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Abstract

Neural machine translation (NMT) has ob-
tained significant performance improvement
over the recent years. However, NMT models
still face various challenges including fragility
and lack of style flexibility. Moreover, current
methods for instance-level constraints are lim-
ited in that they are either constraint-specific
or model-specific. To this end, we propose
prompt-driven neural machine translation to
incorporate prompts for enhancing translation
control and enriching flexibility. Empirical
results demonstrate the effectiveness of our
method in both prompt responding and trans-
lation quality. Through human evaluation, we
further show the flexibility of prompt control
and the efficiency in human-in-the-loop trans-
lation.

1 Introduction

Neural machine translation (NMT) has achieved
much performance improvement over the recent
years (Vaswani et al., 2017; Edunov et al., 2018;
Hassan et al., 2018; Liu et al., 2020), yet still faces
various challenges such as low cross-domain ro-
bustness (Miiller et al., 2020), fragility (Li et al.,
2021) and lack of style flexibility (Li and Jurafsky,
2016; Shu et al., 2019). To address these issues, a
line of work considers introducing constraints to
the translation outputs, typically in the form of lexi-
cal constraints (Song et al., 2019; Chen et al., 2020)
and style control (Sennrich et al., 2016a; Michel
and Neubig, 2018; Shu et al., 2019). For example,
Song et al. (2019) ensure that polysemous words
are translated to their domain-specific senses in
eCommerce.

Such instance-level constraint has been shown
useful for improving both the translation adequacy
and readability in practical applications (Song et al.,
2019; Chen et al., 2020; Jwalapuram et al., 2020;
Konieczny, 2021; Chen et al., 2021a). However,
they are limited in being (1) model-specific and (2)

Prompt: “325R K" should be
translated into “Apple Pie”

Prompt: the translation should
include “on the desk”

Translation: Yesterday, I ate Translation: Yesterday, I ate
the apple pie on the desk. the Apple Pie on the table.
(a) (b)

Prompt: “Z£ 5K should be
translated before “F%”

Prompt: the translation should
begin with “I”

Translation: The apple pie on
the table was eaten by me yes
-terday.

Translation: I ate the apple pie
on the table yesterday.

© (d

Figure 1: A Prompt-driven NMT model outputs differ-

ent translations for the sentence “HE, Tz T £ £
32 SJK - (English: Yesterday, I ate the apple pie on
the table.) based on the given prompts. One can specify
phrase translations, guarantee translation positions or
alter word order by feeding the system with different
prompts.

constraint-specific. For instance, lexical constraints
are typically integrated into a model by either modi-
fying the decoding process (Hokamp and Liu, 2017;
Post and Vilar, 2018; Chen et al., 2021a) or intro-
ducing special post-processing (Song et al., 2019;
Chen et al., 2020). Style constraints are learned
through data synthesization (Sennrich et al., 2016a;
Niu and Carpuat, 2020) or specialized model de-
sign (Michel and Neubig, 2018). As a result, the
engineering cost of accommodating and simultane-
ously optimizing for various constraints and styles
can be high.

We consider prompt-driven neural machine
translation, a general form of introducing transla-
tion constraints. The basic idea is shown in Figure
1, where a prompt-driven NMT system can accept
a source input, together with an arbitrary number
of instructions, and generate a target translation in
accordance. Since the translation constraints are
specified in texual form, we can integrate different
types of control easily into the input, such as spec-
ifying the translation of a source phrase (Figure
1b), controlling word order (Figure 1c¢) and laying
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out the beginning of the target sentence (Figure
1d), in addition to the traditional lexical constraints
(Figure 1a). In addition, when there are no input
constraints, the NMT system should give competi-
tive performance as a unconstrained NMT model.

