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Abstract

Pretrained language models (PLMs) trained on
large-scale unlabeled corpus are typically fine-
tuned on task-specific downstream datasets,
which have produced state-of-the-art results
on various NLP tasks. However, the data dis-
crepancy issue in domain and scale makes fine-
tuning fail to efficiently capture task-specific
patterns, especially in the low data regime. To
address this issue, we propose Task-guided
Disentangled Tuning (TDT) for PLMs, which
enhances the generalization of representations
by disentangling task-relevant signals from the
entangled representations. For a given task,
we introduce a learnable confidence model to
detect indicative guidance from context, and
further propose a disentangled regularization to
mitigate the over-reliance problem. Experimen-
tal results on GLUE and CLUE benchmarks
show that TDT gives consistently better results
than fine-tuning with different PLMs, and ex-
tensive analysis demonstrates the effectiveness
and robustness of our method. Code is avail-
able at https://github.com/lemon0830/TDT.

1 Introduction

In recent years, pretrained language models (PLMs)
trained in a self-supervised manner like mask lan-
guage modeling have achieved promising results
on various natural language processing (NLP) tasks
(Devlin et al., 2019; Yang et al., 2019; Liu et al.,
2019b), which learn general linguistic and seman-
tic knowledge from massive general corpus. To
adapt PLMs to specific NLP tasks, a commonly-
used approach is fine-tuning, where the whole or
part of model parameters are tuned by task-specific
objectives. Despite its success, the fine-tuned
models have been proven ineffective to capture
task-specific patterns due to the gap between task-
agnostic pre-training and the weak fine-tuning with
limited task-specific data (Gu et al., 2020; Gururan-
gan et al., 2020; Kang et al., 2020).

*Corresponding author.

—Train
Sentence Label
Jobs founded apple in 1976 tech
apple launches new apple phones tech
apple is interested in news content and started tech \
recruiting editors on a large scale last year
apple
—Test
Sentence Pred/Label tech
The total output of apples in arid regions tech/finance
has fallen, and the price of high-quality
apples has risen.
Apple's founder's daughter bought a new tech/house
mansion in San Francisco
—Ours
Sentence Label
Jobs founded apple in 1976 tech
Positive:  Jobs founded apple in 1976
Negative: Jobs founded apple in 1976

Figure 1: An over-reliance example of news classifica-
tion task. The fine-tuned models tend to learn a simple
rule that “Apple” (red) indicates “tech” class while ig-
nore the real meaning of “apples” (green) A reliable
model is expected to find out truly task-specific patterns
(underlined words) instead of some high frequency but
insignificant words (“apple”).

To address this problem, most existing methods
focus on adapting PLMs to downstream tasks by
continual pre-training on in-domain unsupervised
data (Gururangan et al., 2020; Gu et al., 2020; Wu
et al., 2021; Kang et al., 2020; Ye et al., 2021).
For example, Gu et al. (2020) propose intermedi-
ate continual pre-training with a selective masking
strategy, and Gururangan et al. (2020) adapt PLMs
to in-domain tasks by domain-adaptive pretraining.
Although straightforward, these kinds of methods
heavily rely on the selection of large-scale addi-
tional domain corpora and the design of appropri-
ate intermediate training tasks (Wang et al., 2019;
Aghajanyan et al., 2021a).

In this paper, we propose a Task-guided
Disentangled Tuning (TDT) for PLMs by auto-
matically detecting task-specific informative inputs
without the need of additional corpora and inter-
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mediate training. The core component of TDT is a
confidence model which assigns each token a confi-
dence score, and we construct distilled samples by
retaining informative tokens with high confidence
scores while perturbing the rest. The confidence
model performs a “deletion game” strategy, which
encourages the model to perturb inputs as much
as possible and to maintain the performance of
downstream tasks to the greatest extent with the
distilled samples. Although the informative tokens
are important for downstream predictions, existing
work shows that over-relying on part of these words
may result in pool generalization, i.e., over-reliance
problem (Moon et al., 2020; Geirhos et al., 2020;
Sun et al., 2019). Take the sentences in Figure 1
as an example, when the context word “Apple" fre-
quently co-occurs with the label “tech”, fine-tuned
models may learn a spurious association by binding
“Apple" and “tech", leading to incorrect predictions
of sentences which contain “apple” but belong to
other categories.

