
Findings of the Association for Computational Linguistics: ACL 2022, pages 3436 - 3448
May 22-27, 2022 c©2022 Association for Computational Linguistics

MetaWeighting: Learning to Weight Tasks in Multi-Task Learning

Yuren Mao1,Zekai Wang2,Weiwei Liu2∗,Xuemin Lin1,Pengtao Xie3
1School of Computer Science and Engineering, University of New South Wales

2School of Computer Science, Wuhan University
3Department of Electrical and Computer Engineering, University of California San Diego

yuren.mao@unsw.edu.au, {wzekai99,liuweiwei863}@gmail.com
lxue@cse.unsw.edu.au, pengtaoxie2008@gmail.com

Abstract

Task weighting, which assigns weights on the

including tasks during training, significantly

matters the performance of Multi-task Learn-

ing (MTL); thus, recently, there has been an

explosive interest in it. However, existing task

weighting methods assign weights only based

on the training loss, while ignoring the gap

between the training loss and generalization

loss. It degenerates MTL’s performance. To

address this issue, the present paper proposes a

novel task weighting algorithm, which automat-

ically weights the tasks via a learning-to-learn

paradigm, referred to as MetaWeighting. Ex-

tensive experiments are conducted to validate

the superiority of our proposed method in multi-

task text classification.

1 Introduction

Multi-task Learning (MTL) simultaneously learns

multiple related tasks and aims to achieve better

performance than learning each task independently

(Caruana, 1993; Baxter, 2000). It has achieved

great success in various applications; especially,

in the text classification context, MTL can signifi-

cantly outperform single task learning (Liu et al.,

2017; Mao et al., 2021).

In MTL, it is common for the including tasks

to be competing. If we cannot properly balance

these tasks, some tasks might dominate the training

process and hurt the performance of other tasks, a

phenomenon known as task imbalance. To address

the task imbalance, the most widely used method is

task weighting, which adaptively assigns weights

on the tasks during training to balance their im-

pacts. Various task weighting methods have been

proposed and can be used in multi-task text classi-

fication, such as (Kendall et al., 2018; Sener and

Koltun, 2018; Chen et al., 2018).

However, existing task weighting methods com-

pute the task weights only based on training losses

or corresponding gradients. They ignore the gap

Figure 1: Illustration of the gap between training loss

and generalization loss in the training process of a four-

task topic classification experiment (500th , 1000th,

1500th epochs respectively).

between the training loss and generalization loss.

To illustrate this gap, we report observations of our

four-task topic classification experiment in Figure

1. The detailed experimental settings are intro-

duced in the experiment section. Figure 1 demon-

strates that the training losses and generalization

losses (estimated by the test losses) have different

magnitudes; moreover, they have different patterns,

such as a task might have the largest training loss

but the lowest generalization loss among the tasks.

This gap causes a mismatch between the task

weights and tasks’ generalization performance,

which reduces effectiveness of the task weighting.

To tackle this issue, this paper proposes a novel task

weighting method based on a bi-level optimization

problem, which aims to find task weights that ex-

plicitly optimize the generalization performance.

Our proposed method computes task weights by

solving this bi-level optimization problem and per-

forms in a learning-to-learn manner; thus, dubbed

MetaWeighting. MetaWeighting can improve the

performance of multi-task text classification.

To verify our theoretical analysis and validate the

superiority of MetaWeighting, we conduct experi-

ments on two classical text classification problems:

sentiment analysis (on reviews) and topic classi-

fication (on news). The results demonstrate that

MetaWeighting outperforms several state-of-the-art

multi-task text classification methods.

3436

2 Related Works

Existing task weighting strategies can be divided

into two categories: weight adaptation methods
and Pareto Optimization (PO)-based methods. The

weight adaptation methods adaptively adjust the

tasks’ weights during training based on pre-defined

heuristic, such as uncertainty (Kendall et al., 2018),

task difficulty prioritization (Guo et al., 2018), gra-

dient normalization (Chen et al., 2018), weight

average (Liu et al., 2019) and task variance regular-

ization (Mao et al., 2021). These methods only use

training losses or their gradients to compute task

weights while ignores the gap between the training

loss and generalization loss.

Besides, the PO-based methods formulate MTL

as a multi-objective optimization problem and aim

to find an arbitrary Pareto stationary solution (Sener

and Koltun, 2018; Lin et al., 2019; Mahapatra and

Rajan, 2020; Lin et al., 2020; Ma et al., 2020; Mao

et al., 2020). However, in these methods, the learn-

ing objectives only involve training losses; thus,

they can only achieve Pareto stationary points w.r.t

training losses. They also ignore the gap between

the training loss and generalization loss. More-

over, (Lin et al., 2019) proposes that the PO-based
methods can be also regarded as weight adaptation

methods for they optimize the weighted sum of

training losses as well.

