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Abstract

Text semantic matching is a fundamental task
that has been widely used in various scenarios,
such as community question answering, infor-
mation retrieval, and recommendation. Most
state-of-the-art matching models, e.g., BERT,
directly perform text comparison by processing
each word uniformly. However, a query sen-
tence generally comprises content that calls for
different levels of matching granularity. Specif-
ically, keywords represent factual information
such as action, entity, and event that should be
strictly matched, while intents convey abstract
concepts and ideas that can be paraphrased into
various expressions. In this work, we propose a
simple yet effective training strategy for text se-
mantic matching in a divide-and-conquer man-
ner by disentangling keywords from intents.
Our approach can be easily combined with pre-
trained language models (PLM) without influ-
encing their inference efficiency, achieving sta-
ble performance improvements against a wide
range of PLMs on three benchmarks.

1 Introduction

Text semantic matching aims to predict a matching
category or a matching score reflecting the seman-
tic similarity given a pair of text sequences, which
is a fundamental task employed in a wide range of
applications (Huang et al., 2013; Hu et al., 2014;
Palangi et al., 2016; Cer et al., 2017; Rücklé et al.,
2020; Pang et al., 2021). Recently, pre-trained lan-
guage models (PLM) show remarkable capability
of representation learning and have accelerated the
research of text semantic matching (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019). They typi-
cally exploit large-scale corpora and well-designed
self-supervised learning objectives to better learn
semantic representations, achieving state-of-the-
art performances or even surpassing the level of
non-expert humans on general semantic matching
benchmarks (Wang et al., 2019b,a).

∗Corresponding authors.

Y   A: What does a civil engineer do?  B: How does civil engineering work?

N   A: What is the best game engine?  B: What is game engine?

N   A: How do I repair my gas boiler?  B: How do I repair boiler?

Y   A: Why does my nose bleed?  B: What causes nose bleeds?

Figure 1: Examples of sentence pairs sampled from the
QQP dataset. The keywords are highlighted, while the
other words constitute abstract intents. Y and N repre-
sent whether the pair is matched or not. The original
matching problem can be decomposed into two sub-
problems: keyword matching and intent matching. A
semantically equivalent pair generally means the key-
word and intent are matched simultaneously.

Most existing PLMs aim to establish a foun-
dation for various downstream tasks (Bommasani
et al., 2021) and focus on finding a generic way to
encode text sequences. When applied to the task of
text semantic matching, it is a common practice to
add a simple classification objective for fine-tuning
and directly perform text comparison by process-
ing each word uniformly. Nevertheless, each sen-
tence can be typically decomposed into content
with different levels of matching granularity (Su
et al., 2021). Exemplar sentence pairs can be found
in Figure 1. The primary content refers to keywords
that reflect the factual information about entities
or actions, which should be strictly matched. The
other content constitute abstract intents, which can
be generally paraphrased into various expressions
to convey the same concepts or ideas.

Considering the situation where sentence con-
tent has different levels of matching granularity, we
propose DC-Match, a simple but effective training
regime for text semantic matching in a divide-and-
conquer manner. Specifically, we break down the
matching problem into two sub-problems: keyword
matching and intent matching. Given a pair of in-
put text sequences, the model learns to disentangle
keywords from intents by utilizing the method of
distant supervision. In addition to the standard se-
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quence matching that has a global receptive field,
we further match keywords and intents separately
to learn the way of content matching under different
levels of granularity. Finally, we design a special
training objective that combines the solutions to the
sub-problems, which minimizes the KL-divergence
between the global matching distribution (original
problem) and the joint keyword-intent matching
distribution (sub-problems). At inference time, we
expect that the global matching model automat-
ically distinguishes keywords from intents, then
makes final predictions conditioned on the disen-
tangled content in different matching levels.

We adopted DC-Match to a wide range of PLMs.
Comprehensive experiments were conducted on
two English text matching benchmarks MRPC
(Dolan and Brockett, 2005) and QQP (Iyer et al.,
2017), and a Chinese benchmark Medical-SM. Our
approach can be easily combined with PLMs plus
few additional parameters, but still achieves stable
performance improvements against most baseline
PLMs. Notably, all the auxiliary procedures and
parameters are only involved in the training stage.
The inference efficiency of our approach is exactly
the same as that of PLM baselines, without addi-
tional parameters and computations. Our codes and
datasets are publicly available1.