Based on the observation, we further enhance
our method with a disentangled regularization, aim-
ing to distinguish task-relevant and task-irrelevant
features. First, we construct two variants of the
original input in a complementary view: (1) posi-
tive variant, which maintains the high-confidence
keywords, and (2) negative variant, derived by
a “cut-out-keyword” operation on the original in-
put. Next, we propose a “triplet-style loss”, which
makes predictions between the original input and
the positive variant similar while the predictions
between the negative variant and the other two dif-
ferent. To illustrate the mechanism of our disentan-
gled regularization, we go back to Figure 1 and take
the sentence “Jobs founded apple in 1976 as an
example. Under the influence of the disentangled
regularization, the positive variant tends to retain
clue words for predictions (i.e., “founded apple”),
while the negative variant, as the complement (i.e.,
“Jobs in 1976”), tends to be task-irrelevant.

We evaluate our TDT on a wide range of neural
language understanding benchmark datasets in En-
glish and Chinese, i.e., GLUE and CLUE, and our
TDT affords strong predictive performance com-
pared with standard fine-tuning. Moreover, we
conduct extensive analysis with respect to robust-
ness to perturbation, domain generalization, and
low-resource settings, from which we conclude:

e TDT learns reasonable confidence scores for
input tokens.

* TDT is robust to input perturbation and do-
main shift by encouraging the model to learn
more generalized features.

» TDT effectively captures the high-confidence
decisive cues for downstream tasks, thus alle-
viating over-fitting in low-resource scenarios.

2 Method

In this section, we begin with a brief introduc-
tion of the vanilla Fine-tuning, and then introduce
Task-guided Disentangled Tuning (TDT) in de-
tail. Figure 2 shows the overall framework. TDT
is composed of two parts: (1) token-level confi-
dence model, which discovers the essential parts
of inputs for the model prediction; (2) task-guided
regularization, which promotes the model to de-
couple task-relevant keywords from non-keyword
context.

2.1 Vanilla Fine-tuning

Given an example of training data < X, y >, where
X={z1,..., 2, ...,x, } is the input sequence and y
is its corresponding label. We first map each token
x; to areal-valued vector e; by an embedding layer.
Then, the packed embedding output F’={e;} is fed
into the PLM to get the contextualized sentence
representations H={hs, h1, ..., hy}, and the hid-
den state A 1s used to conduct classification with
a MLP head. We fine-tune the parameters of the
PLM with the cross entropy loss:

Lea = —logP(y|H). )

2.2 Token-level Confidence Model

For each token x;, we generate a scalar ¢; € [0, 1],
coined confidence score, by stacking a single-layer
feed-forward network with sigmoid activation on
the top of the embedding layer:

c¢i=0(We; +b), (2)

where W and b are trainable parameters. Based on
the confidence score, we obtain a distilled sample
{ej} defined as

where 1 is a perturbation term and © denotes
element-wise multiplication. Specifically, the per-
turbation term iy can be a zero vector, a random
Gaussian noise vector, or the average of the token
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Figure 2: The overall framework of our proposed Task-guided Disentangled Tuning method.

embedding, and we choose the last one in this pa-
per. In this manner, for the distilled sample of each
training instance, the higher the ¢; is, the more se-
mantic information of the i-th token retains, while
the tokens with lower scores are perturbed.

Then, the distilled sample {e;r} is fed into
the PLM to generate the sentence representations
H*={h}}. Inspired by “deletion game” (Fong
and Vedaldi, 2017; Voita et al., 2019), the objective
function of the confidence model is

Lo =—logPylH") +1[[Cll2, 4

where C' = {¢;} is the set of confidence scores
of X. The first term is the cross entropy loss of
classification on the distilled sample to encourage
the confidence model to assign higher scores to the
more decisive part of the input, and the second term
serves as a penalty to prevent the model from mode
collapsing (i.e., always choosing ¢;=1).