Without losing generality, we consider the forms
of constraints in Figure 1 in this work. Building
on a standard Transformer (Vaswani et al., 2017)
baseline, we consider the following research ques-
tions. First, what is the most effective system ar-
chitecture for encoding both the source sentence
and the prompt? To this end, we compare various
methods including concatenating source sentences
with prompts, encoding prompts using a dedicated
module, and incorporating prompt representations
with an attention layer. The model performance is
also compared with previous work on lexical con-
straints, a form of constraints in Figure 1 that has
been much studied in the literature. Second, can
different types of constraints be effectively trained
within the same model? To this end, we design
an algorithm to automatically construct different
types of prompts from a standard MT training cor-
pus, training a model with mixed prompts. Third,
can a prompt-driven NMT system accept different
number of prompts, while maintaining the same
level of performance compared to a Transformer
baseline without constraints? To this question, we
consider a sampling-based training strategy, where
the model receives random combinations of arbi-
trary number of prompts or no prompt at all for
each sample during training. Fourth, can the set
of flexible constraints we use serve to improve the
efficiency of human-in-the-loop translation? We
deploy our prompt-drive system in a real applica-
tion scenario where professional translators con-
duct machine translation post editing (MTPE) by
using prompts.

Empirical results show that the Prompt-driven
Transformer (Prompt-Transformer) responds to dif-
ferent prompts effectively, while giving compet-
itive performance when used as a unconstrained
NMT model. In addition, prompt-driven model
outperforms previous lexical constraints methods
(Song et al., 2019; Chen et al., 2021b) by a large
margin. Human experiments further demonstrate
the control flexibility and effectiveness of our
method. Through system deployment in a practical
scenario, we show that the prompt-driven NMT sys-
tem achieves a trade-off between translation quality
and human efficiency, as compared with full NMT

or NMT with human post editing. Our code is re-
leased on https://github.com/yafuly/PromptNMT.

2 Related Work

Lexical constraint has received much attention for
machine translation. Some researchers incorpo-
rate the constraints into the beam search algorithm
(Hokamp and Liu, 2017; Post and Vilar, 2018), and
recently Chen et al. (2021b) investigate alignment-
based constrained decoding methods using atten-
tion weights. Another approach focuses on data
augmentation. Song et al. (2019) and Dinu et al.
(2019) create a synthetic code-switching corpus.
Jon et al. (2021) augment the input sentences with
lemmatized constraints to correct inflection. Chen
et al. (2020) propose a lexical constraint-aware
Transformer model (LeCA) by concatenating con-
straints and source sentence. Lexical constraints
is one of the application scenarios of our method.
Prompt-driven model gives strong results, while
also simultaneously enables structural and style
constraints with the versatility of prompts.

There has been study on controlling the global
output style in MT (Mima et al., 1997; van der
Wees et al., 2016; Rabinovich et al., 2017; Michel
and Neubig, 2018; Sennrich et al., 2016a; Niu and
Carpuat, 2020). van der Wees et al. (2016) an-
alyze the impact of dialogue specific aspects in
SMT for fictional dialogues. Rabinovich et al.
(2017) employ personalized SMT models for bet-
ter preservation of gender traits, and Michel and
Neubig (2018) propose to adapt the bias of the out-
put softmax to different users of an NMT system.
Sennrich et al. (2016a) use target-constraint T-V
annotation in NMT training to control the level
of politeness. Niu and Carpuat (2020) propose a
formality-sensitive NMT model taking formality
levels as an extra input. Our work is similar in that
the output of our model can be adaptive at infer-
ence time, but different in that the control is more
fine-grained and not limited to certain styles.

Human in the loop for NMT (Turchi et al., 2017,
Weng et al., 2019) has been proved effective to
domain adaptation. Cheng et al. (2016) propose
an interactive framework which takes two human
actions: picking a critical translation error and re-
vising the translation. Petrushkov et al. (2018) pro-
pose a simple sentence-level weighting method to
integrate partial chunk-based feedback into NMT.
Kreutzer et al. (2018) improve NMT with explicit
and implicit user feedback collected on the ecom-
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Figure 2: The overall framework of Prompt-Transformer. During training, the prompts are sampled from the
prompt candidate pool, which contains all possible prompts for each sentence pair. In deployment, the translators
give arbitrary prompts to control output translations according to their needs.

merce platform. Domingo et al. (2019) leverage
data generated during the post-editing process. The
above methods improve the performance of NMT
by leveraging extra training signals from human
feedback. Different from them, our method allows
human to control the NMT output by training a
model with mixed prompts, without the require-
ment of human in training.

