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Abstract

Event extraction is typically modeled as a
multi-class classification problem where event
types and argument roles are treated as atomic
symbols. These approaches are usually lim-
ited to a set of pre-defined types. We propose
a novel event extraction framework that uses
event types and argument roles as natural lan-
guage queries to extract candidate triggers and
arguments from the input text. With the rich
semantics in the queries, our framework ben-
efits from the attention mechanisms to better
capture the semantic correlation between the
event types or argument roles and the input
text. Furthermore, the query-and-extract for-
mulation allows our approach to leverage all
available event annotations from various on-
tologies as a unified model. Experiments on
ACE and ERE demonstrate that our approach
achieves state-of-the-art performance on each
dataset and significantly outperforms existing
methods on zero-shot event extraction.'

1 Introduction

Event extraction (Grishman, 1997; Chinchor and
Marsh, 1998; Ahn, 20006) is a task to identify and
type event triggers and participants from natural
language text. As shown in Figure 1, married and
left are triggers of two event mentions of the Marry
and Transport event types respectively. Two argu-
ments are involved in the /eft event mention: she is
an Artifact, and Irap is the Destination.
Traditional studies usually model event extrac-
tion as a multi-class classification problem (Mc-
Closky et al., 2011; Li et al., 2013; Chen et al.,
2015; Yang and Mitchell, 2016; Nguyen et al.,
2016; Lin et al., 2020), where a set of event types
are first defined, and then supervised machine learn-
ing approaches will detect and classify each can-
didate event mention or argument into one of the
'Our code is open sourced at https://github.com/

VT-NLP/Event_Query_Extract for reproduction pur-
pose.

Marry Transport

was just a month before for

Person Artifact Destination

Figure 1: An example of event annotation.

target types. However, each event type or argument
role is treated as an atomic symbol, ignoring their
rich semantics in these approaches. Several studies
explore the semantics of event types by leveraging
the event type structures (Huang et al., 2018), seed
event mentions (Bronstein et al., 2015; Lai and
Nguyen, 2019), or question answering (QA) (Du
and Cardie, 2020; Liu et al., 2020). However, these
approaches are still designed for and thus limited to
a single target event ontology?, such as ACE (Con-
sortium, 2005) or ERE (Song et al., 2015).

With the existence of multiple ontologies and the
challenge of handling new emerging event types, it
is necessary to study event extraction approaches
that are generalizable and can use all available train-
ing data from distinct event ontologies.’

To this end, we propose a new event extraction
framework following a query-and-extract paradigm.
Our framework represents event types and argu-
ment roles as natural language queries with rich
semantics. The queries are then used to extract
the corresponding event triggers and arguments by
leveraging our proposed attention mechanism to
capture their interactions with input texts. Specifi-
cally, (1) for trigger detection, we formulate each
event type as a query based on its type name and
a short list of prototype triggers, and make binary
decoding of each token based on its query-aware

2 An ontology is defined as a collection of event types and
argument roles for a particular domain (Brown et al., 2017;
Song et al., 2015).

3For argument extraction, the QA-based approaches have
certain potential to generalize to new ontologies, but require
high-quality template questions. As shown in our experiments,
their generalizability is limited compared to ours.
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Figure 2: Architecture overview. Each cell in Argumen

t Role Score Matrix indicates the probabilities of an entity

being labeled with an argument role. The arrows in Multiway Attention module show four attention mechanisms:
(a) entity to argument roles, (b) argument role to entities, (c) entity to entities, (d) argument role to argument roles.

embedding; (2) for argument extraction, we put to-
gether all argument roles defined under each event
type as a query, followed by a multiway attention
mechanism to extract all arguments of each event
mention with one-time encoding, with each argu-
ment predicted as binary decoding.

Our approach can naturally handle various on-
tologies as a unified model — compared to previ-
ous studies (Nguyen and Grishman, 2016; Wadden
et al., 2019; Lin et al., 2020), our binary decod-
ing mechanism directly works with any event type
or argument role represented as natural language
queries, thus effectively leveraging cross-ontology
event annotations and making zero-shot predic-
tions. Moreover, compared with the QA-based
methods (Du and Cardie, 2020; Liu et al., 2020;
Li et al., 2020a) that can also conduct zero-shot
argument extraction, our approach does not require
creating high-quality questions for argument roles
or multi-time encoding for different argument roles
separately, thus being more accurate and efficient.

We evaluate our approach on two public bench-
mark datasets, ACE and ERE, and demonstrate
state-of-the-art performance in the standard super-
vised event extraction and the challenging transfer
learning settings that generalize to new event types
and ontologies. Notablely, on zero-shot transfer to
new event types, our approach outperforms a strong
baseline by 16% on trigger detection and 26% on

argument detection. The overall contributions of
our work are:

* We refine event extraction as a query-and-
extract paradigm, which is more generalizable
and efficient than previous top-down classifi-
cation or QA-based approaches.

We design a new event extraction model that
leverages rich semantics of event types and
argument roles, improving accuracy and gen-
eralizability.