2.3 Task-Guided Regularization

It has been widely observed that the pretrained
models tend to learn an easy-to-learn but not gener-
alizable solution by vanilla fine-tuning on various
NLP tasks (Sun et al., 2019; McCoy et al., 2019;
Min et al., 2019; Niven and Kao, 2019). To alle-
viate this issue, we further propose a triplet-style
loss on the model predictions.

Specifically, for each input sequence, we derive
two different variants: a positive variant and a neg-
ative variant. The positive variant is expected to
maintain the most informative tokens to task pre-
diction and vice versa. As aforementioned, our
confidence model removes the meaningless tokens
by setting the corresponding confidence scores to
zero. Based on the confidence scores, we directly
treat the distilled sample generated by Eq. 3 as the
positive variant and generate the negative variant
as

T =(1=-¢)oe. (5)

Given the original input and the two derived vari-
ants, we feed them into the PLM with the classifier,
and obtain three prediction distributions P(y|H),
P(y|H™), and P(y|H ™). Finally, we regularize
these distributions by a triplet ranking loss

P(ylH)) —

P(y|H)) —
P(ylH")),0) (6)

L = max(m+d(P(y|H"),
d(P(y|H™),
d(P(ylH™),

where m is a hyperparameter indicating a margin
for the loss and d(-) denotes the Kullback-Leibler
(KL) divergence. By minimizing Lg, the positive
variant will be closer to the original input while
the negative variant will be farther from the other
two. Thus, the model is encouraged to disentangle
task-relevant signals from task-irrelevant factors,
and generate more general representations.

2.4 Overall Training Objective

The final training objective is
L =Ly +alc+ ,BER, (N

where « and 3 are non-negative hyper-parameters
to balance the effect of each loss term.

3 Experiments

3.1 Datasets

We evaluate our proposed method by fine-tuning
the pretrained models on the General Language Un-
derstanding Evaluation (GLUE) (Wang et al., 2018)
and the Chinese Language Understanding Evalu-
ation (CLUE) (Xu et al., 2020). Concretely, the
GLUE benchmark has 8 different text classification
or regression tasks including MNLI, MRPC, QNLI,
QQP, RTE, SST-2, SST-B, and CoLA. The CLUE
benchmark includes 9 tasks spanning several single-
sentence/sentence-pair classification tasks, and we
choose 5 tasks, OCNLI, IFLYTEK, CSL, TNEWS,
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg
BERT-base

FineTuning 84.5 90.9 91.3 92.8 60.5 88.7 85.1 67.5 82.66
TDT 85.3 91.2 91.9 93.7 62.4 89.3 87.5 71.8 84.14
BERT-large

FineTuning 86.6 91.3 923 93.2 60.6 90.0 88.0 704  84.05
FineTuning 85.9 90.9 92.3 93.9 61.5 90.0 86.0 75.1  84.45
TDT 86.4 914 92.6 94.3 66.2 89.9 88.5 75.8  85.64
RoBERTa-large

FineTuning 90.2 922 94.7 96.4 68.0 924 90.9 86.6 88.92
FineTuning 90.5 92.3 94.4 96.6 67.4 922 91.9 87.7 89.13
TDT 90.6 91.9 94.7 97.0 69.3 92.5 93.1 91.0 90.01
XLNet 90.8 923 94.9 97.0 69.0 92.5 90.8 859 89.15
ELECRTA ¥ 90.9 924 95.0 96.9 69.1 92.6 90.8 88.0 89.46
DeBERTa 91.1 92.4 95.3 96.8 70.5 92.6 91.9 88.3  89.86
ALBERT ft 90.8 922 95.3 96.9 71.4 93.0 90.9 89.2  89.96

Table 1: Experimental results on GLUE language understanding benchmark. When take ROBERTA-large as
the PLM, for RTE and STS, we follow Liu et al. (2019b) to finetune starting from the MNLI model instead of the
baseline pretrained model. Methods with T denote that we directly report the scores from corresponding paper, and

others are from our implementation.