3 Problem Definition

In neural machine translation, a set of parallel
sentence pairs D {(X,Y)} is given where
X = (z1,...,z7,) and Y = (y1, ..., y1, ), and the
NMT systems model the conditional probability:

Ty
p(Y1X;0) = [[ p(wely<e. X:0), (D)
t
where 6 is the set of trainable parameters. We
introduce prompts P = (P, ..., Py) to control
translation, which is defined as
T
p(Y|X, P;0) = [[ p(wely<:, X, P;60).  (2)
t

The prompts can be general and flexible. In this
paper, we consider the following three types of
common prompts:

* translation prompts that indicate the specific
translation of a source segment (Fig 1 (b)).

* target-constraint prompts including some
specific segments that the translation must
contain, begin or end with (Fig 1 (a) and (d)).

¢ ordering prompts that indicate a source
segment should be translated before another
source segment (Fig 1 (c)).

4 Approach

The overall architecture of our system is shown
in Figure 2. In particular, we take a Transformer
baseline (Section 4.1), discussing different ways
to additionally encode prompt constraints (Section
4.2). We propose a sampling-based training frame-
work (Section 4.4), with automatic methods for
generating rich constraints from standard MT train-
ing instances (Section 4.3).

4.1 Transformer

The vanilla Transformer (Vaswani et al., 2017) is
composed of an encoder and a decoder. The Trans-
former encoder has a stack of L identical multi-
head self-attention layers, which takes the embed-
ding of a source sentence X as input and outputs
contextualized source representations. For the [-th
encoder layer, the representations are computed as

H'! = EncLayer(H'™1), 3)

where H'~1 is the output hidden state of the (I —1)-
th layer.

The decoder introduces a cross-attention sub-
layer in each layer to attend to the source repre-
sentations H”, taking previously generated target
tokens as input and generating the next token. For
the [-th decoder layer, the hidden states of decoder
are calculated as

S! = DecLayer(S' ™, HL), 4)

where S~ is the output of the (I — 1)-th layer.

4.2 Prompt-driven Transformer

We investigate three different approaches to incor-
porate prompts into the Transformer model.

2581



(1) Separate Encoding. A straightforward way
is to introduce a Prompt Encoder that is identical
to the Transformer encoder, which encodes the
prompt sequence separately. We concatenate the
source representations and the prompt representa-
tions as the final encoder memory for the decoder:

HE = Prompt-Encoder(P), 5)
Hy = Concat(H", HE), 6)

where P is a prompt sequence.

(2) Input Augmentation. We follow Chen et al.
(2020) and construct pseudo source sequences by
augmenting each input source sequence with the
corresponding prompt sequence:

X = Concat(X, Py, Py, ..., Py), (7

where IV is the number of prompts. The augmented
input X is fed into the standard Transformer.

(3) Prompt Attention. On top of the concatena-
tion method, we can also use a dedicated prompt
attention sub-layer after the cross-attention module
in each decoder layer. The prompt attention takes
the decoder hidden representations as queries and
takes the prompt representations as keys and values
to perform multi-head attention:

PromptAttn(S’, HY) = MHA(S"™!, HE, HE),
(8)
where MHA(+) is the multi-head attention mecha-
nism (Vaswani et al., 2017).

4.3 Training Prompt Construction

Given a parallel dataset D = {(X,Y)}, we pro-
pose an automatic method to generate prompts for
each sentence pair based on word alignment, result-
ing in a corpus D = {(X,Y, P)}, where P is the
corresponding prompt candidate pool containing all
prompts. Specifically, we train an alignment tool
on a parallel corpus and obtain possibly aligned
phrases. For each sentence pair, we extract all pos-
sible prompts using the aligned phrases to build the
prompt candidate pool.

First, we insert pre-defined symbols between
source phrase segments and the corresponding
aligned target segments (e.g., “</AB> menschliche
gesundheit </AM> human health”) to construct
translation prompts. Second, we append pre-
defined symbols before target phrase segments to
construct target-constraint prompts: (1) “</TB>"
denotes the target sequence begins with specific

segments (e.g., “</TB> we know”); (2) “</TI>”
denotes the target sequence includes specific seg-
ments (e.g., “</TI> the complex science”); (3)
“</TE>” denotes the target sequence ends with spe-
cific segments (e.g., “</TE> we ’ve experienced
that ). Third, for ordering prompts, we find
pairs of source phrases of which the aligned target
phrases appear in the opposite order in the target
sequence, indicating word-reordering is involved
in translating these phrases. We insert pre-defined
symbols between these 2 source segments (e.g.,
“</RB> the apple pie </RM> on the table”, mean-
ing that “on the table” should be translated before
“the apple pie” in the target language).