Overlooking the gap between the training loss

and generalization loss would degenerate the per-

formance of MTL. This paper proposes a novel

meta learning-based task weighting method to

solve this issue. There are some works adopt meta

learning-based weighting methods in multilingual

learning, e.g., (Wang et al., 2020) and (Tarunesh

et al., 2021). However, these works cannot solve

multi-objective optimization problems. By con-

trast, this paper proposes a novel method which

can solve multi-objective optimization problems.

3 Preliminaries

Consider a multi-task learning problem with T
tasks over an input space X and a collection of

task spaces {Yt}Tt=1. For each task, we have a

set of i.i.d. training samples Dt = {xit, yit}ni=1.

The training samples are sampled from an iden-

tical distribution Pt. Based on the training sets

{Dt}Tt=1, we learn an MTL model from a param-

eterized hypothesis class H, which shares some

parameters across tasks. Let θs represent the pa-

rameters shared between tasks (task-sharing param-

eters), while θt represent the task-specific param-

eters. h(·, θs, θ1, ..., θT) : X → {Yt}Tt=1 ∈ H
denotes an MTL model that learns from H, while

h(·, θs, θt) : X → Yt denotes the task-specific

module in the MTL model.

The loss function is represented by l(·, ·) :
Yt × Yt → [0, 1]T . For each task, the generaliza-

tion loss is Lt(θ) = E(xt,yt)∼Pt
l(h(xt, θs, θt), yt),

and the training loss is defined as Ltr
t (θ,Dt) =

1
|Dt|

∑
(xt,yt)∈Dt

l(h(xt, θs, θt), yt). In this paper,

each training set Dt is randomly divided into two

subsets: support set Ds
t and query set Dq

t . Corre-

spondingly; moreover, the support loss is defined as

Ls
t (θ,D

s
t) = 1

|Ds
t |
∑

(xt,yt)∈Ds
t
l(h(xt, θs, θt), yt),

and the query loss is defined as Lq
t (θ,D

q
t) =

1
|Dq

t |
∑

(xt,yt)∈Dq
t
l(h(xt, θs, θt), yt).

3.1 Hypergradient Descent
Hypergradient Descent (HD) (Almeida et al., 1998;

Baydin et al., 2018) provides an efficient way to

apply gradient descent on hyper-parameters. Here,

we take learning rate’s HD as an example to in-

troduce the basic form of HD. Given an objective

function f(θ) and previous parameters θk−1, gradi-

ent descent-based learning typically evaluates the

gradient ∇f(θk−1) and moves against it to arrive

at updated parameters

θk = θk−1 − η∇f(θk−1), (1)

where η is the learning rate. HD derives an update

rule for the learning rate η itself. Based on Eq. (1)

and the chain rule, we have

∂f(θk)
∂η = ∇f(θk) · ∂(θk−1−η∇f(θk−1))

∂η

= ∇f(θk) · (−∇f(θk−1)),
(2)

with which we construct a update rule for η:

ηk+1 = ηk + β∇f(θk) · ∇f(θk−1), (3)

introducing β as the hypergradient step size. In this

paper, we extend HD to a bi-level multi-objective

optimization problem.

3.2 Common Descent Direction for Multiple
Objectives

When using gradient descent to jointly optimize

multiple optimization objectives, we need to find

a descent direction common to all the objectives.

Based on the descent direction for each objective,

(Désidéri, 2012) proposes a way to obtain the com-

mon descent direction, as in Theorem 1. This paper

3437

proposes a method to simultaneously optimize the

tasks’ generalization loss based on Theorem 1.

Theorem 1 ((Désidéri, 2012)). Let A be a Hilbert
space of finite or infinite dimension N . Let fi(z)
(1 ≤ i ≤ n ≤ N) be n smooth functions of the vec-
tor z ∈ A. and z0 a particular admissible design-
point, at which the gradient-vectors are denoted
gi = ∇fi(z

0), and

U = {a ∈ A|a =
n∑

i=1

λigi;λi > 0(∀i);
n∑

i=1

λi = 1}. (4)

Let a∗ = argmina∈Ū ‖ a ‖, where U consists of
the convex hull and closure of U . Then, if a∗ �= 0,
a∗ is a descent direction common to all the objec-
tives.

4 MetaWeighting for MTL

In this section, we demonstrate the gap between

existing task weighting strategies and the general-

ization performance of MTL in Section 4.1. This

gap motivates us to proposed a MetaWeighting

problem, which aims to automatically learn a task

weighting strategy that can narrow this gap, in Sec-

tion 4.2. Moreover, we propose an algorithm to

solve the MetaWeighting problem in Section 4.3.