Task BERT-wwm-base MacBERT-large RoBERTa-wwm-large
FineTuning TDT  FineTuning TDT  FineTuning  TDT
OCNLI 74.6 75.3 78.3 79.8 78.1 79.5
IFLYTEK 60.8 62.2 61.5 61.8 61.8 62.9
CSL 84.7 85.5 86.8 87.0 86.1 87.2
TNEWS 56.9 57.3 58.5 58.7 59.0 59.2
AFQMC 74.0 75.0 76.2 76.8 76.0 76.2
Avg 70.20 71.06 72.26 72.82 72.20 73.00

Table 2: Experimental results on CLUE language understanding benchmark. For TNEWS, we only use the
raw “sentence” for classification without the “keywords” information. For CSL, we only mask the “abst” sequence
and keep the “keywords” sequence unchanged in our proposed method.

and AFQMC. The detailed data statistics and met-
rics are provided in Appendix A.

3.2 Model & Training

We use the pretrained models and codes provided
by HuggingFace!. We take BERT-base (Devlin
et al., 2019), BERT-large (Devlin et al., 2019) and
RoBERTa-large (Liu et al., 2019b) as our back-
bones on GLUE, while BERT-wwm-base (Cui
et al., 2019), MacBERT-large (Cui et al., 2020),
and RoBERTa-wwm-large (Cui et al., 2019) on
CLUE. We tune the task specific hyper-parameters
m € {0,2}, a € {0.5,2,4} and 8 € {0.5,1}. De-
tailed experimental setups are shown in Appendix
B. Following previous work (Lee et al., 2020; Agha-

"https://github.com/huggingface/transformers

janyan et al., 2020), we report results of the devel-
opment sets, since the performance on the test sets
is only accessible on the leaderboard with a limita-
tion of the number of submissions.

3.3

Results on GLUE. We illustrate the experimen-
tal results on the GLUE benchmark in Table 1. We
can observe that the PLMs enhanced by TDT out-
performs FineTuning by a large margin across all
the tasks. Specifically, TDT's achieve 1.48 points,
1.19 points and 0.88 points (on average) improve-
ment over BERT-base, BERT-large, and RoBERTa-
large, respectively. In particular, BERT-base+TDT
achieves competitive performance compared with
BERT-large+ FineTuning, showing that our method

Main Results

3129



Class: 0

Figure 3: Visualization of representations of origi-
nal input and two derived variants, where the triangle-
shaped (pink), tri-up-shaped (purple), and tri-left-
shaped (black) points denote the representations of

, positive variants, and negative variants, re-
spectively.

is more efficient to find task-specific information
for downstream tasks. This may be because our
training strategy prompts the models to predict with
as little information as possible, isolating the task-
related signals from the whole representations.

RoBERT-large trained with TDT surpasses
XLNet-large (Yang et al., 2019) ALBERT-xxlarge
(Lan et al., 2019), DeBERTa-large (He et al., 2020),
and ELECTRA-large (Clark et al., 2020), which
are specially designed with different architectures
and pre-training objectives.

Results on CLUE. Table 2 shows the overall
results on the 5 tasks of CLUE benchmark. Con-
cretely, TDT significantly outperforms FineTuning
on CSL, IFLYTEK, AFQMC, and OCNLI, and
shows competitive results on the short text classi-
fication task TNEWS, indicating the advantage of
extracting important parts from long text or multi-
ple input sequences. Note that TNEWS generally
requires additional knowledge (e.g., keywords) as a
supplement due to the short input, and thus cannot
show the superiority of 7DT.
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Figure 4: Distribution of confidence scores on MRPC
and CoLA deyv sets.