4.4 Training

Given D = {(X,Y,P)}, we propose a sam-
pling based training framework to train the prompt-
driven NMT model. For each instance (X, Y, P),
we define whether to use prompts as a discrete
Bernoulli variable u ~ B(1u), where 1 is a hyper-
parameter (Bernoulli ratio) and a higher p indi-
cates more prompt-driven samples during training.
If prompt is not used, the training objective is to
maximize the log-likelihood:

D

(X,Y)eBatch

logp(Y'|X;0), )

where Batch is a mini-batch of parallel sentence
pairs.

If prompt is used, we sample a certain propor-
tion of prompts for each prompt type from the
corresponding prompt candidates without replace-
ment. In particular, we define the proportion of
the sampled prompts as a continuous random vari-
able with a uniform distribution ¢/(0, p,,), where
Py 1s a hyper-parameter, uniform ratio. A larger
P, indicates more prompts are sampled for each
sentence if there are. All sampled prompts are
concatenated together to form the final prompt se-
quence P, and the training objective is to maximize
the log-likelihood defined as:

D

(X,Y,P)€Batch

logp(Y|X, P;0).  (10)

The randomness in prompts enables the model to
cope with complicated situations containing differ-
ent prompts and output accurate translations with-
out prompts as well.
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Model # params BLEU ResR
w/o prompts | w/ prompts

Transformer-IWSLT 36.74M 34.78 34.78 -
Prompt Encoder 43.05M 34.27 53.73 92.08
Param-share Prompt Encoder 36.74M 34.44 54.83 93.30
Prompt Enc & Prompt Attention 49.36M 34.28 53.79 92.20
Param-Share Prompt Enc & Prompt Attn 43.06M 34.04 55.06 94.35
Input Augmentation 36.74M 33.69 56.10 95.19

Table 1: Performance of different prompt-feeding methods on IWSLT’ 14 De-En.

5 Experimental Settings

Setup. As a preliminary experiment, we use a
small size dataset IWSLT’ 14 De—En to investi-
gate the effectiveness of our model under different
settings. We use the Moses tokenizer' and apply
BPE (Sennrich et al., 2016b) with 10,000 merge
operations on the merged corpus of both side. For
large-scale test, we extend our method to WMT’17
En—Zh, which contains 20.6M sentence pairs after
preprocessing. We use Moses tokenizer to tokenize
English side and jieba segmenter” to tokenize Chi-
nese side. We apply BPE with 55,000 operations
on the concatenated corpus and obtain a shared vo-
cabulary for both sides. We use fast_align (Dyer
et al., 2013) to obtain word alignment, based on
which we apply the algorithm in Section 4.3 to gen-
erate prompts and build the prompt candidate pool.
Data statistics is presented in Appendix A. We
implement the Transformer baseline and Prompt-
Transformer based on THUMT (Tan et al., 2020).
We use iwslt_de_en for IWSTLT’ 14 De—En and
transformer_base for WMT’16 En—Zh. The de-
fault Prompt Encoder consists of 3 Transformer
layers. We use Adam (Kingma and Ba, 2015) to
optimize the network with 81 = 0.9, 52 = 0.98. The
default Bernoulli and uniform ratios are set as 0.3
and 0.35, respectively. For inference, we set the
beam width as 5 and length penalty as 0.6. Details
are presented Appendix B.

Evaluation Metrics. We use both automatic and
human evaluation to measure the performance of
our prompt-driven NMT model, taking commonly-
used BLEU scores (Papineni et al., 2002) to mea-
sure translation quality automatically. For fair com-
parison with previous work, we use multi-bleu.perl
for De-En and sacreBLEU (Post, 2018) for En-Zh>.
In addition, we use Response Rate (ResR) to quan-
tify how the model responses to the given prompts,

"https://github.com/moses-smt/
Zhttps://github.com/fxsjy/jieba
3Sig: BLEU+c.mixed+l.en-zh+#.1+s.exp+tok.zh+v.1.5.1

which is defined as the percentage of prompts being
correctly responded. Specifically, for translation
prompts, ResR denotes the ratio of prompt trans-
lations that appear in the sentence translation; for
target-constraint prompts, ResR measures the ratio
of prompts that exist at the beginning of, at the end
of or in the translation accordingly; for ordering
prompts, ResR is calculated as the ratio of trans-
lations that satisfy the word ordering information
induced by the prompts.