4.1 Gap Between Task Weighting and
Generalization Performance

MTL aims to improve the generalization perfor-

mance of all the including tasks, which can be

formulated via the following optimization problem.

min
θ

L(θ) = (L1(θ), ...,LT (θ))
�. (5)

By contrast, existing task weighting strategies

train an MTL model via the following objective.

min
θ

1

T
wtLtr

t (θ,Dt), (6)

where the wt is adaptive during training and only

depends on the training losses or their gradients.

As the neural networks are usually heavily over-

parameterized (Allen-Zhu et al., 2019), the training

losses cannot properly estimate the generalization

losses. Thus, existing task weighting strategies,

which tunes weights only based on the training

losses, overlook the generalization losses. Obvi-

ously, there is a gap between these task weighting

strategies and the generalization performance of

MTL.

4.2 MetaWeighting Problem

To narrow the gap between task weighting strate-

gies and generalization performance, we propose

to automatically learn task weights that can re-

duce the generalization losses, namely learning
to weight. This learning to weight problem is form-

lated via the following bi-level optimization prob-

lem, dubbed MetaWeighting.

Problem 1.

min
w

(L1(θ
∗(w)), ...,LT (θ

∗(w)))�

s.t. θ∗(w) = argmin
θ

1

T

T∑
t=1

wtLtr
t (θ,Dt)

(7)

where w = (w1, w2, ..., wT). This bi-level op-

timization problem combines (5) and (6) together,

by solving which we can obtain task weights that

benefit the generalization performance of MTL.

However, the generalization loss is agnostic. To

properly estimate the generalization loss, we ran-

domly divide the training set Dt into two subsets:

support set Ds
t and query set Dq

t , where Ds
t is used

to train an MTL model, and Dq
t is used to estimate

generalization loss of the MTL model. In Section

5, we theoretically demonstrate that query loss is a

good estimator for the generalization loss; besides,

in Section 6.7, experimental analysis also supports

that query loss is a good estimator.

Based on the support-query split, the

MetaWeighting problem is transformed into

the following form.

Problem 2.

min
w

(Lq
1(θ

∗(w), Dq
1), ...,Lq

T (θ
∗(w), Dq

T))
�

s.t. θ∗(w) = argmin
θ

1

T

T∑
t=1

wtLs
t (θ,D

s
t)

(8)

4.3 MetaWeighting Algorithm

In the MetaWeighting problem, the inner optimiza-

tion objective is embedded within the outer opti-

mization objective. In MTL, the inner optimiza-

tion objective is to minimize the weighted sum

of task-specific training losses, which is typically

optimized by means of iterative gradient descent;

thus, Problem 2 can be formulated by the following

problem in the kth learning iteration.

3438

Problem 3.
min

w
(Lq

1(θ
k, Dq

1), ...,Lq
T (θ

k, Dq
T))

�

s.t. θk = θk−1 − η

T

T∑
t=1

wt∇θLs
t (θ

k−1, Ds
t)

(9)

To solve Problem 3, we adopt the Hypergradi-

ent Descent (HD) method. However, the original

HD method (Almeida et al., 1998; Baydin et al.,

2018) is proposed for single objective optimization,

which can not used in our problem where a multi-

objective optimization problem involves. In this

section, this paper proposes a novel HD method for

the multi-objective optimization setting, as in the

following sections.

4.3.1 Task-Specific Descent Direction
The learning objective of Problem 3 involves T
objectives. We aim to find a gradient direction,

moving against which all the objective can be op-

timized. To find this gradient direction, we first

find the hypergradient direction w.r.t w (denoted as

dt) for each task. dt is computed by the following

equation.

dt =
∂Lq

t (θ
k, Dq

t)

∂w
= ∇θLq

t (θ
k, Dq

t) ·
∂θk

∂w
= − η

T
∇θLq

t (θ
k, Dq

t)∇θLs(θk−1, Ds).

(10)

where ∇θLs(θk−1, Ds) =
(∇θLs

1(θ
k−1, Ds

1)
�, ...,∇θLs

T (θ
k−1, Ds

T)
�).

Moving against dt, the generalization loss of task t
can be optimized.

4.3.2 Common Descent Direction
Base on dt, in this section, we find a common gra-

dient direction, moving against which all the ob-

jective can be optimized. Let d = (d�1 , d�2 , ..., d�T)
and dc be the common gradient direction. Theorem

1 presents that the following Eq. (11) is a common

descent direction.

dc = λ∗d� (11)

where

λ∗ = argmin
λ

{‖ λd� ‖22 |λ1� = 1, λ � 0},
(12)

where 1 = (1, 1, ..., 1). Eq. (12) is a typical min-

imum Euclidean-norm point problem. We here

adopt the widely used Frank-Wolfe optimization

algorithm (Jaggi, 2013), a minimum-norm-point al-

gorithm, to solve it. The Frank-Wolfe optimization

algorithm is presented in Algorithm 2.

Algorithm 1: MetaWeighting Algorithm

Input: data {Ds
t }Tt=1 and {Dq

t }Tt=1, Number

of learning iterations K, step size α for

updating w.

