† .30 .29 .22
QAEval-BERTScore .90† .85† .68† .49† .48† .38† .84† .89† .77† .36† .34† .26†
QAEval-LERC .89† .85† .68† .50† .49† .39† .81† .93† .80† .33† .31† .24†

Table 4: System- and summary-level correlations using Pearson’s r, Spearman’s ρ, and Kendall’s τ .

Answer Prediction BERTScore LERC

EU European Union 0.73 0.84
a smaller leftist guerilla group National Liberation Army 0.48 0.10
six-time Olympic gold medalist Usain Bolt 0.34 0.35
Luis Enrique’s side Barcelona 0.40 0.18
emergency responders paramedics 0.20 0.67
the child toddler 0.38 0.45

Table 5: Examples where BERTScore and LERC improve over F1 (all examples have an F1 score of 0). Suc-
cessfully classing these phrases requires paraphrasing (e.g., “the child” and “toddler”) and, in some cases, world
knowledge (e.g., Usain Bolt had won six gold medals when the article was written).

In Table 4, we report the system- and summary-
level correlations on TAC’08 and SummEval with
Pearson’s r and Spearman’s ρ correlation coeffi-
cients in addition to the Kendall’s τ which was pre-
sented in the main body of the paper. The other co-
efficients lead to a similar conclusion to that which
we made with Kendall’s τ : All answer verifica-
tion methods perform comparably well, and when
BERTScore or LERC does improve over a lexical
baseline, it is not by a large margin. Further, us-
ing no verification method (QAEval-IsAns) largely
performs equally well as QAEval variants which
do use a verification step on the SummEval dataset,
but not on TAC’08.

C Example BERTScore/LERC
Improvements

Table 5 contains example expected answer and QA
model prediction pairs for which BERTScore and
LERC improve over exact match and token F1.
We see that the improvements come from better
identifying when the phrases are paraphrases of
each other, which sometimes involves world knowl-
edge.
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