Our contributions are three-fold: 1) We intro-
duce a novel training regime for text matching,
which disentangles keywords from intents based
on different levels of matching granularity in a
divide-and-conquer manner. 2) The proposed ap-
proach is simple yet effective, which can be easily
combined with PLMs plus few auxiliary training
parameters while not changing their original infer-
ence efficiency. 3) Experimental results on three
benchmarks across two languages demonstrate the
effectiveness of our approach in different aspects.

2 Related Work

Text semantic matching plays an important role in
many applications, such as Information Retrieval
(IR) and Natural Language Inference (NLI). Tra-
ditional technologies exploit neural networks with
different inductive biases, e.g., CNN (Tan et al.,
2016), RNN (Tai et al., 2015; Cheng et al., 2016),
GNN (Wu et al., 2020), and attention mechanism
(Parikh et al., 2016; Chen et al., 2017). To en-
hance the matching performance, dozens of works
use richer syntactic or hand-crafted features (Chen

1https://github.com/RowitZou/DC-Match

et al., 2017; Tay et al., 2018b; Gong et al., 2018;
Kim et al., 2019), add complex alignment compu-
tations (Wang et al., 2017; Tan et al., 2018; Gong
et al., 2018; Yang et al., 2019), and perform multi-
pass matching procedures (Tay et al., 2018a; Kim
et al., 2019), which shows the effectiveness of
representation-oriented approaches and model de-
signing strategies based on information interaction.

Recently, large-scale pre-trained language mod-
els (PLM) have boosted the performance of text
semantic matching by making full use of massive
text resources. Most of them are composed of
multiple transformer layers (Vaswani et al., 2017)
with multi-head attentions and are pre-trained with
well-designed self-supervised learning objectives.
Representative models like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and ALBERT
(Lan et al., 2019) aim to establish a powerful en-
coder that has a comprehensive understanding of
input texts. For the task of text semantic matching,
PLMs can be fine-tuned under a paradigm of se-
quence classification with only an additional clas-
sification layer, achieving state-of-the-art perfor-
mances on general semantic matching benchmarks
(Wang et al., 2019b,a). PLMs can be regarded as
foundation models (Bommasani et al., 2021) and
they mainly focus on finding a generic way to en-
code text sequences. Instead of processing each
word uniformly, in this work, we devise a novel
training regime that processes sentence pairs by
disentangling keywords from intents, which can
be easily combined with PLMs to stack additional
improvements to text semantic matching.

3 Methodology

In this section, we detail the proposed training
regime DC-Match. It consists of three training ob-
jectives: a classification loss for the global match-
ing model; a distantly supervised classification loss
that learns to distinguish keywords from intents; a
special training objective following the idea of di-
vide and conquer, which uses the KL-divergence to
ensure that the global matching distribution (origi-
nal problem) is similar to the distribution of com-
bined solutions to disentangled keywords and in-
tents (sub-problems). The overall framework is
illustrated in Figure 2.

3.1 Text Semantic Matching using PLMs

First, we formally define the task of text semantic
matching and describe a generic way for this task
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Sentence A: How does a solenoid valve work?
Sentence B: What is a solenoid valve? 
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Figure 2: Overview of DC-Match. The training regime has three objectives: (1) a standard matching classification
loss; (2) a distant supervision loss for keyword and intent discrimination; (3) a KL-divergence loss that makes
the global matching probability (main problem) consistent with the probability of combined solutions to keyword
matching and intent matching (sub-problems).

by using PLMs. Given two text sequences Sa =
{wa

1 , w
a
2 , ..., w

a
la
} and Sb = {wb

1, w
b
2, ..., w

b
lb
}, the

goal of text semantic matching is to learn a clas-
sifier y = ξ(Sa, Sb) to predict whether Sa and
Sb is semantically equivalent. Here, wa

i and wb
j

represent the i-th and j-th word in the sequences,
respectively, and la, lb denote the sequence length.
y can be either a binary classification target indicat-
ing whether or not the two sequences are matched,
or a multi-class classification target that reflects
different matching degrees.

