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Abstract
In order to equip NLP systems with ‘selective
prediction’ capability, several task-specific ap-
proaches have been proposed. However, which
approaches work best across tasks or even if
they consistently outperform the simplest base-
line MaxProb remains to be explored. To
this end, we systematically study selective pre-
diction in a large-scale setup of 17 datasets
across several NLP tasks. Through comprehen-
sive experiments under in-domain (IID), out-of-
domain (OOD), and adversarial (ADV) settings,
we show that despite leveraging additional re-
sources (held-out data/computation), none of
the existing approaches consistently and con-
siderably outperforms MaxProb in all three set-
tings. Furthermore, their performance does
not translate well across tasks. For instance,
Monte-Carlo Dropout outperforms all other ap-
proaches on Duplicate Detection datasets but
does not fare well on NLI datasets, especially in
the OOD setting. Thus, we recommend that fu-
ture selective prediction approaches should be
evaluated across tasks and settings for reliable
estimation of their capabilities.

1 Introduction

Despite impressive progress made in Natural Lan-
guage Processing (NLP), it is unreasonable to ex-
pect models to be perfect in their predictions. They
often make incorrect predictions, especially when
inputs tend to diverge from their training data dis-
tribution (Elsahar and Gallé, 2019; Miller et al.,
2020; Koh et al., 2021). While this is acceptable
for tolerant applications like movie recommenda-
tions, high risk associated with incorrect predic-
tions hinders the adoption of these systems in real-
world safety-critical domains like biomedical and
autonomous robots. In such scenarios, selective
prediction becomes crucial as it allows maintaining
high accuracy by abstaining on instances where
error is likely.

Selective Prediction (SP) has been studied in
machine learning (Chow, 1957; El-Yaniv et al.,

2010) and computer vision (Geifman and El-Yaniv,
2017, 2019), but has only recently gained atten-
tion in NLP. Kamath et al. (2020) proposed a post-
hoc calibration-based SP technique for Question-
Answering (QA) datasets. Garg and Moschitti
(2021) distill the QA model to filter out error-prone
questions. Unfortunately, despite the shared goal
of making NLP systems robust and reliable for
real-world applications, SP has remained underex-
plored; the community does not know which tech-
niques work best across tasks/settings or even if
they consistently outperform the simplest baseline
MaxProb (Hendrycks and Gimpel, 2017) (that uses
a threshold over the maximum softmax probability
for selective prediction).

In this work, we address the above point and
study selective prediction in a large-scale setup of
17 datasets spanning over Natural Language Infer-
ence (NLI), Duplicate Detection, and QA tasks.
Our comprehensive experiments under In-Domain
(IID), Out-Of-Domain (OOD), and Adversarial
(ADV) settings result in the following findings:
1. None of the existing SP approaches consistently

and considerably outperforms MaxProb.
Slight improvement in IID: Most of the ap-
proaches outperform MaxProb in the IID set-
ting; however, the magnitude of improvement
is very small (Figure 1). For instance, MCD
achieves an average improvement of just 0.28
on AUC value across all NLI datasets.
Negligible improvement in OOD: The mag-
nitude of improvement in OOD is even lesser
(0.08) than that observed in the IID (Figure 2a).
In a few cases, we also observe performance
degradation (higher AUC than MaxProb).
Performance degradation in ADV: Most of
the approaches fail to even match the MaxProb’s
performance in ADV setting (Figure 2b). For
instance, MCD degrades the AUC value by 1.76
on Duplicate Detection datasets and Calibration
degrades by 1.27 on NLI datasets.
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2. Approaches do not translate well across tasks:
We find that a single approach does not achieve
the best performance across all tasks. For in-
stance, MCD outperforms all other approaches
on Duplicate Detection datasets but does not
fare well on the NLI datasets.

3. Existing approaches fail to outperform Max-
Prob despite leveraging additional resources:
MCD requires additional computation (for mul-
tiple inferences) while calibration-based ap-
proaches require a held-out dataset. In contrast,
MaxProb does not require any such resources
and still outperforms them, especially in the
ADV setting.
Overall, our results highlight that there is a need

to develop stronger selective prediction approaches
that perform well across tasks while being compu-
tationally efficient.

2 Selective Prediction

2.1 Formulation
A selective prediction system comprises of a pre-
dictor (f ) that gives the model’s prediction on an
input (x), and a selector (g) that determines if the
system should output the prediction made by f i.e.

(f, g)(x) =

{
f(x), if g(x) = 1
Abstain, if g(x) = 0

Usually, g comprises of a confidence estimator
g̃ that indicates f ′s prediction confidence and a
threshold th that controls the abstention level:

g(x) = 1[g̃(x)) > th]

An SP system makes trade-offs between
coverage and risk. For a dataset D, coverage
at a threshold th is defined as the fraction of total
instances answered by the system (where g̃ > th)
and risk is the error on the answered instances:

coverageth =

∑
xi∈D 1[g̃(xi)) > th]

|D|

riskth =

∑
xi∈D 1[g̃(xi)) > th]li∑
xi∈D 1[g̃(xi)) > th]

where, li is the error on instance xi.
With decrease in th, coverage will increase, but

the risk will usually also increase. The overall
SP performance is measured by the area under
Risk-Coverage curve (El-Yaniv et al., 2010) which
plots risk against coverage for all threshold values.