We establish new state-of-the-art performance
on ACE and ERE in supervised and zero-shot
event extraction and demonstrate our frame-
work as an effective unified model for cross
ontology transfer.

2 Our Approach

As Figure 2 shows, given an input sentence, we
first identify the candidate triggers for each event
type by taking it as a query to the sentence. Each
event type, such as Attack, is represented with a
natural language text, including its type name and
a shortlist of prototype triggers, such as invaded
and airstrikes, which are selected from the training
examples. Then, we concatenate the input sen-
tence with the event type query, encode them with
a pre-trained BERT encoder (Devlin et al., 2019),
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compute the attention distribution over the sequen-
tial representation of the event type query for each
input token, and finally classify each token into a
binary label, indicating it as a trigger candidate of
the specific event type or not.

To extract the arguments for each candidate trig-
ger, we follow a similar strategy and take the set
of pre-defined argument roles for its corresponding
event type as a query to the input sentence. We
use another BERT encoder to learn the contextual
representations for the input sentence and the query
of the argument roles. Then, we take each entity
of the input sentence as a candidate argument and
compute the semantic correlation between entities
and argument roles with multiway attention, and
finally classify each entity into a binary label in
terms of each argument role.

2.1 Trigger Detection

Event Type Representation A simple and intu-
itive way of representing an event type is to use
the type name. However, the type name itself can-
not accurately represent the semantics of the event
type due to the ambiguity of the type name and
the variety of the event mentions of each type. For
example, Meet can refer to an organized event or
an action of getting together or matching. Inspired
by previous studies (Bronstein et al., 2015; Lai and
Nguyen, 2019), we use a short list of prototype
triggers to enrich the semantics of each event type.
Specifically, for each event type ¢, we collect a
set of annotated triggers from the training exam-
ples. For each unique trigger word, we compute its
frequency from the whole training dataset as f,, and
its frequency of being tagged as an event trigger
of type ¢ as f;, and then obtain a probability f;/ f,,
which will be used to sort all the annotated trig-
gers for event type . We select the top-K* ranked
words as prototype triggers {71, T2, ..., Tk }.
Finally, each event type will be represented with
a natural language sequence of words, consisting
of its type name and the list of prototype triggers
T = {t,7},7%,...,7%}. Taking the event type
Attack as an example, we finally represent it as
Attack invaded airstrikes overthrew ambushed.

Context Encoding Given an input sentence
W = {wy,ws, ..., wyN}, we take each event type
T = {t,7{,75,..., 7L} as a query to extract the
corresponding event triggers. Specifically, we first

“In our experiments, we set K = 4.

concatenate them into a sequence as follows:

[CLS][EVENT][SEP] w; ... wx [SEP]
t i ... Tk [SEP]

where [SEP] is a separator from the BERT en-
coder (Devlin et al., 2019). Following (Liu et al.,
2020), we use a special symbol [EVENT] to em-
phasis the trigger detection task.

Then we use a pre-trained BERT encoder to
encode the whole sequence and get contextual
representations for the input sentence W =
{wo, wa, ..., wn} as well as the event type T' =
{t, ¢, v, ..., 7}

Enriched Contextual Representation Given a
query of each event type, we aim to automatically
extract corresponding event triggers from the input
sentence. To achieve this goal, we need to capture
the semantic correlation of each input token to the
event type. Thus we apply attention mechanism
to learn a weight distribution over the sequence of
contextual representations of the event type query
and get an event type aware contextual representa-
tion for each token:
7|

1

T

A; =T Elaij'Tja
j:

aij = cos(wi, Tj)

where Tj is the contextual representation of the
j-th token in the sequence 7' = {¢, 74,74, ..., 7k }.
cos(+) is the cosine similarity function between
two vectors. AZ-T denotes the event type ¢t aware
contextual representation of token w;.

In addition, the prediction of event triggers also
depends on the occurrence of a particular context.
For example, according to ACE event annotation
guidelines (Consortium, 2005), to qualify as a Meet
event, the meeting must be known to be “face-to-
face and physically located somewhere”. To cap-
ture such context information, we further apply
in-context attention to capture the meaningful con-
textual words for each input token:

1 N
w § ~
Ai = N Q5 - Wy,
j=1

aij = p(wi, wj),
where p(.) is the attention function and is computed

as the average of the self-attention weights from
the last m layers of BERT.®

>We use bold symbols to denote vectors.
®We set m as 3 as it achieved the best performance.
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Event Trigger Detection With the event type
oriented attention and in-context attention mecha-
nisms, each token w; from the input sentence will
obtain two enriched contextual representations A}
and A;TF. We concatenate them with the original
contextual representation w; from the BERT en-
coder, and classify it into a binary label, indicating
it as a candidate trigger of event type ¢ or not:

gl = U, ([wi; AY; AT, P)),

where [; | denotes concatenation operation, U, is
a learnable parameter matrix for event trigger de-
tection, and P; is the one-hot part-of-speech (POS)
encoding of word w;. We optimize the following
objective for event trigger detection

V]
1
TV

teT i=1

where 7 is the set of target event types and \ is the
set of tokens from the training dataset. y! denotes
the groundtruth label vector.