Initialize: w0 = (1, 1, ..., 1), θ0, η.

for k = 1 to K do
θk = θk−1 − η

T

∑T
t=1wt∇θLs

t (θ
k−1, Ds

t).
for t = 1 to T do

dt=− η
T ∇θLq

t (θ
k, Dq

t)∇θLs(θk−1, Ds).
end for
d = (d1

�, d2�, ..., dT�)
λ∗=argminλ{‖λd� ‖22 |λ1�=1, λ � 0}
(calls Algorithm 2).

dc = λ∗d�.

wk+1 = wk − αdc.
end for

Algorithm 2: Frank-Wolfe Algorithm

Input: Number of Iterations N .

Initialize: λ0 = [1T , ...,
1
T].

B = d�d.

for i = 0 to N do
v = arg min

v∈{v�1=1,v�0}
v�Bλ.

γ = arg min
γ∈[0,1]

(λi + γ(v − λi))
�B(λi+

γ(v − λi)).
λi+1 = (1− γ)λi + γv.

end for
return: λN

4.3.3 MetaWeighting
Moving against dc, all the objective can be opti-

mized; thus, the update rule of w is

wk+1 = wk − αdc, (13)

where α is the step size. Based on this update rule,

the task weights are automatically learnt oriented

by optimizing the generalization losses.

Overall, we propose the MetaWeighting algo-

rithm, which is presented in algorithmic form in

Algorithm 1. Our proposed method bridges the gap

between task weighting and generalization perfor-

mance of MTL.

5 Theoretical Analysis

In this section, we study the generalization error

bound for MTL; furthermore, we compare the

bound w.r.t training loss and the bound w.r.t the

3439

query loss. The comparison presents that the query

loss is a more accurate estimation of the general-

ization loss than the training loss.

Firstly, we derive the generalization error bound

w.r.t training loss for MTL.

Theorem 2. Assume we have n training samples
for each task. Let σ = {{σt

i}ni=1}Tt=1 be a se-
quence of binary random variables such that each
σt
i = ±1 is independent with probability 1/2. Then,

∀δ ∈ [0, 1], for all h(·, θs, θ1, ..., θT) ∈ H, with
probability of at least 1− δ:

1
T

∑T
t=1 (Lt(θ)− Ltr

t (θ,Dt))

≤ 2R(l ◦ H ◦D) + 4

√
2 log(4/δ)

Tn .

(14)

where

R(l◦H◦D) = Eσ sup
θ
(
1

Tn

T∑
t=1

n∑
i=1

σt
i l(h(x

t
i, θ), y

t
i).

(15)

is the Rademacher complexity for MTL.

Proof. The proof is provided in Appendix A.

Next, we derive the generalization error bound

w.r.t query loss for MTL.

Theorem 3. Assume we have m training samples
for each task. ∀δ ∈ [0, 1], with probability of at
least 1−δ, for all h(·, θs, θ1, ..., θT) ∈ H, we have

1

T

T∑
t=1

(Lt(θ)−Lq
t (θ,D

q
t)) ≤

√
log(2/δ)

2m
. (16)

Proof. The proof is provided in Appendix A.

Comparing the bound (14) and (16), we can find

that the upper bound for the query loss is tighter

than that for the training loss. Taking m to be order

of n, the query loss is a more accurate estimate of

the generalization loss than the training loss by a

factor that depends on the Rademacher complexity.

6 Experiments

In this section, we perform experimental studies on

sentiment analysis to evaluate the performance of

our proposed MetaWeighting and verify our theo-

retical analysis.

6.1 Datasets
Sentiment Analysis 1. We evaluate our algorithm

on product reviews from Amazon. The dataset

(Blitzer et al., 2007) contains product reviews from

14 domains, including books, DVDs, electronics,

kitchen appliances and so on. We consider each

domain as a binary classification task. Reviews

with rating > 3 were labeled positive, those with

rating < 3 were labeled negative, reviews with

rating = 3 are discarded as the sentiments were

ambiguous and hard to predict.

Topic Classification 2. We select 16 newsgroups

from the 20 Newsgroup dataset, which is a col-

lection of approximately 20,000 newsgroup doc-

uments that is partitioned (nearly) evenly across

20 different newsgroups, then formulate them into

four 4-class classification tasks (as shown in Table

1) to evaluate the performance of our algorithm on

topic classification.

Table 1: Data Allocation for Topic Classification Tasks.

TASKS NEWSGROUPS

COMP
OS.MS-WINDOWS.MISC, SYS.MAC.HARDWARE,
GRAPHICS, WINDOWS.X

REC
SPORT.BASEBALL, SPORT.HOCKEY

AUTOS, MOTORCYCLES

SCI
CRYPT, ELECTRONICS,
MED, SPACE

TALK
POLITICS.MIDEAST, RELIGION.MISC,
POLITICS.MISC, POLITICS.GUNS

6.2 Baselines
We compare MetaWeighting with methods:

Single-Task Learning (STL): learning each

task independently.