Recently, pre-trained language models (PLM)
have achieved remarkable success in text under-
standing and representation learning (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019). They are
pre-trained on large-scale text corpora with heuris-
tic self-supervised learning objectives, and can be
served as a powerful sequence classifier by fine-
tuning on the downstream classification task. For
text semantic matching, it is a common practice
that we directly concatenate Sa and Sb as a consec-
utive sequence Sa,b = [Sa;wsep;Sb] by a separator
token wsep and feed it into the PLM encoder:

[hcls;Ha,b] = PLM([wcls;Sa,b]), (1)

P (y|Sa, Sb) = Softmax(hcls ·W⊤). (2)

Here, wcls is a special token in front of each se-
quence, and the final hidden state corresponding to
this token hcls is used as the aggregate sequence
representation. During fine-tuning, only a single
classification layer is introduced to make the final
prediction, where W ∈ RK×H represents train-

able weights and K is the number of labels. Fi-
nally, we compute a standard classification loss for
fine-tuning as follows:

Lsm = −logP (y|Sa, Sb). (3)

3.2 Disentangling Keyword from Intent with
Distant Supervision

Most existing PLMs aim to find a generic way to
encode text sequences and establish a foundation
for language understanding. For different classifi-
cation tasks, e.g., sentiment analysis, text semantic
matching, and natural language inference, the PLM
typically exploits the same fine-tuning paradigm,
and processes text sequences in a straightforward
and uniform way. In this work, inspired by previ-
ous works of decomposable paraphrase generation
(Li et al., 2019; Su et al., 2021), we introduce a task-
specific assumption to the text semantic matching,
and postulate that each sentence could be decom-
posed into keywords and intents. Intuitively, key-
words represent factual information such as actions
and entities that should be strictly matched, while
intents convey abstract concepts or ideas that can
be expressed in different ways. By disentangling
keywords from intents, the matching procedure can
be divided into two easier sub-problems that call
for different levels of matching granularity.

However, automatic disentanglement of key-
words and intents is not easy due to the lack of
manually annotated data. To address this problem,
following recent research on distant supervision
(Liang et al., 2020; Meng et al., 2021), we use a
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rule-based method to automatically generate key-
word labels by extracting entity mentions in the raw
text based on the entities in external knowledge
bases (see details in Section 4.2). All extracted
entities are labeled as keywords and the remainder
of the sentence words are labeled as intents. Af-
ter obtaining the weakly labeled information, we
add an auxiliary training objective that forces the
model to learn disentangled keyword and intent
representations. Formally, given the output states
Ha,b from PLM in Eq.1, we split the states into
two groups Ha,b

k ∈ RNk×H and Ha,b
i ∈ RNi×H

that correspond to the tokens of keywords and in-
tents, respectively, where Nk, Ni denote the token
number. Then, the keyword-intent classification
loss is defined as follows:

Lds = −[logσ(ĥa,b
k W⊤

ds) + logσ(−ĥa,b
i W⊤

ds)],
(4)

where Wds ∈ R1×H is trainable parameters, and
ĥa,b
k , ĥa,b

i are transformed by Ha,b
k ,Ha,b

i using av-
erage pooling. The objective in Eq.4 aims to push
the encoder to learn representations of keywords
and intents such that they are far apart from each
other, modeling disentangled sentence content in
different matching levels.