2.2 Event Argument Extraction

After detecting event triggers for each event type,
we further extract their arguments based on the
pre-defined argument roles of each event type.

Context Encoding Given a candidate trigger r
from the sentence W = {wy,ws,...,wyx} and
its event type t, we first obtain the set of pre-
defined argument roles for event type t as G =
{g}, g%, ..., g5 }. To extract the corresponding argu-
ments for r, similar as event trigger detection, we
take all argument roles G* as a query and concate-
nate them with the original input sentence

[CLS] wy wy ... wy [SEP] ¢t ¢% ... g% [SEP]

where we use the last [SEP] separator to denote
Other category, indicating the entity is not an argu-
ment. Then, we encode the whole sequence with
another pre-trained BERT encoder (Devlin et al.,
2019) to get the contextual representations of the
sentence W = {wy, W, ..., Wy}, and the argu-
ment roles G = {96; giv "'79337gf0ther]}'

As the candidate trigger r may span multiple
tokens within the sentence, we obtain its contex-
tual representation r as the average of the con-
textual representations of all tokens within r. In
addition, as the arguments are usually detected

from the entities of sentence W, we apply a BERT-
CRF model, which is optimized on the same train-
ing set as event extraction to identify the entities
E = {ei,ea,...,ep}. As each entity may also
span multiple tokens, following the same strategy,
we average the contextual representations of all
tokens within each entity and obtain the entity con-
textual representations as E = {ej,ea, ...,epr}.

Multiway Attention Given a candidate trigger r
of type t and an entity e;, for each argument role
gj-, we need to determine whether the underlying
relation between 7 and e; corresponds to g§. or not,
namely, whether e; plays the argument role of g§<
in event mention 7. To do this, for each ¢;, we first
obtain a trigger-aware entity representation as

hi=Uy - ([e;; r; e;or]),

where o denotes element-wise multiplication oper-
ation. Uy, is a learnable parameter matrix.

In order to determine the semantic correlation be-
tween each argument role and each entity, we first
compute a similarity matrix S between the trigger-
aware entity representations {h, ho, ..., hjs} and
the argument role representations {g{, g, ..., g%}

Sij = \}ga(hi, g5)

where o denotes dot product operator, d denotes
embedding dimension of g?, and S;j indicates the
semantic correlation of entity e; to a particular ar-
gument role g§- given the candidate trigger r.

Based on the correlation matrix S, we further
apply a bidirectional attention mechanism to get an
argument role aware contextual representation for
each entity and an entity-aware contextual repre-
sentation for each argument role as follows:

D
e2g t
A7 = Z Sij g5
Jj=1

M
2e
AP =3"8;; - h;.
i=1

In addition, previous studies (Hong et al., 2011;
Lietal., 2013; Lin et al., 2020) have revealed that
the underlying relations among entities or argument
roles are also important to extract the arguments.
For example, if entity e; is predicted as Attacker
of an Artack event and e; is located in another
entity eo, it’s very likely that es plays an argument
role of Place for the Attack event. To capture the
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underlying relations among the entities, we further
compute the self-attention among them

1

pij = ﬁa(hi, h;j) ,

M
= Z fij - hj
=1

Similarly, to capture the underlying relations
among argument roles, we also compute the self-
attention among them

f; = Softmax () ,

eZe
Ai

1
Vjk = ﬁ(j(g;’ gltf) )

929
E ng gk

Event Argument Predication Finally, for each
candidate event trigger r, we determine whether an
entity e; plays an argument role of g} in the event
mention by classifying it into a binary class:

v; = Softmax(v;) ,

st t 2 2 2 2
z;; = U, ([hi; g}; AT AT A ASY)),
where U, is a learnable parameter matrix for ar-
gument extraction. And Z! is argument role score
matrix for event type ¢. The training objective is to
minimize the following loss function:

Al €]

2: |.A|| ‘Zzzmlogzmy

7j=11i=1

where A denotes the collection of possible argu-
ment roles, and & is the set of entities we need to
consider for argument extraction. z;; denotes the
ground truth label vector. During test, an entity will
be labeled as a non-argument if the prediction for
Other category is 1. Otherwise, it can be labeled
with multiple argument roles.

3 Experiments

3.1 Experimental Setup

We perform experiments on two public bench-
marks, ACEO5-E*7 and ERE-EN (Song et al.,
2015)%. ACE defines 33 event types while ERE
includes 38 types, among which there are 31 over-
lapped event types. We use the same data split of

7https ://catalog.ldc.upenn.edu/
LDC2006T06

8Following Lin et al. (2020), we merge LDC2015E29,
LDC2015E68, and LDC2015E78 as the ERE dataset.

ACE and ERE as (Wadden et al., 2019; Lin et al.,
2020; Du and Cardie, 2020) for supervised event
extraction. For zero-shot event extraction, we use
the top-10 most popular event types in ACE as seen
types for training and treat the remaining 23 event
types as unseen for testing, following Huang et al.
(2018). In our experiments, we use random seeds
and report averaged scores of each setting. More
details regarding the data statistics and evaluation
are shown in Appendix A.