Uniform: learning tasks simultaneously using

uniform task weights.

Uncertainty: using the uncertainty weighting

method proposed by (Kendall et al., 2018).

GradNorm: using the gradient normalization

method proposed by (Chen et al., 2018).

MGDA: using the MGDA-UB method proposed

by (Sener and Koltun, 2018).

AdvMTL: using the adversarial Multi-task

Learning method proposed by (Liu et al., 2017).

TchebycheffAdv: using the Adversarial

Tchebycheff procedure proposed by (Mao et al.,

2020).

BanditMTL: using the BanditMTL method pro-

posed by (Mao et al., 2021).

1https://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

2http://qwone.com/~jason/20Newsgroups/

3440

Figure 2: Classification accuracy of Single Task Learning, Uniform Scaling, AdvMTL, MGDA, GradNorm,

Uncertainty, TchebycheffAdv, BanditMTL and MetaWeighting on TextCNN for the sentiment analysis dataset.

Each colored cluster illustrates the classification accuracy performance of a method over 10 runs. Our proposed

MetaWeighting outperforms all baselines on ten of the fourteen tasks; besides, its average performance is superior

to that of all baselines.

Figure 3: Classification accuracy of Single Task Learning, Uniform Scaling, AdvMTL, MGDA, GradNorm,

Uncertainty, TchebycheffAdv, BanditMTL and MetaWeighting on TextCNN for the topic classification dataset.

Each colored cluster illustrates the classification accuracy performance of a method over 10 runs. Our proposed

MetaWeighting outperforms all baselines in all tasks.

6.3 Experimental Settings

We adopt the hard parameter-sharing MTL frame-

work (Mao et al., 2021), where the shared repre-

sentation extractor is built with TextCNN or BERT;

besides, the task-specific module is formulated by

means of one fully connected layer ending with a

softmax function. The detailed experimental set-

tings are introduced in the Appendix B.

6.4 Classification Performance

We compare the proposed MetaWeighting with the

baselines and report the results over 10 runs by

plotting the classification accuracy of each task

for both sentiment analysis and topic classification.

The results on TextCNN are shown in Fig. 2 and

3. Due to space limitations, we provide the results

for BERT in the Appendix C. All experimental

3441

Figure 4: Task-average classification accuracy w.r.t dif-

ferent value of ρ (query-split radio) for sentiment analy-

sis and topic classification.

Figure 5: Task-average classification accuracy w.r.t dif-

ferent value of α (step size) for sentiment analysis and

topic classification.

results show that our proposed MetaWeighting out-

performs all baselines and achieves state-of-the-art

performance.

6.5 The Impact of Query-Split Radio

Let n be the size of the entire training set and m
be the size of the query set. We define the query-

split radio as ρ = m
n to indicate the radio of query

samples to the entire training samples. From the

theoretical analysis of Section 5, we can see that the

query loss can estimate generalization loss more ac-

curately when ρ increases, but increasing ρ would

hurt the training process for the size of support set

decreases. Therefore, ρ faces a trade-off between

the performance estimation of generalization loss

and training performance.

To investigate the impact of ρ, we record the

changes in MetaWeighting’s average classification

accuracy w.r.t different values of ρ in Fig. 4, where

each boxplot visually illustrates the distribution of

results over ten runs through displaying the data

quartiles (first quartile and third quartile), mini-

mum/maximum value and median. These exper-

iments are conducted based on TextCNN. In this

figure, as ρ increases, the average accuracy of

MetaWeighting first increases and then decreases.

It verifies our theoretical analysis. For both sen-

Figure 6: Illustration of the gap between training loss,

query loss and generalization loss in the training process

of sentiment analysis (500th , 1000th, 1500th epochs

respectively).

Figure 7: Illustration of the gap between training loss,

query loss and generalization loss in the training process

of topic classification (500th , 1000th, 1500th epochs

respectively).

timent analysis and topic classification, setting

ρ = 0.1 provides satisfactory results.

6.6 Sensitive Study on α

In MetaWeighting, the step size α is a hyper-

parameter. To determine whether the performance

of MetaWeighting is sensitive to α, we conduct

experiments on the classification accuracy perfor-

mance of MetaWeighting w.r.t different values of α
based on the TextCNN model. The results of these

experiments are presented in Figure 5 (boxplots

over ten runs). As the figure shows, the perfor-

mance of our proposed method is not very sensitive

to α when α is within the range of 0.05 to 0.1 for

sentiment analysis and 0.1 to 0.5 for topic classifi-

cation. The results demonstrate that MetaWeight-

ing can work well in a wide range of α values.