4 Analysis & Discussion

4.1 Visualization of Representations

In Figure 3, we plot t-SNE visualizations (van der
Maaten and Hinton, 2008) of three kinds of repre-
sentations generated by BERT-large trained with
TDT on CoLA dev set. We can see that the repre-
sentations of the original input are close to those
of the positive variant in the same class. Although
the negative variant representations are really sim-
ilar to the original ones which derive the former,
they are clearly separated from the other represen-
tations. The learned disentangled representations
reveal that the model trained with TDT is able
to distinguish task-specific keywords and non-
keyword context, which plays an important role
in increasing models’ robustness.

4.2 Distribution of Confidence Scores

We investigate the learned confidence score dis-
tributions in Figure 4. It shows that although the
initial distribution is consistent, the model learns
different task-specific patterns (confidence distribu-
tions) on different tasks.

4.3 Does our Confidence Model make a
meaningful estimation for input tokens?

In section 2.2, we mention that TDT uses a scalar
for evaluating the contribution of each input token.
To analyze whether the strategy can successfully
learn a meaningful importance estimation, we con-
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Figure 5: Robustness to Input Perturbation. The Y-axis is the accuracy on the development set.
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Figure 6: Accuracy of BERT-large trained with dif-
ferent methods and evaluated on MPRC dev set with
different drop rates. We denote vanilla fine-tuning as
FineT. The solid lines indicate results on the datasets
constructed by dropping tokens in descending order of
confidence scores. The dotted lines denotes results on
the datasets constructed by dropping tokens in increas-
ing order of confidence scores.

struct two sets of datasets based on MRPC dev set
and then evaluate the performance of BERT-large
with TDT and standard fine-tuning. Specifically,
we convert the confidence scores to probability dis-
tributions. We generate the first set of datasets by
dropping input tokens in descending order of the
distributions and generate the second set in ascend-
ing order. In order to ensure language fluency, we
replace each dropped token with a “[MASK]” to-
ken. The results are shown in Figure 6 and we
observe that:

¢ TDT is more robust to incomplete input
compared with Fine-tuning. Specifically, al-
though the performance of both FineTuning
and TDT drops with the increase of dropout
rate, our 7DT achieves significantly better per-

Task FineTuning TDT A
MNLI (BERT-large)
MNLI-m 85.8 86.4  +0.6
QQP 73.1 742 +1.1
OCNLI (MacBERT-large)
CMNLI 70.6 71.8  +1.2
BUSTM 64.8 664 +1.6

Table 3: Performance of Domain Generalization.
The models are trained on MNLI/OCNLI but tested on
out-of-domain data.

formance than FineTuning over all datasets.

* Our learned confidence scores make rea-
sonable assessments for each input token.
Particularly, regardless of the dropout rates
and the training methods, dropping input to-
kens by the descending order of the masking
scores always leads to worse performance.

4.4 Robustness to Input Perturbation

Based on the observation in Section 4.3, we fur-
ther investigate the robustness of TDT on perturbed
data. To construct perturbed data, we use the dev
set of MRPC and possibly replace the input at each
position with a “[MASK]” token or a token sam-
pled from the input sequence. For each dropout
rate, we construct 10 datasets with different ran-
dom seeds and draw violin plots of the performance
of BERT-large trained with TDT and fine-tuning
(Figure 5). We can see that Ours is consistently
better than FineTuning in all groups, indicating the
superior robustness to noisy data.
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Task FineTuning TDT A
CLUE (MacBERT-large)

OCNLI 60.85 (£2.66) 63.38 (+£0.90) +2.53
IFLYTEK 54.12 (£0.75) 54.78 (£0.94) +0.66
CSL 80.25 (£1.36) 81.45(40.62) +1.20
TNEWS 53.50 (£0.58) 53.33 (£0.25) -0.17
AFQMC 64.77 (£3.87) 66.45 (£0.93) +1.68
Avg 62.70 63.88 +1.18

Table 4. Experimental results in low-resource scenar-
ios. We run 4 times for each task with different random
seeds and report the average accuracy and the standard
deviation.