3.3 Divide-and-Conquer Matching Strategy
The auxiliary training objective in Eq.4, neverthe-
less, cannot be directly associated with the origi-
nal text matching problem. To facilitate the true
contributions of keywords and intents to the final
prediction, we introduce a novel matching strategy
following the idea of divide and conquer. Specif-
ically, we divide the original matching problem
into two easier sub-problems: keyword matching
and intent matching, and assume that they are in-
dependent to each other. The solutions to the sub-
problems are then combined to give a solution to
the original problem. Recall that the goal of text
semantic matching is to learn y = ξ(Sa, Sb) where
y can be either a binary classification target or a
multi-class classification target. We assume that
each sub-problem follows the same type of target,
and the probability distribution of combined solu-
tions Q(y) can be derived from the joint probability
distribution of the two sub-problems P (yk, yi) as:

Q(y = cn) = P (yk = cn, yi = cn)

+
∑

cm>cn
P (yk = cn, yi = cm)

+
∑

cm>cn
P (yk = cm, yi = cn). (5)

Here, cn, cm denote the target classes which reflect
the matching degrees, and cm > cn means cm has
a higher matching score than cn. For example, in
a three-class scenario, y ∈ {2, 1, 0} means exact
match, partial match, and mismatch, respectively,
and Q(y = 0) is the probability that at least one of
the sub-problems is inferred as mismatched.

To model the sub-problems, we reuse the match-
ing model in Eq.1 and Eq.2 to separately compare
keywords and intents and get conditional proba-
bilities P (yk|Sa

k , S
b
k) and P (yi|Sa

i , S
b
i ). Sk and Si

represent text sequences where tokens of intents or
keywords are masked, respectively. Then, under
the assumption of independent sub-problems, the
conditional joint distribution of yk and yi is:

P (yk, yi|Sa, Sb) = P (yk|Sa
k , S

b
k)P (yi|Sa

i , S
b
i ).
(6)

Finally, we can combine the solutions to the sub-
problems and compute the conditional distribution
Q(y|Sa, Sb) using Eq.5. To ensure that the global
matching distribution (original problem) is similar
to the distribution of combined solutions to sub-
problems, we use the bidirectional KL-divergence
loss to minimize the distance between P (y|Sa, Sb)
and Q(y|Sa, Sb) as follows:

Ldc = 1/2 · (DKL[P (y|Sa, Sb)||Q(y|Sa, Sb)]

+DKL[Q(y|Sa, Sb)||P (y|Sa, Sb)]). (7)

By this means, we expect that the global matching
model learns to make final predictions with better
interpretability, which are conditioned on the disen-
tangled keywords and intents that require different
levels of matching granularity.

3.4 Training and Inference

At the training stage, we combine the three loss
functions Lsm,Lds,Ldc to jointly train the model:

L = Lsm + Lds + Ldc. (8)

At the inference time, we directly infer the match-
ing category for a sentence pair based on the condi-
tional probability of the original problem, namely
y∗ = argmaxyP (y|Sa, Sb). It means our infer-
ence procedure is exactly the same as that of PLM
baselines without additional computations. Here,
we do not infer matching results from the prob-
ability of combined solutions Q(y|Sa, Sb), since
annotation information of keywords and intents
is generally not available at the inference time,
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Split # of Avg. # of pairs in categories
pairs length EM(2) PM(1) MM(0)

Train 38,406 12.25 7,754 18,617 12,035
Dev. 4,801 12.25 975 2,329 1,497
Test 4,801 12.19 938 2,315 1,548

Table 1: Statistics of the Medical-SM dataset. Each
query pair can be categorized into exact match (EM),
partial match (PM), or mismatch (MM).

and Q(y|Sa, Sb) cannot be directly computed. Al-
though we use external corpora to automatically
obtain distant labels, it might induce incomplete
and noisy signals (Meng et al., 2021), introduc-
ing biases to Q(y|Sa, Sb) approximation. Hence,
we only use distant labels at the training stage as
auxiliary information augmentation to the global
matching model. Nevertheless, we observe that
after model training, P (y|Sa, Sb) is highly consis-
tent with Q(y|Sa, Sb) (see details in Section 5.4).
As a result, a high-quality set of keyword labels
might bring additional performance enhancement
by better approximating Q(y|Sa, Sb).