6.7 The Gap between the Training Loss,
Query Loss and Generalization Loss

To experimentally verify that the query loss is a

good estimator for generalization loss, we record

the generalization loss (estimated by test loss),

query loss and training loss for each task during

training and report the results in Fig. 6 and 7 for

sentiment analysis and topic classification respec-

tively. From these figures, we can see that there

3442

Figure 8: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA

and BanditMTL for sentiment analysis.

Figure 9: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA

and BanditMTL for topic classification.

is a large gap between the training and general-

ization loss, while the gap between the query and

generalization loss is smaller than that between

the training and generalization loss. The results

verify our theoretical analysis in Section 5; further-

more, they experimentally support our motivation

for MetaWeighting.

In this section, TextCNN is used, and tasks have

uniform weights during training. Fig. 1 is obtained

under this setting as well.

6.8 The Evolution of Task Weights

In this section, we observe the changes in task

weights in the training process of MetaWeighting

and compare these changes with four baselines

(Uncertainty, Gradnorm, MGDA and BanditMTL).

The results for sentiment analysis and topic classi-

fication are reported in Fig. 8 and 9 respectively.

Due to space limitations, for sentiment analysis, we

only report the results of the first four tasks here,

and the results of the other ten tasks are presented

in the Appendix D.

From these figures, we can see that the weight

adaption process of MetaWeighting is different

with that of Uncertainty, Gradnorm, MGDA and

BanditMTL. In MetaWeighting, the task weights

are automatically learnt, and there is no pre-defined

heuristic involved. It is verified by the evolution

curves of task weights for MetaWeighting illus-

trated in Fig. 8 and 9, which fluctuate without any

regular patterns.

7 Conclusion

This paper presents that the gap between the train-

ing loss and the generalization loss, which is over-

looked by existing task weighting methods, is non-

negligible; furthermore, to narrow this gap, a novel

task weighting method (dubbed MetaWeighting)

is proposed. In MetaWeighting, multi-task text

classification is formulated as a multi-objective bi-

level programming problem, and then solved in

a learning-to-learn manner. MetaWeighting auto-

matically learns the task weights without any pre-

defined heuristic and achieves state-of-the-art per-

formance. It has the potential to forge new trends

in task weighting research.

3443

References
Jon Wellner Aad van der Vaart. 1996. Weak convergence

and empirical processes. Springer.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang.
2019. Learning and generalization in overparam-
eterized neural networks, going beyond two layers.
In NeurIPS.

Luís B Almeida, Thibault Langlois, José D Amaral, and
Alexander Plakhov. 1998. Parameter adaptation in
stochastic optimization. In On-Line Learning in Neu-
ral Networks, pages 111–134. Cambridge University
Press.

Jonathan Baxter. 2000. A model of inductive bias
learning. Journal of artificial intelligence research,
12:149–198.

Atilim Gunes Baydin, Robert Cornish, David Martínez-
Rubio, Mark Schmidt, and Frank Wood. 2018. On-
line learning rate adaptation with hypergradient de-
scent. In ICLR.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
ACL.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In ICML.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient nor-
malization for adaptive loss balancing in deep multi-
task networks. In ICML.

Jean-Antoine Désidéri. 2012. Multiple-gradient descent
algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318.

Michelle Guo, Albert Haque, De-An Huang, Serena
Yeung, and Li Fei-Fei. 2018. Dynamic task prioriti-
zation for multitask learning. In ECCV.

Martin Jaggi. 2013. Revisiting frank-wolfe: Projection-
free sparse convex optimization. In ICML.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam
Kwong. 2020. Controllable pareto multi-task learn-
ing. CoRR.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and
Sam Kwong. 2019. Pareto multi-task learning. In
NIPS.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classification.
In ACL.

Shikun Liu, Edward Johns, and Andrew J. Davison.
2019. End-to-end multi-task learning with attention.
In CVPR.

Pingchuan Ma, Tao Du, and Wojciech Matusik. 2020.
Efficient continuous pareto exploration in multi-task
learning. In ICML.

Debabrata Mahapatra and Vaibhav Rajan. 2020. Multi-
task learning with user preferences: Gradient descent
with controlled ascent in pareto optimization. In
ICML.

Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin, and
Wenbin Hu. 2021. Banditmtl: Bandit-based multi-
task learning for text classification. In ACL.

Yuren Mao, Shuang Yun, Weiwei Liu, and Bo Du. 2020.
Tchebycheff procedure for multi-task text classifica-
tion. In ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn-
ing as multi-objective optimization. In NeurIPS.

Ishan Tarunesh, Sushil Khyalia, Vishwajeet Kumar,
Ganesh Ramakrishnan, and Preethi Jyothi. 2021.
Meta-learning for effective multi-task and multilin-
gual modelling. In EACL.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. In ACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP.