For human evaluation, we follow Knight (2000)
and ask professional translators to assign adequacy
and fluency scores for each translation ranging from
one to five. The five point scale for adequacy indi-
cates how much of the meaning expressed in the
reference translation is also expressed in a hypoth-
esis translation: 5 = All, 4 = Most, 3 = Much, 2 =
Little, and 1=None. The five point scale for fluency
indicates how fluent the translation is: 5 = Flawless,
4 = Good, 3 = Non-native, 2 = Disfluent, and 1 =
Incomprehensible.

We investigate the effectiveness of our method
in the context of automatic evaluation in Section 6,
where prompts are constructed towards reference
translation. In Section 7, we conduct human eval-
uation to demonstrate the control flexibility of the
Prompt-driven NMT system. Finally, in Section 8
we show an application of the method in the context
of human-in-the-loop translation.

6 Experiments on the Model Design

We evaluate models under two test scenarios using
IWSLT’ 14 De-En: inference without prompt and
inference with prompt. The former is the same
as the vanilla machine translation setting and is
evaluated using BLEU score. For the latter, we also
evaluate the model’s effectiveness on responding to
prompts by calculating ResR. We apply sampling
strategy same to training and run on the test set
once to build a deterministic prompt sets.
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Figure 3: BLEU scores with respect to the number of
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Figure 4: ResR and BLEU scores with respect to the
Bernoulli ratio during training.

Number of prompts during decoding. We in-
vestigate how prompts improve translation perfor-
mance by feeding different number of prompts dur-
ing decoding. Specifically, we randomly select cer-
tain number of prompts from the prompt candidate
pool and construct test prompts accordingly. The
results are shown in Figure 3. Prompt-Transformer
further achieves higher BLEU scores when there
are more prompts. Given as many as 10 prompts,
the BLEU reaches 60.59. We also investigate how
the sampling ratio affects decoding performance,
which is discussed in Appendix C.

Robustness to different prompts. We explore
how the model behaves under different prompt sets,
by fixing the sampling ratios but varying the seed
for prompt sampling. We conduct experiments with
10 seeds, under which the model receives different
prompts for translation, calculating the mean and
standard deviation of BLEU scores and ResR over
each seed. For each sentence, the model is provided
with 1 to 8 sampled prompts. The model achieves
a average BLEU score of 54.79 with a standard
deviation of 0.17, and an average of 92.82 with a
standard deviation of 0.14 for ResR, demonstrating
that the model is stable for flexible types of prompt

combinations.

Influences of model architecture. Based on the
modules in Section 4.2, we compare different
model architectures to incorporate prompts using
a fixed prompt seed. As shown in Table 1, all
prompt-driven models obtain higher BLEU scores
over Transformer when provided with prompts. In-
put augmentation achieves the highest ResR, but
suffers from larger performance deterioration with-
out prompts. For the prompt encoding method,
we find that reusing the sentence encoder as the
prompt encoder (Param-share Prompt Encoder)
achieves higher ResR than introducing extra param-
eters (Prompt Encoder). We attribute this pattern
to the better generalization ability of the reused
encoder in Param-share Prompt Encoder. The
effects of prompt encoder depth is discussed in
Appendix D. For incorporating prompt representa-
tions, introducing Prompt Attention (Prompt Enc
& Prompt Attention and Param-Share Prompt Enc
& Prompt Attn) is beneficial for responding effec-
tiveness, compared with concatenating source and
prompt representations for cross-attention. Overall,
Param-share Prompt Encoder gives a balance be-
tween BLEU in unprompted cases and the response
rate, without introducing extra parameters. We thus
choose the model for the other experiments.