4.5 Domain Generalization

We evaluate how well the trained models gener-
alizes to out-of-domain data on MNLI and OC-
NLI, Natural Language Inference (NLI) tasks of
GLUE and CLUE respectively. In detail, we fine-
tune BERT-large on MNLI, and test the accuracy
of the fine-tuned models on other NLI datasets
in different domains including MNLI-mismatch?
and QQP. Besides, we fine-tune MacBERT-large
on OCNLI and conduct an evaluation on CMNLI?
and BUSTM*. Detailed of Label Mapping is pro-
vided in Appendix C. As Tabel 3 illustrates, TDT
outperforms vanilla fine-tuning across different out-
of-domain datasets. The results suggest that TDT
encourages the model to learn more generalized
features rather than some superficial contextual
cues unique to training data.

4.6 Results in Low-resource Scenarios

Fine-tuning PLMs on very small amount of train-
ing data can be challenging and result in unstable
performance due to the serious over-fitting issue.
In this section, we explore the effectiveness of TDT
in such scenarios. For each dataset in CLUE, we
use MacBERT-large and sample 1k training exam-
ples as its training data. As Table 4 demonstrates,
TDT improves the accuracy by 1.18 on average and
reduces the standard deviation by up to 2.94. It sug-
gests that our TDT is more stable and efficient
than vanilla fine-tuning when training PLMs on
limited data.

MNLI-mismatch has different domains from MNLI train-
ing data

3 An NLI task of CLUE.

A short text matching task of FewCLUE (Xu et al., 2021a)

4.7 Compared with Variants

Ablation Studies. We first conduct ablation stud-
ies to explore the effectiveness of two additional
loss functions introduced in this paper and show
the results in Table 5. We find that removing any of
them leads to a performance drop, which indicates
their effectiveness on regularization for training.

Soft Perturbation vs. Hard Perturbation. The
confidence score in this paper is continuous value
ranging from O to 1, and we perturb the input in
a soft way. It is straightforward to investigate the
discrete counterpart. To this end, we model the dis-
crete confidence score with the Gumbel-Softmax
trick (Jang et al., 2017). More detailed is intro-
duced in Appendix D. We denote the model trained
with the hard strategy as TDT-hard and show the
comparison in Table 5. From the table, both TDT-
hard and TDT yield better performance than vanilla
fine-tuning. This observation supports our claim
that different tokens or phrases contribute differ-
ently to the final results, which can be detected by
task-guided signal and then used to model more
reliable encoders by our proposed regularization.
Moreover, the inferior performance of TDT-hard
shows that naively removing tokens has an adverse
effect on context modeling and thus it is better to
regularize the over-reliance in a soft manner.

4.8 Compared with Previous Methods

TDT vs. Token Cutoff. Our method can also
be viewed as a soft variant of token cutoff (Shen
et al., 2020), which is a data augmentation strategy.
Table 5 shows the results where we find that TDT
performs better than TokenCutoff, which demon-
strates that the improvement of our method is not
entirely due to the effect of data augmentation but
stems from the design of the training objectives.

TDT vs. R-drop & R3F. Recently, Liang et al.
(2021) proposed R-drop to regularize the consis-
tency of sub-models obtained through dropout.
Aghajanyan et al. (2021b) introduced R3F rooted
in trust region theory, which adds noise into the
input embedding and minimize the KL divergence
between prediction distributions given original in-
put and noisy input. Both of them are task-agnostic,
while our proposed method constructs two derived
variants with task signal, and concentrates on how
to disentangle the task-relevant and task-irrelevant
factors. The better performance of TDT compared
with the strong R-drop and R3F baselines (Table 5)
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GLUE (RoBERTa-large)

CLUE (RoBERTa-www-large)