We further design two more challenging and
practical settings to evaluate how well the approach
could leverage resources from different ontologies:
(1) cross-ontology direct transfer, where we only
use the annotations from ACE or ERE for train-
ing and directly test the model on another event
ontology. This corresponds to the domain adapta-
tion setting in transfer learning literature; (2) joint-
ontology enhancement, where we take the annota-
tions from both ACE and ERE as the training set
and test the approaches on ACE or ERE ontology
separately. This corresponds to the multi-domain
learning setting in transfer learning literature. In-
tuitively, an approach with good transferability
should benefit more from the enhanced training
data from other ontologies. We follow the same
train/dev/test splits of ACE and ERE as supervised
event extraction.

3.2 Supervised Event Extraction

Table 1 shows the supervised event extraction re-
sults of various approaches on ACE and ERE
datasets. Though studies (Yang and Mitchell, 2016;
Liu et al., 2020, 2018; Sha et al., 2018; Lai et al.,
2020; Veyseh et al., 2020) have been conducted
on the ACE dataset, they follow different set-
tings’, especially regarding whether the Time and
Value arguments are considered and whether all
Time-related argument roles are viewed as a single
role. Following several recent state-of-the-art stud-
ies (Wadden et al., 2019; Lin et al., 2020; Du and
Cardie, 2020), we do not consider Time and Value
arguments. Our approach significantly outperforms
most of the previous comparable baseline methods,
especially on the ERE dataset!?. Next, we take
BERT_QA_Arg, a QA_based method, as the main
baseline as it shares similar ideas to our approach
to compare their performance.

9Many studies did not describe their argument extraction
setting in detail.

' Appendix E describes several remaining challenges iden-
tified from the prediction errors on ACEQS dataset.
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ACE05-E* ERE-EN

Model

Trigger Ext.  Argument Ext. | Trigger Ext.  Argument Ext.
DYGIE++ (Wadden et al., 2019) 67.3* 42.7* - -
BERT_QA_Arg (Du and Cardie, 2020) 70.6* 48.3* 57.0 39.2
OnelE (Lin et al., 2020) 72.8 54.8 57.0 46.5
Text2Event (Lu et al., 2021) 71.8 54.4 59.4 48.3
FourlE (Nguyen et al., 2021) 73.3 57.5 57.9 48.6
Our Approach 73.6 (0.2) 55.1(0.5) 60.4 (0.3) 50.4 (0.3)

Table 1: Event extraction results on ACEO5-E™ and ERE-EN datasets (F-score, %). * indicates scores obtained
from their released codes. The performance of BERT_QA_Arg is lower than that reported in (Du and Cardie,
2020) as they only consider single-token event triggers. Each score of our approach is the mean of three runs and

the variance is shown in parenthesis.

Specifically, for trigger detection, all the base-
line methods treat the event types as symbols and
classify each input token into one of the target types
or Other. So they heavily rely on human annota-
tions and do not perform well when the annota-
tions are not enough. For example, there are only
31 annotated event mentions for End_Org in the
ACEQS training dataset, so BERT_QA_Arg only
achieves 35.3% F-score. In comparison, our ap-
proach leverages the semantic interaction between
the input tokens and the event types. Therefore it
still performs well when the annotations are lim-
ited, e.g., it achieves 66.7% F-score for End_Org.
In addition, by leveraging the rich semantics of
event types, our approach also successfully detects
event triggers that are rarely seen in the training
dataset, e.g., ousting and purge of End-Position,
while BERT_QA_Arg misses all these triggers. A
more detailed discussion about the impact of seed
triggers is in Appendix B.

For argument extraction, our approach shows
more consistent results than baseline methods. For
example, in the sentence “Shalom was to fly on
to London for talks with British Prime Minister
Tony Blair and Foreign Secretary Jack Straw”, the
BERT_QA_Arg method correctly predicts Tony
Blair and Jack Straw as Entity arguments of the
Meet event triggered by talks, but misses Shalom.
However, by employing multiway attention, espe-
cially the self-attention among all the entities, our
approach can capture their underlying semantic
relations, e.g., Shalom and Tony Blair are two per-
sons to talk, so that it successfully predicts all the
three Entity arguments for the Meet event.

3.3 Zero-Shot Event Extraction

As there are no fully comparable baseline methods
for zero-shot event extraction, we adapt one of the
most recent states of the arts, BERT_QA_Arg (Du

Model Trigger Ext.  Arg Ext. (GT)
BERT_QA_Arg' 31.6 17.0
Our Approach 47.8 43.0

Table 2: Zero-shot F-scores on 23 unseen event types.
1: adapted implementation from (Du and Cardie, 2020).
GT indicates using gold-standard triggers as input.

and Cardie, 2020), which is expected to have
specific transferability due to its QA formulation.
However, the original BERT_QA_Arg utilizes a
generic query, e.g., “trigger” or “verb”, to classify
each input token into one of the target event types
or Other, thus is not capable of detecting event
mentions for any new event types during the test.
We adapt the BERT_QA_Arg framework by taking
each event type instead of the generic words as a
query for event detection. Note that our approach
utilizes the event types as queries without prototype
triggers for zero-shot event extraction.