Number of prompts during training. The sam-
pling strategy in Section 4.4 can affect the perfor-
mance. We investigate how varying the Bernoulli
ratio during training affects the model performance.
The Bernoulli ratio indicates how many of samples
in the train set are driven by prompts. For exam-
ple, a Bernoulli ratio of 0.3 denotes 65.7% of the
training samples are provided with prompts. The
result is shown in Figure 4. We can observe that
ResR grows steadily with the increasing ratio dur-
ing training. The model gives a low ResR with a
Bernoulli ratio of 0.1, as there are limited samples
for the model to capture prompt patterns. Despite
the increasing ResR, there is a sharp decline on
BLEU scores when the ratio exceeds 0.5. This is
because high Bernoulli ratios indicate almost all
training samples are prompted (e.g., a ratio of 0.7
denotes 97.3% of training samples are provided
with prompts). Therefore, the model learns to out-
put translations by over reliance on prompts, but
fails to build correspondence between source and
target languages. Thus it is important to balance
the learning of translation and receiving prompts.
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Prompts [

Translations

Null

FEREHE T, TR ESZRERIL T ZRERZEDGET AL -
(English: in the court hearing , the two sides launched a debate on
whether wang zhian violated the reputation right of lan yuefeng.)

</AB> lan yuefeng </AM> Lan Yuefeng

TEREHE T, T EE LR TRILT Lan Yuefeng B ERGET AR -
(English: in the court hearing , the two sides launched a debate on
whether wang zhian violated the reputation right of Lan Yuefeng.)

</TB> W J7

T EEFETFREEZRETRIL T ZEBMZEN -
(English: the two sides argued in the court hearing whether wang zhian
violated the reputation right of lan yuefeng.)

XI5 ERE R 5T i, BERILT ZEBMZEN .
</RB> </RM> argued (English: the two sides argued in the court hearing, whether
violated the reputation right of lan yuefeng.)
</TB> {rfiE i TEREFT BT T % Ut EARRIN T ZEERZER
</RB> </RM> argued (English: in the court hearing, the two sides argued whether

violated the reputation right of lan yuefeng.)

</AB> lan yuefeng </AM> Lan Yufeng
</TB> {EJEH T
</RM> argued

</RB>

FERE R, RO 55 Ui BRI T Lan Yufeng FIZZER -
(English: in the court hearing, the two sides argued whether
violated the reputation right of Lan Yuefeng.)

Table 2: Given different prompts, Prompt-

Transformer generates different translations for the sentence “in the court

hearing , the two sides argued whether wang zhian violated the reputation right of lan yuefeng.”.

BLEU
Model Vo P [ WP CSR | ResR
TF-IWSLT 34.78 - - -
Code-Switch | 33.88 | 37.15 | 93.69 | 90.21
LeCA 34.66 | 37.10 | 89.32 | 82.97
Prompt-TF 3444 | 3830 | 95.75 | 94.26

Table 3: Prompt-driven Transformer for lexical con-
straints on IWSLT’ 14 De-En. P denotes ‘prompts’.

Model BLEU ResR
w/o prompts | w/ prompts
TF-Base 34.06 34.06 -
Prompt-TF 33.88 48.93 91.80

Table 4: Performance on WMT’17 En-Zh.

Comparison with existing work on lexical con-
straints. Among the types of prompts we accom-
modate, lexical constraints have been investigated
by existing work. We compare our method with
two typical methods, i.e., CodeSwitch (Song et al.,
2019) and LeCA (Chen et al., 2021b). Following
Song et al. (2019) and Chen et al. (2021b), the
copy success rate (CSR) is also calculated, which
is the percentage of successfully generated tokens
in constraints, differing from ResR which is the ra-
tio of correctly responded prompts (i.e., phrases for
lexical constraints). Compared with CodeSwitch,
Prompt-Transformer maintains better performance
without prompts, while also achieves a higher score
of CSR and ResR. Although LeCA is slightly bet-
ter in terms of BLEU without prompts, Prompt-
Transformer outperforms LeCA by a large margin
in terms of CSR and ResR. Performance in lexical
constraints further demonstrates the effectiveness

of our method for controlling translation and mean-
while maintaining performance without prompts.

Experiments on WMT. For a large scale test,
we apply Prompt-Transformer on the WMT’ 17
En—Z7h dataset. Based on the preliminary ex-
periments, we choose the Param-share Prompt
Encoder architecture. As shown in Table 4,
Prompt-Transformer gives an improved BLEU
with prompts (48.93 vs. 34.06) and a ResR of
91.80, verifying the scalability of the proposed
method on large-scale datasets. We use this model
for experiments in Section 7 and Section 8.