3444

A Proof of the Theorem 2 and Theorem 3

Lemma 1 (McDiarmid’s Inequality). Let V be
some set and let f : V n → R be a function of n
variables such that for some c > 0 , for all i ∈ [n]
and for all z1, ..., zn, z′i ∈ V we have

|f(z1, ..., zn)−f(z1, ..., zi−1, z
′
i, zi+1, ..., zn)| ≤ c.

(17)

Let Z1, ..., Zn be n independent random variables
taking values in V . Then, with probability of at
least 1− δ we have

|f(Z1, ..., Zn)−E[f(Z1, ..., Zn)]| ≤ c

√
n log(2/δ)

2
.

(18)

Lemma 2 (Hoeffding’s Inequality). Let z1, ..., zm
be a a sequence of i.i.d. random variables and
assume that for all i, E(zi) = μ and P (a ≤ zi ≤
b) = 1. Then, for any ε > 0

P

[∣∣∣∣∣ 1m
m∑
i=1

zi − μ

∣∣∣∣∣ > ε

]
≤ 2exp(

−2mε2

(b− a)2
).

(19)

Lemma 3. Assume that ∀(xit, yit), (xjt , yjt) :
|l(h(xit, θs, θt), yit)− l(h(xjt , θ

s, θt), yjt)| ≤ c. Let

Rep(H, D) = sup
h∈H

1

T

T∑
t=1

(Lt(θ)− Ltr
t (θ,Dt)),

(20)

then ∀δ ∈ [0, 1], with probability of at least 1− δ:

Rep(H, D) ≤ EDRep(H, D) + c

√
2 log(2/δ)

Tn
.

(21)

Proof. Let sit = (xit, y
i
t). The

training set for MTL is D =
{{(s11, ..., sn1}, ..., {s1t , ..., snt }, ..., {s1T , ..., snT }}.

For ∀t, i, replace sit with uit = (x∗t , y∗t) ∈
Dt and create a new dataset D =
{{(s11, ..., sn1}, ..., {s1t , ..., uit, ..., snt }, ..., {s1T , ..., snT }}.

Let ht(·) = h(·, θs, θt). As ∀(xit, yit), (xjt , yjt) :
|l(h(xit, θs, θt), yit) − l(h(xjt , θ

s, θt), yjt)| ≤ c, we

have

Rep(H, D)−Rep(H, D)
≤ sup

h∈H
1
Tn |l(ht(xnt), ynt)− l(ht(x

∗
t), y

∗
t))| ≤ c

Tn .

(22)

Using the McDiarmid’s Inequality (Lemma 1), we

have

Rep(H, D) ≤ EDRep(H, D)+ 2c
Tn

√
Tn log(2/δ)

2

= EDRep(H, D) + c

√
2 log(2/δ)

Tn .

(23)

We conclude our proof.

Proof of Theorem 2.

Proof. Using the standard symmetrization argu-

ment (for example, see Lemma 2.3.1 of (Aad

van der Vaart, 1996)), we have

EDRep(H, D) ≤ 2EDR(l ◦ H ◦D). (24)

Combining Eq. (21) and Eq. (24), with probability

1− δ/2:

suph∈H
1
T

∑T
t=1(Lt(θ)− Ltr

t (θ,Dt))

≤ 2EDR(l ◦ H ◦D) + c

√
2 log(4/δ)

Tn .
(25)

Obviously, with probability of at least 1− δ/2, for

all h ∈ H, we have

1
T

∑T
t=1(Lt(θ)− Ltr

t (θ,Dt))

≤ 2EDR(l ◦ H ◦D) + c

√
2 log(4/δ)

Tn .
(26)

Let sit = (xit, y
i
t). The train-

ing set for MTL is D =
{{(s11, ..., sn1}, ..., {s1t , ..., snt }, ..., {s1T , ..., snT }}.

For ∀t, i, replace sit with uit = (x∗t , y∗t) ∈ Dt

and create a new dataset D = {{(s11, ..., sn1}, ...,
{s1t , ..., uit, ..., snt }, ..., {s1T , ..., snT }}.

Let ht(·) = h(·, θs, θt). As ∀(xit, yit), (xjt , yjt) :
|l(h(xit, θs, θt), yit) − l(h(xjt , θ

s, θt), yjt)| ≤ c, we

have

Rep(H, D)−Rep(H, D) ≤
sup
h∈H

1
Tn |l(ht(xnt), ynt)− l(ht(x

∗
t), y

∗
t))| ≤ c

Tn

(27)

Using the McDiarmid’s Inequality (Lemma 1), we

have that: with probability of at least 1− δ/2:

EDR(l◦H◦D)≤R(l◦H◦D)+2c

√
2 log(4/δ)

Tn .