As Table 2 shows, our approach significantly
outperforms BERT_QA_Arg under zero-shot event
extraction, with over 16% F-score gain on trigger
detection and 26% F-score gain on argument ex-
traction. Comparing with BERT_QA_Arg, which
only relies on the self-attention from the BERT
encoder to learn the correlation between the in-
put tokens and the event types or argument roles,
our approach further applies multiple carefully de-
signed attention mechanisms over BERT contex-
tual representations to better capture the semantic
interaction between event types or argument roles
and input tokens, yielding much better accuracy
and generalizability.

We further pick 13 unseen event types and an-
alyze our approach’s zero-shot event extraction
performance on each of them. As shown in Fig-
ure 3, our approach performs exceptionally well on
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Source Target BERT_QA_Argmui BERT_QA_Argpinary f Our Approach
Trigger Ext.  Argument Ext. | Trigger Ext. ~ Argument Ext. | Trigger Ext.  Argument Ext.

ERE ACE | 48.9 (48.9) 18.5 (18.5) 50.8 (50.8) 20.9 (20.9) 53.9 (52.6) 30.2 (29.6)
ACE ACE 70.6 48.3 722 50.4 73.6 55.1
ACE+ERE | ACE 70.1 47.0 71.3 49.8 74.4 56.2
ACE ERE 47.2 (47.2) 18.0 (18.0) 47.2 (45.0) 17.9 (17.1) 55.9 (46.3) 31.9 (26.0)
ERE ERE 57.0 39.2 56.7 429 60.4 50.4
ACE+ERE | ERE 57.0 38.6 54.6 37.1 63.0 52.3

Table 3: Cross ontology transfer between ACE and ERE datasets (F-score %). The scores in parenthesis indicate
the performance on the ACE and ERE shared event types.

Marry
Divorce
Trial-Hearing
Sue
Release-Parole
Fine
Extradite
Execute
Convict
Charge-Indict
Appeal
Demonstrate
Declare-
Bankruptcy
0.0 0.2 0.4 0.6 0.8 1.0

F1 score

Figure 3: Zero-shot event extraction on each unseen
event type. The number in parenthesis indicates # gold
event mentions of each unseen type in the test set.

Marry, Divorce, Trial-Hearing, and Fine, but worse
on Sue, Release-Parole, Charge-Indict, Demon-
strate, and Declare-Bankruptcy, with two possible
reasons: first, the semantics of event types, such
as Marry, Divorce, is more straightforward and
explicit than other types, such as Charge-Indict,
Declare-Bankruptcy. Thus our approach can bet-
ter interpret these types. Second, the diversity of
the event triggers for some types, e.g., Divorce, is
much lower than other types, e.g., Demonstrate.
For example, among the 9 Divorce event trig-
gers, there are only 2 unique strings, i.e., divorce
and breakdowns, while there are 6 unique strings
among the 7 event mentions of Demonstrate.

3.4 Cross Ontology Transfer

For cross-ontology transfer, we develop two varia-
tions of BERT_QA_Arg as baseline methods: (1)
BERT_QA_Argmui, which is the same as the orig-
inal implementation and use multi-classification to
detect event triggers. (2) BERT_QA_Argpinary, for
which we apply the same query adaptation as Sec-
tion 3.3 and use multiple binary-classification for
event detection. For joint-ontology enhancement,
we combine the training datasets of ACE and ERE

and optimize the models from scratch.'!

Table 3 shows the cross-ontology transfer results
in both direct transfer and enhancement settings.
Our approach significantly outperforms the base-
line methods under all the settings. Notably, for
direct transfer, e.g., from ERE to ACE, by compar-
ing the F-scores on the whole test set with the per-
formance on the ACE and ERE shared event types
(F-scores shown in parenthesis), our approach not
only achieves better performance on the shared
event types but also extracts event triggers and argu-
ments for the new event types in ACE. In contrast,
the baseline methods hardly extract any events or
arguments for the new event types. Moreover, by
combining the training datasets of ACE and ERE
for joint-ontology enhancement, our approach’s
performance can be further boosted compared with
using the annotations of the target event ontology
only, demonstrating the superior transfer capability
across different ontologies. For example, ACE in-
cludes a Transport event type while ERE defines
two more fine-grained types Transport-Person and
Transport-Artifact. By adding the annotations of
Transport-Person and Transport-Artifact from ERE
into ACE, our approach can capture the underly-
ing semantic interaction between Transport-related
event type queries and the corresponding input to-
kens and thus yield 1.5% F-score gain on the Trans-
port event type of ACE test set. In contrast, both
baseline methods fail to be enhanced with addi-
tional annotations from a slightly different event
ontology without explicitly capturing semantic in-
teraction between event types and input tokens. Ap-
pendix C provides a more in-depth comparison be-
tween our approach and the baseline approaches.