4 Experimental Settings

4.1 Datasets

We evaluate our approach and all baselines on three
benchmarks for text semantic matching: two En-
glish datasets MRPC (Dolan and Brockett, 2005)
and QQP (Iyer et al., 2017), and one Chinese
dataset Medical-SM. Both MRPC and QQP are
corpora of sentence pairs automatically extracted
from online websites, with annotated binary clas-
sification labels indicating whether the sentences
in the pair are semantically equivalent. We use the
official dataset collections on Glue (Wang et al.,
2019b) released by the community2, where MRPC
contains 5,801 sentence pairs and QQP consists of
404,276 annotated sentence pairs3.

Furthermore, we evaluate our approach on a
Chinese text matching dataset Medical-SM, which
consists of user-generated query pairs collected
from a Chinese search engine. The dataset con-
tains 48,008 query pairs in the domain of medical
consulting. Each query pair can be categorized
into three classes: exact match, partial match, or
mismatch. The annotation is completed by five in-
dependent experts and we keep the labeling choices

2https://huggingface.co/datasets/glue
3Since the labels for the official QQP test set are not re-

leased, we report evaluation results on the validation set.

QQP MRPC Medical

# keywords in each pair 2.38 6.53 2.51
# tokens in each keyword 1.98 1.68 4.51
BLEU (match) .1451 .3088 .2754
BLEU (mismatch) .0961 .2155 .1284

Table 2: Statistics of distantly labeled keywords on train-
ing sets. BLEU (match/mismatch) denotes the keyword
BLEU score in matched/mismatched pairs, respectively.

that most annotators accept. Statistics of our con-
structed dataset are shown in Table 1. To facilitate
the research, we will release the dataset publicly.

4.2 Automatic Keyword Labeling

In this work, we generate distant supervision labels
for identification of keywords and intents using a
heuristic approach. Inspired by previous works
for distantly supervised NER (Liang et al., 2020;
Meng et al., 2021), we first extract potential key-
words with part-of-speech tags of nouns, verbs,
and adjectives obtained from NLTK (Bird, 2006).
We then match these potential keywords by using
external knowledge bases: wikipedia entity graph
(Bhatia and Vishwakarma, 2018) for English cor-
pora, and Sogou knowledge graph (Wang et al.,
2019c) for Chinese Medical-SM. Finally, we use
the binary IO format to label whether a token be-
longs to keywords or intents (Peng et al., 2019).
Table 2 shows the statistics of distantly labeled key-
words on the training sets of three benchmarks. We
use BLEU score (Papineni et al., 2002) to measure
the relevance of keywords between two compared
sentences for both matched pairs and mismatched
pairs. We observe that matched sentence pairs gen-
erally contain keywords with higher relevance. As
a result, generic models might wrongly output high
matching scores just conditioned on matched key-
words regardless of their context, because models
tend to learn statistical biases in the data (Manju-
natha et al., 2019; Lin et al., 2021).

4.3 Implementation Details

For a fair comparison, we fine-tune each PLM of
the original version and its DC-Match variant with
the same set of hyper-parameters. The fine-tuning
process of the QQP and MRPC datasets follows
Wang et al. (2021). Specifically, we apply AdamW
(Loshchilov and Hutter, 2018) (β1=0.9, β2=0.999)
with a weight decay rate of 0.01 and set the learn-
ing rate to 2e-5. The batch size is set to 64 for
QQP and 16 for MRPC. All experiments are con-
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Model QQP MRPC
CENN (Zhang et al., 2017) 80.7 76.4
L.D.C (Wang et al., 2016) 85.6 78.4
BiMPM (Wang et al., 2017) 88.2 -
DIIN (Gong et al., 2018) 89.1 -
DRCN (Kim et al., 2019) 90.2 82.5
DRr-Net (Zhang et al., 2019) 89.8 82.9
R2-Net (Zhang et al., 2021) 91.6 84.3
BERT (Devlin et al., 2019) 90.9 82.7

-large version 91.0 85.9
RoBERTa (Liu et al., 2019) 91.4 87.2

-large version 92.0 87.6
ALBERT (Lan et al., 2019) 90.4 86.0

-large version 90.9 86.5
DeBERTa (He et al., 2020) 91.7 88.4

-large version 92.1 88.6
FunnelTF (Dai et al., 2020) 91.9 87.1
DC-Match (RoBERTa-base) 91.7 88.1
DC-Match (RoBERTa-large) 92.2 88.9