(28)

Based on Eq. (28) and the union bound, we have

that - with probability of at least 1− δ:

1
T

∑T
t=1(Lt(θ)− Ltr

t (θ,Dt))

≤ 2R(l ◦ H ◦D) + 4c

√
2 log(4/δ)

Tn .
(29)

3445

In our setting, l(·, ·) : Yt×Yt → [0, 1], then c = 1.

We have

1
T

∑T
t=1(Lt(θ)− Ltr

t (θ,Dt))

≤ 2R(l ◦ H ◦D) + 4

√
2 log(4/δ)

Tn .
(30)

We conclude our proof.

Based on the Hoeffding’s Inequality (Lemma 2),

we have the following theorem.

Proof of Theorem 3.

Proof. Based on the Hoeffding’s Inequality

(Lemma 2) and l(·, ·) : Yt × Yt → [0, 1], for each

h(·, θs, θt) ∈ Ht, we have

P [|Lt(θ)− Lq
t (θ,Dt)| > ε] ≤ 2exp(−2mε2).

(31)

Then, with probability of at least 1−2exp(−2mε2),
we have

|Lt(θ)− Lq
t (θ,Dt)| ≤ ε. (32)

Let δ = 2exp(−2mε2), we have that with proba-

bility of at least 1− δ,

|Lt(θ)− Lq
t (θ,Dt)| ≤

√
log(2/δ)

2m
. (33)

Thus, for each task,

Lt(θ)− Lq
t (θ,Dt) ≤

√
log(2/δ)

2m
. (34)

Since the bound for each task are independent, we

have

1

T

T∑
t=1

(Lt(θ)− Lq
t (θ,Dt)) ≤

√
log(2/δ)

2m
. (35)

We conclude our proof.

B Detailed Experimental Settings

We adopt the hard parameter-sharing MTL frame-

work (Mao et al., 2021), where the shared repre-

sentation extractor is built with TextCNN or BERT;

besides, the task-specific module is formulated

by means of one fully connected layer ending

with a softmax function. The TextCNN module

is structured with three parallel convolutional lay-

ers with kernels size of 3, 5, 7 respectively. For

TextCNN, we adopt Pre-trained GloVe (Penning-

ton et al., 2014) word embeddings. By contrast,

the BERT module is formulated via a pre-trained

BERT-base model provided by Hugging Face(Wolf

et al., 2020), with a hidden size of 768, 12 Trans-

former blocks and 12 self-attention heads.

We train the deep MTL network model in line

with Algorithm 1. We set α to be 0.1 and 0.5 for

sentiment analysis and topic classification respec-

tively, and the query-split radio (radio of query

samples to entire training samples) to be 0.1 for

both sentiment analysis and topic classification. We

use the Adam optimizer (Kingma and Ba, 2015).

We train over 3000 epochs for TextCNN and fine-

tune over 50 epochs for BERT. For TextCNN,

the learning rate is 1e − 3 and the batch size is

256. For BERT, the learning rate is 2e − 5 , the

batch size is 32, and the max sequence length is

256. For the baselines, we search over the set

{1e−5, 2e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3}
learning rates and choose the model with best per-

formance.

C Classification Performance on BERT

For the BERT-based MTL model, we compare the

proposed MetaWeighting with the baselines and

report the results over 10 runs by plotting the clas-

sification accuracy of each task for both sentiment

analysis and topic classification in Fig. 10 and 11.

AdvMTL and TchebycheffAdv are not available

for BERT; thus, we do not compare with AdvMTL

and compare with Tchebycheff which is Tcheby-

cheffAdv without aversarial module (Mao et al.,

2021). From these figures, we can see that our

proposed MetaWeighting outperforms all baselines

and achieves state-of-the-art performance.

D The Evolution of Task Weights for
Sentiment Analysis

Fig. 12 illustrates the changes in task weights in

the training process of MetaWeighting for all the

tasks of sentiment analysis.

3446

Figure 10: Classification accuracy of Single Task Learning, Uniform Scaling, MGDA, TchebycheffAdv, Uncertainty,

GradNorm, BanditMTL and MetaWeighting on BERT for the sentiment analysis dataset. Each colored cluster

illustrates the classification accuracy performance of a method over 10 runs. Our proposed MetaWeighting

outperforms all baselines on eleven of the fourteen tasks; besides, its average performance is superior to that of all

baselines.

Figure 11: Classification accuracy of Single Task Learning, Uniform Scaling, MGDA, TchebycheffAdv, Uncertainty,

GradNorm, BanditMTL and MetaWeighting on BERT for the topic classification dataset. Each colored cluster

illustrates the classification accuracy performance of a method over 10 runs. Our proposed MetaWeighting

outperforms all baselines on three of the four tasks; besides, its average performance is superior to that of all

baselines.

3447

Figure 12: Comparison of task weight adaption processes between MetaWeighting, Uncertainty, Gradnorm, MGDA

and BanditMTL for sentiment analysis.

3448