" Another intuitive training strategy is to train the model on
the source and target ontologies sequentially. Our pilot study
shows that this strategy performs slightly worse.
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3.5 Ablation Study

We further evaluate the impact of each attention
mechanism on event trigger detection and argu-
ment extraction. As Table 4 shows, all the attention
mechanisms show significant benefit to trigger or
argument extraction, especially on the ERE dataset.
The Event Type Attention and Multiway Atten-
tion show the most effects to trigger and argument
extraction, which is understandable as they are de-
signed to capture the correlation between the input
texts and the event type or argument role-based
queries. We also notice that, without taking entities
detected by the BERT-CRF name tagging model
as input, but instead considering all the tokens as
candidate arguments'?, our approach still shows
competitive performance for argument extraction
compared with the strong baselines. More ablation
studies are discussed in Appendix D.

Model ACE ERE
Our Approach 73.6 | 60.4
Trigger w/o Seed Trigger 722 | 58.2
w/o In-Context Attention 72.3 | 579
w/o Event Type Attention 71.1 | 56.9
Our Approach 55.1 | 504
w/o Entity Detection 53.0 | 47.6
Arg. w/o Multiway Attention 53.4 | 42.8
w/o Entity Self-attention 53.7 | 48.3
w/o Arg Role Self-attention | 54.1 | 47.7

Table 4: Results of various ablation studies. Each score
is the average of three runs for each experiment.

3.6 Pros and Cons of Type-oriented Decoding

The advantages of our type-oriented binary decod-
ing include: (1) it allows the model to better lever-
age the semantics of event types which have been
proved effective for both supervised and zero-shot
event extraction; (2) it allows the approach to lever-
age all available event annotations from distinct on-
tologies, which is demonstrated in zero-shot event
extraction and cross-ontology transfer; (3) in prac-
tice, new event types and annotations could emerge
incessantly, and it is not possible to always train a
model for all the event types. Our approach has the
potential to be continuously updated and extract
events for any desired event types.

We also admit that binary decoding usually in-
creases the computation cost. We design two strate-
gies to mitigate this issue: (1) More than 69% of

12We take consecutive tokens predicted with the same argu-
ment role as a single argument span.

the sentences in the training dataset do not con-
tain any event triggers, so we randomly sample
20% of them for training. (2) Our one-time ar-
gument encoding and decoding strategies extract
all arguments of each event trigger at once. It
is more efficient than the previous QA-based ap-
proaches, which only extract arguments for one
argument role at once. With these strategies, for
trigger detection, our approach takes 80% more
time for training and 19% less for inference com-
pared with BERT_QA_Arg which relies on multi-
class classification, while for argument extraction,
our approach takes 36% less time for training and
inference than BERT_QA_Arg. Even on a more
fine-grained event ontology MAVEN (Wang et al.,
2020), which consists of 168 event types, for trig-
ger extraction, our approach roughly takes 20%
more time for training and twice the time for infer-
ence compared with BERT_QA_Arg, with slightly
better performance than the state of the art (Wang
et al., 2021)'3.

4 Related Work

Traditional event extraction studies (McClosky
etal., 2011; Li et al., 2013; Chen et al., 2015; Cao
et al., 2015; Feng et al., 2016; Yang and Mitchell,
2016; Nguyen et al., 2016; Zhang et al., 2017; Wad-
den et al., 2019; Lin et al., 2020; Wang et al., 2021)
usually detect event triggers and arguments with
multi-class classifiers. Unlike all these methods
that treat event types and argument roles as sym-
bols, our approach considers them queries with
rich semantics and leverages the semantic interac-
tion between input tokens and each event type or
argument role.

Several studies have explored the semantics of
event types based on seed event triggers (Bronstein
et al., 2015; Lai and Nguyen, 2019; Zhang et al.,
2021), event type structures (Huang et al., 2016,
2018), definitions (Chen et al., 2019) and latent rep-
resentations (Huang and Ji, 2020). However, they
can hardly be generalized to argument extraction.
Question answering based event extraction (Du and
Cardie, 2020; Liu et al., 2020; Li et al., 2020a; Lyu
et al., 2021) can take advantage of the semantics
of event types and the large-scale question answer-
ing datasets. Compared with these methods, there
are three different vital designs, making our ap-
proach perform and be generalized better than these

130Our approach achieves 68.8% F-score on MAVEN. We do
not discuss more as MAVEN only contains trigger annotations.
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QA-based approaches: (1) our approach directly
takes event types and argument roles as queries. In
contrast, previous QA-based approaches rely on
templates or generative modules to create natural
language questions. However, it is difficult to find
the optimal format of questions for each event type,
and many studies (Du and Cardie, 2020; Li et al.,
2020b) have shown that MRC or QA models are
sensitive to the subtle change of the questions. (2)
QA-based approaches can only detect arguments
for one argument role at once, while our approach
extracts all arguments of an event trigger with one-
time encoding and decoding, which is more effi-
cient and leverages the implicit relations among
the candidate arguments or argument roles. (3)
QA-based approaches rely on span prediction to
extract arguments without requiring entity extrac-
tion, which could result in more entity boundary
errors. Thus we choose to pre-train a name tag-
ging model and use binary decoding over system
detected entities.Moreover, it is pretty challenging
to fully adapt the event extraction task to the span-
based Question Answering. The main reason is that
each sentence may contain multiple triggers for a
particular event type. Even if we can formalize a
question, e.g., “what is the trigger for Attack?” it
is difficult for the model to return all the spans of
event triggers correctly.