Model

SST-2 CoLA MRPC RTE Avg OCNLI IFLYTEK CSL TNEWS Avg
FineTuning 96.6 67.4 91.9 87.7 85.90 78.1 61.8 86.1 59.0 71.25
TokenCutoff ¥  96.9 70.0 90.9 90.6 87.10 78.2 61.8 86.1 59.2 71.33
R-drop 96.9 70.0 91.4 88.4 86.67 78.9 61.6 86.6 58.9 71.50
R3F t 97.0 71.2 91.6 88.5 87.07 - - - - -
PostTraining 95.0 64.7 91.2 84.1 83.75 76.5 62.1 87.0 58.9 71.13
TDT w/o Lo 96.4 69.3 91.9 89.5 86.77 78.6 61.9 86.9 59.0 71.60
TDT w/o Lr 96.4 66.7 914 90.6 86.28 79.2 62.1 86.9 58.9 71.77
TDT-hard 96.7 67.6 92.2 90.3 86.70 79.1 62.5 87.0 59.1 71.93
TDT 97.0 69.3 93.1 91.0 87.60 79.5 62.9 87.2 59.2 72.20

Table 5: Results of RoBERTa-large trained with TDT, variants or previous methods on 4 GLUE tasks and 4 CLUE
tasks. For GLUE, results with { are taken from the corresponding paper.

verify the advantage of task-driven regularization.

TDT vs. Post-Training. Post-training is an ef-
fective approach to reduce the objective gap be-
tween pretrained model and downstream tasks (Gu
et al., 2020), which continues to train PLMs on task
(or in-domain) training data with mask language
model (MLM) loss. The difference lies in that we
focus on the fine-tuning stage. Here, we compare
TDT with the model first post-trained via MLM
on training set of each task and then fine-tuned.
It is surprising that post-training does not always
have a positive effect on downstream fine-tuning,
while TDT shows effective performance without
additional post-training time consumption.

5 Related Work

Fine-tuning large-scale PLMs tends to be a popular
paradigm of various NLP tasks (Devlin et al., 2019;
Liu et al., 2019a; Yang et al., 2019). However,
the fine-tuned models fail to capture task-specific
patterns due to the imbalanced nature between the
large number of parameters and limited training
data (Aghajanyan et al., 2020). To address this
issue, two main research lines are proposed: (1)
continual pretraining after general pre-training, (2)
regularization techniques in fine-tuning.
Continual pretraining of PLMs on unlabeled
data of a given downstream domain or task has
been proved effective for the end-task performance
(Gururangan et al., 2020), and various continual
pre-training objectives designed for different down-
stream tasks have been proposed (Tian et al., 2020;
Wu et al., 2021). For example, Gu et al. (2020)
propose a selective masking strategy to learn task-

specific patterns based on mid-scale in-domain data.
However, such methods usually rely on extra in-
domain data and manually designed training objec-
tives.

Due to the overfitting problems of fine-tuning,
lots of regularization techniques have been pro-
posed. Lee et al. (2019) and Chen et al. (2020) reg-
ularize fine-tuned weights with original pretrained
weights while others design adversarial training ob-
jectives or introduce noise into the input (Zhu et al.,
2020; Jiang et al., 2020; Aghajanyan et al., 2020;
Shen et al., 2020; Yu et al., 2021; Hua et al., 2021;
Qu et al., 2020). Liang et al. (2021) regularize the
training by minimizing the KL-divergence between
the output distributions of two sub-models sampled
by dropout and Xu et al. (2021b) only updates a
sub-set of the whole network during fine-tuning
by selectively masking out the gradients in both
task-free and task-driven ways. Moon et al. (2020)
handle the over-reliance problem by reconstructing
keywords based on other words and making low-
confidence predictions without enough context.

6 Conclusion

In this paper, we propose task-guided disentangled
tuning for enhancing the efficiency and robustness
of PLMs in downstream NLP tasks. Our method is
able to efficiently distinguish task-specific features
and task-agnostic ones, and bridges the gap be-
tween pretraining and adaptation without the need
of immediate continual training. Experiments on
GLUE and CLUE benchmarks demonstrate the ef-
fectiveness of our method, and extensive analysis
shows the advantage in domain generalization and
low-resource setting over fine-tuning.
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A GLUE and CLUE Benchmark

In this paper, we conduct experiments on 8 datasets
in GLUE benchmark (Wang et al., 2018), and
5 datasets in CLUE (Xu et al., 2020), including
the short text classification task TNEWS, the long
text classification tasks IFLYTEK and CSL, and
sentence-pair classification tasks AFQMC and OC-
NLI. The data statistics and evaluate metrics are
illustrated in Table 6.