7 Experiments on Prompts

We evaluate how model responds to prompts in
practical scenarios, where no “gold-standard” ref-
erences are given. We sample 100 source sen-
tences from the WMT’ 17 En-Zh test set and ask
2 professional translators to assign each sentence
with two different prompt groups, each of which
includes at least one type of prompts. In par-
ticular, for constructing translation prompts, the
translators are asked to give a source segment
two different valid translations (e.g., “translation-
segment-1" or “translation-segment-2"); for con-
structing target-constraint prompts, the translators
should choose two different ways to prompt the
model; for constructing ordering prompts, the trans-
lators provide two opposite orderings (e.g., “source-
segmentl” should be translated before and after
“source-segment2”, respectively). The model is
expected to output two different and correct trans-
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lations corresponding to the two prompt groups,
respectively. We ask 3 professional translators to
evaluate the ResR and translation quality based on
the adequacy and fluency metrics in Section 5.

The system achieves ResR scores of 89.80,
94.74, 90.20 for translation prompts, target-
constraint prompts, and ordering prompts, respec-
tively, showing the effectiveness of our proposed
model on responding to human prompts. The sys-
tem obtains a competitive performance compared
to the unprompted baseline in tuns of both ade-
quacy (3.49 vs. 3.40) and fluency (3.24 vs. 3.31),
demonstrating that our system can enable flexible
translation style and maintain translation quality at
the same time.

Table 2 shows a case study, where the system
responds to different types of prompts and their
combinations accurately given the same source sen-
tence. Moreover, the system generates translations
with different styles under the target-constraint
prompts and ordering prompts. For instance, with
the prompt “</TB> ¥/ (English: </TB> the two
sides), the system translates the word “argued” to
“§+18” (English: argued) instead of “3#1T | ¥ iH”
(English: launched a debate) in the unprompted
case. A similar pattern can be observed when the
system receives the ordering prompt “</RB> wang
zhian </RM> argued”, which indicates that the
word “argued” should be translated before “wang
zhian” in Chinese.

8 Human-in-the-loop Translation

Machine translation post-editing (MTPE) is widely
used by translation companies to improve effi-
ciency as well as ensure translation quality. Stud-
ies show that conducting post-editing over high-
quality MT can increase the productivity of profes-
sional translators compared to manual translation
‘from scratch’ (Guerberof, 2009; Plitt and Masselot,
2010). However, MTPE still can be expensive in
heavy involvement of human efforts in editing. To
alleviate human labor, Prompt-driven methods can
be used for a better trade-off between translation
quality and efficiency.

To verify our hypothesis, we ask professional
translators to compare two methods for editing on
MT translations: the traditional MTPE or giving
prompts based on MT translations (MTPrompt).
We compare MT, MTPE and MTPrompt based on
time efficiency and translation quality. MT refers
to use machine translations without editing. For
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8 3.5
2]
3
2.5
2
MTPrompt MTPE
Figure 5: Translation quality based on adequacy and
fluency.
25 m Translator |
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Figure 6: Time cost (hours) for MTPrompt with respect
to the round of MTPrompt.

MTPE, translators are required to edit translations
output by the WMT-trained Transformer baseline
in Section 6. For MTPrompt, translators are re-
quired to observe output translation errors and give
prompts to correct them. More details are presented
in Appendix E.

The translation quality is presented in Figure 5.
MTPE achieves full marks on both adequacy and
fluency, whereas the scores for MT translations are
on average around 2.5. Translations with prompt
obtain substantial improvement over MT transla-
tions, with both the adequacy and fluency scores
being close to 4 (i.e., the translations cover most
meaning and also have good fluency).

In terms of speed, the average time spent on
MTPE is 3.75 hours, which is stable for more
batches since the translators have strong experi-
ence in MTPE. In contrast, the time cost can be
lower as they conduct more MTPrompt actions.
We ask two translators to conduct multiple rounds
of MTPrompt edit, with each round containing 50
translations. The time cost for each round is shown
in Figure 6. We can observe that as the translators
get familiar with the MTPrompt mode, they be-
come more efficient in giving prompts. The fastest
batch costs an average of 1.1 hours for MTPrompt,
which is 2.4 times more efficient than MTPE, and
meanwhile translation quality is maintained (ade-
quacy: 3.87 vs. 3.84 and fluency: 3.71 vs. 3.63).
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9 Conclusion

We proposed a prompt-driven Transformer model
to incorporate flexible constraints on translation.
Under a sampling-based training framework, the
model learned prompt responding effectively and
achieved competitive performance compared with
both the unconstrained baseline and existing work
on lexical constraints. Human experiments further
demonstrated that Prompt-Transformer was able to
respond to various combinations of prompts accu-
rately, and generate versatile translations. Through
deployment in an application scenario, we showed
that our system could serve to improve the effi-
ciency of human-in-the-loop translation.