5 Conclusion and Future Work

We refine event extraction with a query-and-extract
paradigm and design a new framework that lever-
ages rich semantics of event types and argument
roles and captures their interactions with input texts
using attention mechanisms to extract event trig-
gers and arguments. Experimental results demon-
strate that our approach achieves state-of-the-art
performance on supervised event extraction and
shows prominent accuracy and generalizability to
new event types and across ontologies. In the fu-
ture, we will explore better representations of event
types and argument roles and combine them prompt
tuning approach further to improve the accuracy
and generalizability of event extraction.
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A Data Statistics and Implementation
Details

Table 5 shows the detailed data statics of the train-
ing, development and test sets of the ACEO5S-E+
and ERE datasets. The statistics for the ERE
dataset is slightly different from previous work (Lin
et al., 2020; Lu et al., 2021) as we consider the
event triggers that are annotated with multiple types
as different instances while the previous studies
just keep one annotated type for each trigger span.
For example, in the ERE-EN dataset, a token “suc-
ceeded” in the sentence “Chun ruled until 1988
, when he was succeeded by Roh Tae - woo , his
partner in the 1979 coup .” triggers a End-Position
event of Chun and a Start-Position of Roh. Previ-
ous classification based approaches did not predict
multiple types for each candidate trigger.

Dataset Split  #Events # Arguments
Train 4419 6605

ACEO5-E+  Dev 468 757
Test 424 689
Train 7394 11576

ERE-EN Dev 632 979
Test 669 1078

Table 5: Data statistics for ACE2005 and ERE datasets.

Zero-Shot Event Extraction To evaluate the
transfer capability of our approach, we use the top-
10 most popular event types in ACEOS as seen
types for training and treat the remaining 23 event
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types as unseen for testing, following Huang et al.
(2018). The top-10 training event types include
Attack, Transport, Die, Meet, Sentence, Arrest-Jail,
Transfer-Money, Elect, Transfer-Ownership, End-
Position. We use the same data split as supervised
event extraction but only keep the event annotations
of the 10 seen types for training and development
sets and sample 150 sentences with 120 annotated
event mentions for the 23 unseen types from the
test set for evaluation.

Implementation For fair comparison with pre-
vious baseline approaches, we use the same pre-
trained bert-large—uncased model for fine-
tuning and optimize our model with BertAdam.
We optimize the parameters with grid search: train-
ing epoch 10, learning rate € [3e-6, le-4], train-
ing batch size € {8,12,16, 24, 32}, dropout rate
€ {0.4,0.5,0.6}. Our experiments run on one
Quadro RTX 8000. For trigger detection, the aver-
age runtime is 3.0 hours. For argument detection,
the average runtime is 1.3 hours. We use Spacy to
generate POS tags.

Evaluation Criteria For evaluation of super-
vised event extraction, we use the same criteria
as (Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016; Lin et al., 2020) as follows:

» Trigger: A trigger mention is correct if its
span and event type matches a reference trig-
ger. Each candidate may act as triggers for
multiple event occurrences.

e Argument: An argument prediction is correct
only if the event trigger is correctly detected.
Meanwhile, its span and argument role need
to match a reference argument. An argument
candidate can be involved in multiple events
as different roles. Furthermore, within a single
event extent, an argument candidate may play
multiple roles.

B Impact of Seed Triggers

To investigate the impact of seed triggers on event
trigger extraction, we take the supervised event
extraction ACE dataset as a case study, where we
divide the triggers in the evaluation dataset into two
groups: overlapped triggers with the seeds or non-
overlapped ones with the seeds. Then, we compare
the performance of our approach with and with-
out using seed triggers as part of the event type

representations. As Table 6 shows, by incorpo-
rating the seed triggers as part of the event type
representations, our approach achieves better per-
formance on both overlapped and non-overlapped
triggers, demonstrating the benefit of seed triggers
on representing event types. As the total number of
overlapped triggers (34) is much lower than that of
non-overlapped triggers (390), we view the impact
of seed triggers on overlapped and non-overlapped
triggers as comparable. On the other hand, by com-
paring our approach without using seed triggers
with the BERT_QA_Arg baseline, our approach
also achieves much better performance which is
mostly due to the attention mechanism we used
which can better capture the semantic consistency
between the input tokens and the event type query
which just consists of the event type name.