Table 3: Experimental results (Accuracy) on the QQP
and MRPC text semantic matching datasets.

ducted on a single RTX 3090 GPU. For QQP, we
fine-tune the model for 50,000 steps and model
checkpoints are evaluated every 2,000 steps. For
MRPC, we fine-tune the model for 20 epochs and
evaluate the model after each epoch. Checkpoints
with top-3 performance on the development set are
evaluated on the test set to report average results.
For Medical-SM, we use the same fine-tuning strat-
egy as for QQP, and use the chinese version of
PLM checkpoints released by Cui et al. (2021)4.

5 Results and Analysis

5.1 Main Results

Table 3 shows the main results of comparison mod-
els on the QQP and MRPC dataset. Following
previous works (Zhang et al., 2021; Wang et al.,
2021), we evaluate matching performance using
Accuracy and some results are from their reported
scores. In Table 3, all baselines are categorized
into two groups. The first group includes tradi-
tional methods that exploit neural networks with
different inductive biases, and the second group
includes PLMs that benefit from large-scale ex-
ternal pre-training data. Unsurprisingly, PLMs
show a superior performance against traditional
neural matching models, especially on the small-
scale dataset MRPC. When equipped with the DC-
Match training strategy, PLMs can achieve further
performance enhancement. In Table 3, we report
the results of DC-Match that uses RoBERTa as the

4Since the large version of Chinese BERT is not available,
we use Chinese MacBERT (Cui et al., 2020) instead of BERT.

Model QQP MRPC
Ori. → DC (change) Ori. → DC (change)

BERT 90.91 → 91.16 (0.25) 82.66 → 83.82 (1.16)
-large 90.98 → 91.45 (0.47) 85.85 → 86.08 (0.23)

RoBERTa 91.41 → 91.69 (0.28) 87.24 → 88.05 (0.81)
-large 92.03 → 92.20 (0.17) 87.59 → 88.92 (1.33)

ALBERT 90.37 → 90.62 (0.25) 86.02 → 86.26 (0.24)
-large 90.91 → 90.94 (0.03) 86.49 → 87.01 (0.52)

DeBERTa 91.68 → 91.78 (0.10) 88.40 → 88.81 (0.41)
-large 92.13 → 92.22 (0.09) 88.57 → 89.21 (0.64)

FunnelTF 91.92 → 92.09 (0.17) 87.07 → 87.53 (0.46)

Table 4: Experimental results of Accuracy on the QQP
and MRPC datasets. We compare the results of original
PLMs with those using our DC-Match training strategy
(Ori.→DC), and calculate the improvement of accuracy.
Numbers in bold indicate whether the change is signifi-
cant (using a Wilcoxon signed-rank test; p < 0.05).

backbone PLM, which outperforms all baselines
on both datasets. However, the improvement on a
single PLM does not necessarily mean the effect
of DC-Match has generalizability. Hence, to probe
the effectiveness of our proposed training regime,
we apply DC-Match to all the PLMs in the second
group and report the results of performance change
in Table 4. Notably, the listed PLMs generally have
different architectures and parameter scales, and we
fine-tune each PLM of the original version and its
DC-Match variant using the same set of configura-
tions without additional tuning of hyper-parameters.
We are surprised to find that the matching accuracy
of all PLMs increases stably on both datasets. It
indicates that the divide-and-conquer strategy by
breaking down the matching problem into easier
sub-problems can effectively give a better solution
to the original problem. Besides, from Table 4 we
observe that DC-Match brings more significant per-
formance boost to the small dataset MRPC, which
probes that the information of keywords and intents
is an important feature for text semantic matching,
especially when the training data is too limited to
find useful latent patterns.