Dataset #Train # Dev Metrics
GLUE
MNLI 393k 9.8k Accuracy
QQP 364k 40k Accuracy
QNLI 105k 5.5k Accuracy
SST-2 67k 872 Accuracy
CoLA 8.5k 1.0k Matthews Corr
STS-B 5.7k 1.5k Spearman Corr
MRPC 3.7k 408 Accuracy
RTE 2.5k 277 Accuracy
CLUE
OCNLI 50k 3k Accuracy
IFLYTEK 12.1k 2.6k Accuracy
CSL 20k 3k Accuracy
TNEWS 53.3k 10k Accuracy
AFQMC 34.3k 4.3k Accuracy
CMNLI 391k 12k Accuracy
CLUEWSC 1.2k 304 Accuracy

Table 6: Data Statistics and Evaluate Metrics.

Task Batch Size  Steps  Warmup Ir
GLUE
BERT-base
MNLI 128 10000 1000 4e-5
QQP 128 10000 1000 4e-5
QNLI 64 3000 300 4e-5
SST-2 64 3000 300 4e-5
CoLA 64 2000 200 2e-5
STS-B 64 3000 300 4e-5
MRPC 64 2000 200 le-5
RTE 64 2000 200 2e-5
BERT-large & RoBERT-large
MNLI 64 10000 1000 2e-5
QQP 64 10000 1000 2e-5
QNLI 64 3000 300 2e-5
SST-2 64 3000 300 2e-5
CoLA 32 3000 300 2e-5
STS-B 64 3000 300 2e-5
MRPC 64 2000 200 2e-5
RTE 64 2000 100 2e-5
CLUE
BERT-wwm-base
OCNLI 64 3000 300 4e-5
IFLYTEK 16 5000 300 3e-5
CSL 32 3000 300 3e-5
TNEWS 64 5000 300 3e-5
AFQMC 32 3000 300 3e-5
MacBERT-large & RoBERT-wwm-large

OCNLI 32 3000 300 le-5
IFLYTEK 16 5000 300 le-5
CSL 32 3000 300 le-5
TNEWS 64 5000 300 le-5
AFQMC 32 3000 300 le-5

Table 7: Hyperparameters settings for different pre-
trained models on variant tasks.

B Settings for Different Pretrained
Models

In this paper, we fine-tuned different pretrained
models with TDT, including BERT-base, BERT-
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large, RoBERTa-large for GLUE and BERT-wwm-
base, MacBERT-large, ROBERTa-wwm-large for
CLUE. The batch size, training steps, warmup
steps, and learning rate are listed in Table 7.

C Label Mapping in Domain
Generalization

QQP has two labels, duplicate and not duplicate.
We map entailment to duplicate and map both neu-
tral and contradiction to not duplicate. BUSTM
3 is a short text matching task of FewCLUE (Xu
et al., 2021a). We use the public test set. BUSTM
has two labels, 0 and /. We map entailment to label
1, and map both neutral and contradiction to label
0.

D Detailed of TDT-hard

Gumbel-Softmax trick (Jang et al., 2017) is an ap-
proximation to sampling from the argmax. For-
mally, we replace Eq. 2 by:

¢; = argmax(oGumbel (2(€:))),  (8)
exp((log(zi) + 9i)/7)
S exp((log(z)) + g;)/7)
)]

O Gumbel (Zz) =

where g; ~ Gumbel(0,1), z(-) returns the logits pro-
duced for a given input, and 7 is the temperature.
By this way, if ¢; is 0, the embedding of the ¢-th to-
ken is set to the embedding of the “[MASK]” token,
otherwise the embedding remains unchanged.

Shitps://github.com/xiaobu-coai/BUSTM
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