10 Ethics Consideration

As mentioned, we collected our data from IWSLT
and WMT that all are public to academic use, and
they contain no sensitive information. The legal
advisor of our institute confirms that the sources of
our data are freely accessible online without copy-
right constraint to academic use. Our human exper-
iments (Section 7 and Section 8) involves manual
annotation. Annotators were asked to give prompts,
post-edit machine translation and evalaute transa-
tions, which do not involve any personal sensitive
information. We hired 4 annotators who have de-
grees in English Linguistics or Applied Linguistics.
Before formal annotation, annotators were asked
to annotate a few samples randomly extracted from
the dataset, and based on average annotation time
we set a fair salary (i.e., 30 dollars per hour) for
them. During their training annotation process,
they were paid as well.
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A Data Statistics

Dataset | #sents | avg. Tr | avg. Tc [ avg. O
IWSLT 160,239 41.28 41.56 0.38
WMT 20,616,247 34.69 34.69 18.24

Table 5: Data statistics with the right 4 columns accord-
ingly denoting number of sentences, average number
of translation prompts, target-constraint prompts and
ordering prompts for each sentence.

B Experiment Details

We implement the Transformer baseline and
Prompt-Transformer based on THUMT (Tan et al.,
2020). Except for the prompt encoding mod-
ules, Prompt-Transformer shares the same settings
with the Transformer baseline. The prompt en-
coder layer shares the same setting with the vanilla
Transformer encoder layer, and the prompt atten-
tion module is the same as the Transformer cross-
attention module. For IWSLT’ 14 De—En, we use
the iwslt_de_en setting with dropout ratio 0.3. For
WMT’16 En—Zh, we use the transformer base
setting with a dropout of 0.1. We use the Adam
(Kingma and Ba, 2015) to optimize the network
with 81 =0.9, 82 = 0.98. The batch szie for training
De—En models is 4,096 and 32,768 for En—Zh
models. The default Bernoulli and uniform ratio is
set as 0.3 and 0.35 respectively. For inference, we
set the beam width as 5 and length penalty as 0.6.

C Effects of Uniform Ratio during
Decoding

We investigate how prompts improve translation
performance, by using the same sampling strategy
during training but setting the Bernoulli ratio to 1,
so that the number of prompts is only determined
by the uniform ratio (Section 4.4). By varying the
uniform ratio, the model receives different num-
ber of prompts for each sentence. The results are
shown in Figure 7. We can observe that Prompt-
Transformer behaves similarly to the Transformer
baseline when the uniform ratio is O, i.e., all sen-
tences are translated without prompts. The trans-
lation performance is improved in a large degree
when the uniform ratio is as small as 0.05. Prompt-
Transformer further achieves higher BLEU scores
when there are more prompts. With all prompts
(0.35 ratio), the BLEU reaches 54.88, 20.06 higher
than the baseline of 34.78.
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Figure 7: BLEU scores with respect to the uniform
ratio during inference.
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Figure 8: ResR and BLEU scores with respect to the
number of prompt encoder layers.

D Effects of Prompt Encoder Depth

We investigate how the depth of the prompt en-
coder affects model performance. The results are
shown in Figure 8. We can observe that the model
performs steadily well with a prompt encoder of
one to four Transformer layers. However, the ResR
and BLEU score with prompts decrease sharply
when the depth grows to 5 layers. This can be be-
cause that too deep prompt encoders overfit to the
small scale MT dataset and thus fail to generalize
to unseen prompts robustly.

E Prompt in Human-in-the-loop
Translation

We sample 100 sentences from the WMT’ 17 En-Zh
test set and ask 2 professional translators to con-
duct MTPE and MTPrompt on the corresponding
translations. The first translator is asked to perform
MTPE on the first 50 sentences and MTPrompt on
the other 50 sentences, whereas the second transla-
tor is asked to do the other way around. They are
required to record the time they spend with both
methods. Then we ask 3 translators to evaluate
translations based on adequacy and fluency men-
tioned in Section 5 and calculate average scores
respectively.
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