Furthermore, we evaluate DC-Match on the Chi-
nese Medical-SM. Different from QQP and MRPC,
Medical-SM is a three-class classification dataset.
In addition to accuracy, we further employ Macro-
F1 to assess the quality of problems with multiple
classes. From Table 5 we observe that DC-Match
still boosts the matching performance of PLMs, in-
dicating that our strategy works fine in a multi-class
classification scenario and in different languages.
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Model Accuracy Macro-F1
Ori. → DC (change) Ori. → DC (change)

BERT 73.55 → 73.83 (0.28) 72.91 → 73.15 (0.24)
-large 74.55 → 74.69 (0.14) 74.01 → 74.13 (0.12)

RoBERTa 73.19 → 73.73 (0.54) 72.43 → 72.96 (0.53)
-large 73.51 → 74.22 (0.71) 72.83 → 73.67 (0.84)

Table 5: Accuracy and Macro-F1 on the Medical-SM
corpus. Numbers in bold indicate the result change is
significant (Wilcoxon signed-rank test; p < 0.05).
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Figure 3: Robustness evaluation on the QQP and MRPC
datasets. The x-axis denotes different text transforma-
tions that aim to test whether models are vulnerable to
attacks. The y-axis denotes model accuracy on the trans-
formed test set. Red dots represent the original PLMs
while Blue dots represent those using the DC-Match
strategy. Bar plots denote the gap of mean accuracy
between two groups of models.

5.2 Ablation Experiments

We also perform ablation studies to validate the
effectiveness of each part in DC-Match. Table
6 demonstrates the results of different settings
for the proposed training strategy equipped with
RoBERTa. After only adding the distantly super-
vised loss for keyword and intent identification
(+Lds), we find that the results are not significantly
different from the original PLMs. It reflects that
this auxiliary training objective cannot be directly
associated with the original text matching problem,
so Lds itself might not be helpful for the final target.
However, if we remove Lds from DC-Match and
only keep the divide-and-conquer training objec-
tive (+Ldc), we observe a performance degradation
compared with the full version of DC-Match. It
indicates that the distant supervision target helps
the model learn to disentangle keywords from in-
tents and obtain distinguished content represen-
tations that call for different levels of matching
granularity, which might contribute to the solutions
to sub-problems. Besides, the incorporation of
the divide-and-conquer objective (both +Ldc and
+Lds,Ldc) improves the performance of PLMs to
varying degrees, which manifests the effectiveness
of the matching strategy in a decomposed manner.

Models QQP MRPC Medical-SM

RoBERTa-base 91.41 87.24 73.19
+ Lds 91.48 87.36 73.30
+ Ldc 91.61 87.88 73.65
+ Lds,Ldc (ours) 91.69 88.05 73.73

RoBERTa-large 92.03 87.59 73.51
+ Lds 91.96 87.86 73.85
+ Ldc 92.15 88.82 74.13
+ Lds,Ldc (ours) 92.20 88.92 74.22

Table 6: Ablation study of DC-Match on three text
semantic matching datasets. We report results of Accu-
racy and use RoBERTa as the backbone model.

5.3 Robustness Evaluation

The divide-and-conquer strategy disentangles key-
words from intents, which provides additional in-
terpretability for final matching judgements. Fol-
lowing Wang et al. (2021), we conduct robustness
evaluation to probe whether DC-Match is robust to
text transformations by breaking down the match-
ing problem into easier sub-problems. Specifically,
we use a public toolkit5 and test the following trans-
formations: (1) BackTrans transforms each sen-
tence into a semantically equal sentence using back
translation. (2) SwapSyn-WN replaces words with
synonyms provided by WordNet (Miller, 1995).
(3) SwapSyn-EM replaces common words with
synonyms using Glove Embeddings (Pennington
et al., 2014). We test 6 PLMs (BERT, ALBERT,
RoBERTa with base and large version) in their orig-
inal and DC-Match enhanced version, and report
the results in Figure 36. We observe that both origi-
nal PLMs and their DC-Match variants suffer per-
formance degradation. However, the DC-Match en-
hanced PLMs can keep a more stable performance
compared to original ones, which manifests that
DC-Match can improve the robustness of PLMs to
a certain extent for the text semantic matching task.