C In-depth Comparison for Cross
Ontology Transfer

To deeply investigate the reason that our approach
performs better than QA-based baselines from
cross ontology transfer, we conducted ablation
study by removing the seed triggers from the event
type queries of our approach, as shown in Table 7.
The BERT_QA_Argny,y utilizes a generic query,
e.g., what’s the trigger, and classify each input to-
ken into one of the target types. It’s essentially
a multiclass classifier but just taking a query as
the prompt. The BERT_QA_Argpinary utilizes each
event type as the query to extract the correspond-
ing event mentions. Comparing the two baseline
methods, BERT_QA _Argpinary Works slightly bet-
ter than BERT_QA_Argmui, especially on ACE,
demonstrating the benefit of type-oriented binary
decoding mechanism. The only difference be-
tween BERT_QA_Argpinary and our approach with-
out seed triggers is the learning of enriched con-
textual representations. The comparison of their
scores demonstrates the effectiveness of the atten-
tion mechanisms designed for trigger extraction. Fi-
nally, by incorporating the seed triggers into event
type representations, our approach is further im-
proved significantly for all the settings. These in-
depth comparisons demonstrate the effectiveness
of both seed triggers and the attention mechanisms
in our approach for transferring annotations from
old types to the new types.
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Overlapped Triggers

Non-overlapped Triggers

OnelE (Lin et al., 2020) 88.2 71.0
BERT_QA_Arg (Du and Cardie, 2020) 72.2 70.9
Our Approach w/o Seed Triggers 88.9 70.8
Out Approach w/ Seed Triggers 97.2 71.3

Table 6: Impact of seed triggers on supervised trigger extraction on ACE (F-score, %)

Our Approach
Source Target BERT_QA_Argmui f = BERT_QA_Argpinry w/o Seed Triggerspp w/ Seed Triggers
ERE ACE 48.9 50.8 53.8 53.9
ACE ACE 70.6 72.2 72.2 73.6
ACE+ERE | ACE 70.1 71.3 722 74.4
ACE ERE 47.2 47.2 48.7 55.9
ERE ERE 57.0 56.7 58.2 60.4
ACE+ERE | ERE 57.0 54.6 56.2 63.0

Table 7: Cross ontology transfer results for queries without seed triggers, between ACE and ERE datasets (F-score

%)

D More Ablation Studies of Supervised
Event Extraction

The entity recognition model is based on a pre-
trained BERT (Devlin et al., 2019) encoder with
a CRF (Lafferty et al., 2001; Passos et al., 2014)
based prediction network. It’s trained on the same
training dataset from ACEQS before event extrac-
tion, and the predictions are taken as input to argu-
ment extraction to indicate the candidate argument
spans. Table 8 shows the comparison of the entity
extraction performance between our BERT-CRF
approach and the baselines.

Model F1
OnelE 89.6
FourlE 91.1
BERT+CRF 89.3

Table 8: Performance of Entity Extraction (F-score, %)

To understand the factors that affect argument
extraction and decompose the errors propagated
along the learning process (from predicted triggers
or predicted entities), we conduct experiments that
condition on given ground truth labels for those
factors. Specifically, we investigate three settings:
1) given gold entity, 2) given gold event trigger,
and 3) given both gold entity and event trigger. The
experimental results is shown in Table 9.

Given Information ACE ERE
None 55.1 50.2
GE 59.7 (+4.6) 59.5 (+9.3)
GT 68.7 (+13.6) | 67.2 (+17.0)
GT & GE 74.2 (+19.1) | 72.2 (+22.0)

Table 9: Performance of argument extraction condition-
ing on various input information: gold trigger (GT),
and gold entities (GE). (F-score, %)

E Remaining Challenges for Supervised
Event Extraction

We sample 200 supervised trigger detection and ar-
gument extraction errors from the ACE test dataset
and identify the remaining challenges.

Lack of Background Knowledge Background
knowledge, as well as human commonsense knowl-
edge, sometimes is essential to event extraction.
For example, from the sentence “since the intifada
exploded in September 2000, the source said”, with-
out knowing that intifada refers to a resistance
movement, our approach failed to detect it as an
Attack event mention.

Pronoun Resolution Extracting arguments by
resolving coreference between entities and pro-
nouns is still challenging. For example, in the fol-
lowing sentence “Attempts by Laleh and Ladan to
have their operation elsewhere in the world were
rejected, with doctors in Germany saying one or
both of them could die”, without pronoun resolu-
tion, our approach mistakenly extracted one, both
and them as Victims of the Die event triggered by
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die, while the actual Victims are Ladan and Laleh.

Ambiguous Context The ACE annotation guide-
lines (Consortium, 2005) provide detailed rules and
constraints for annotating events of all event types.
For example, a Meet event must be specified by
the context as face-to-face and physically located
somewhere. Though we carefully designed sev-
eral attention mechanisms, it is difficult for the
machines to capture such context features accu-
rately. For example, from the sentence “The admis-
sion came during three-day talks in Beijing which
concluded Friday, the first meeting between US
and North Korean officials since the nuclear crisis
erupted six months ago.”, our approach failed to
capture the context features that the talks is not an
explicit face-to-face meet event, and thus mistak-
enly identified it as a Meet event mention.
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