5.4 Analysis of Divide-and-Conquer Strategy

Recall that the model cannot access the labeled key-
words at test time, so the probability of combined
solutions to the sub-problems Q(y) cannot be di-
rectly computed. Hence, the KL-divergence loss in
Eq.7 is designed to minimize the distance between
Q(y) and the global matching probability P (y),
aiming to simulate the divide-and-conquer process

5https://www.textflint.io
6All transformations are conducted on the subset of the

original evaluation set where both the original PLMs and the
DC-Match enhanced variants give accurate predictions.
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Sentence Pair Label PLM DC Kw. In.

A: What is the difference between an animal cell and a plant cell? 0 1 0 0 1B: What is the difference between plant cell vacuoles and animal cell vacuoles?

A: Benchmark Treasury 10-year notes gained 17/32, yielding 4.015 percent. 0 1 0 1 0B: The benchmark 10-year note was recently down 17/32, to yield 4.067 percent.

A: Is there any culture difference between US and UK? 1 0 1 1 1B: What is the biggest difference in British culture and American culture?

A: But the cancer society said its study had been misused. 0 1 0 0 0B: The American Cancer Society said the study was flawed in several ways.

Table 7: Test cases on the QQP and MRPC datasets. We use BERT-base as the backbone model. Words in Red
represent distantly labeled keywords. PLM, DC, Kw., and In. represent predictions from the original PLMs, the
DC-Match enhanced PLMs, and the DC-Match sub-problems (keyword matching and intent matching), respectively.
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Figure 4: KL-divergence between P (y) and Q(y). Each
point denotes the KL-divergence score of a test sample
(1725 samples for MRPC and 4801 samples for Medical-
SM). Red dots are scores from the original PLMs, while
Blue dots are those from DC-Match. BERT-base is used
as the backbone model. We observe that DC-Match
significantly narrows the gap between P (y) and Q(y)
compared to the original PLMs.

at inference time. To probe that P (y) can truly
approximate Q(y), we further label the keywords
in test sets as described in Section 4.2, so that we
can calculate Q(y) directly7. We compute the KL-
divergence score between P (y) and Q(y) for each
test example and illustrate the results in Figure 4.
Red dots denote scores from the original PLMs,
while blue dots are scores from DC-Match. We
can observe that P (y) and Q(y) show much higher
consistency (lower KL-Div. scores) when using
the DC-Match strategy compared to the original
PLMs, which again manifests the effectiveness of
our devised divide-and-conquer training objective
that narrows the gap between P (y) and Q(y).

5.5 Case Study

To intuitively understand how the DC-Match strat-
egy works, we show several test cases of the QQP
and MRPC datasets with predicted labels from dif-

7Here, we exploit the keyword labels in test sets only for
analysis, and they do not influence model predictions.

ferent systems in Table 7. In order to analyze how
the DC-Match enhanced PLMs make accurate pre-
dictions, we also show the solutions to the two sub-
problems, namely P (yk|Sa

k , S
b
k) and P (yi|Sa

i , S
b
i ),

by directly introducing distant keyword labels as
in Section 5.4. From the cases we observe that
the final predictions of DC-Match are highly con-
sistent with those of sub-problems. The model
tends to output a low matching score as long as at
least one of the sub-problems is inferred as mis-
matched. We also find that the original PLMs tend
to make wrong predictions when two mismatched
sentences share long common sub-sequences. For
example, in the first case, the main difference be-
tween two sentences is the concept of ’cell’ and
’cell vacuoles’, but the remainder of the sequences
is almost the same, which might confuse the model.
By contrast, DC-Match is capable of identifying
keywords from text sequences, and can make accu-
rate judgements by dividing the matching problem
into easier sub-problems.

6 Conclusion

In this work, we devise a divide-and-conquer train-
ing strategy DC-Match for text semantic matching.
It breaks down the matching problem into two sub-
problems: keyword matching and intent matching.
The model learns to disentangle keywords from
intents that require different levels of matching
granularity. The proposed DC-Match is simple
and effective, which can be easily combined with
PLMs plus few additional parameters. We conduct
experiments on three text matching datasets across
different languages. Experimental results show
that our approach can not only achieve stable per-
formance improvement, but also shows robustness
to semantically invariant text transformations.
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