Lower the AUC, the better the SP system as it
represents lower average risk across all confidence
thresholds. We note that ‘confidence calibration’
and ‘OOD detection’ are related tasks but are non-
trivially different from selective prediction as de-
tailed in Appendix A.

2.2 Approaches

Usually, the last layer of models has a softmax
activation function that gives the probability distri-
bution P (y) over all possible answer candidates Y .
Y is the set of labels for classification tasks, answer
options for multiple-choice QA, all input tokens
(for start and end logits) for extractive QA, and
all vocabulary tokens for generative tasks. Thus,
predictor f is defined as: argmax

y∈Y
P (y)

Maximum Softmax Probability (MaxProb):
Hendrycks and Gimpel (2017) introduced a simple
method that uses the maximum softmax probabil-
ity across all answer candidates as the confidence
estimator g̃ i.e. maxy∈Y P (y)

Monte-Carlo Dropout (MCD): Gal and Ghahra-
mani (2016) proposed to infer a test input multiple
times using different dropout masks and ensemble
them to get the confidence estimate.

Label Smoothing (LS): Szegedy et al. (2016)
proposed to compute cross-entropy loss value with
a weighted mixture of target labels during train-
ing instead of one hot ‘hard’ label. This prevents
the network from becoming over-confident in its
predictions.

Calibration (Calib): In calibration, a held-out
dataset is annotated conditioned on the correctness
of the model’s predictions (correct as ‘positive’
class and incorrect as ‘negative’ class), and an-
other model (calibrator) is trained on this annotated
binary classification dataset. Softmax probability
assigned to the positive class by this trained cali-
brator is used as the confidence estimator for SP.
Kamath et al. (2020) study a calibration-based SP
technique for Question Answering datasets. They
train a random forest model using features such
as input text length and probabilities of top 5 pre-
dictions and use it as a calibrator. We refer to this
approach as Calib C. Inspired by the calibration
technique presented in Jiang et al. (2021), we also
train calibrator as a regression model (Calib R) by
annotating the heldout instances on a continuous
scale instead of categorical labels ‘positive’ and
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‘negative’ (unlike the annotation done in Calib C).
We compute these annotations using MaxProb as:

s =

{
0.5 + maxProb

2 , if correct
0.5− maxProb

2 , otherwise

Furthermore, we train a transformer-based model
for calibration (Calib T) that leverages the entire
input text for training instead of features derived
from it (Garg and Moschitti, 2021).

3 Experimental Setup

3.1 Tasks and Settings:

We conduct comprehensive experiments with 17
datasets spanning over Natural Language Infer-
ence (NLI), Duplicate Detection, and Question-
Answering (QA) tasks and evaluate the efficacy
of various selective prediction approaches in IID,
OOD, and adversarial (ADV) settings.

NLI: We train our models with SNLI (Bowman
et al., 2015) / MNLI (Williams et al., 2018) / DNLI
(Welleck et al., 2019) and use HANS (McCoy et al.,
2019) , Breaking NLI (Glockner et al., 2018), NLI-
Diagnostics (Wang et al., 2018) , Stress Test (Naik
et al., 2018) as adversarial datasets. While training
with SNLI, we consider SNLI evaluation dataset as
IID and MNLI, DNLI datasets as OOD. Similarly,
while training with MNLI, we consider SNLI and
DNLI datasets as OOD.

Duplicate Detection: We train with QQP (Iyer
et al., 2017) / MRPC (Dolan and Brockett, 2005)
and use PAWS-QQP, PAWS-Wiki (Zhang et al.,
2019) as adversarial datasets.

QA: We train with SQuAD (Rajpurkar et al.,
2016) and evaluate on NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), SearchQA
(Dunn et al., 2017), HotpotQA (Yang et al., 2018),
and Natural Questions (Kwiatkowski et al., 2019).

3.2 Training Details:

We run all our experiments using bert-base model
(Devlin et al., 2019) with batch size of 32 and learn-
ing rate ranging in {1−5}e−5. All experiments are
done with Nvidia V100 16GB GPUs.

Calibration: For calibrating QA models, we use
input length, predicted answer length, and softmax
probabilities of top 5 predictions as the features
(similar to Kamath et al. (2020)). For calibrat-
ing NLI and Duplicate Detection models, we use
input lengths (of premise/sentence1 and hypothe-
sis/sentence2), softmax probabilities assigned to

Figure 1: Comparing AUC of risk-coverage plot of
various SP approaches with MaxProb in IID settings.

the labels, and the predicted label as the features.
We train calibrators using random forest imple-
mentations of Scikit-learn (Pedregosa et al., 2011)
for Calib C and Calib R approaches, and train
a bert-base model for Calib T. In all calibration
approaches, we calibrate using the IID held-out
dataset and use softmax probability assigned to the
positive class as the confidence estimate for SP.

Label Smoothing: For LS, we use MaxProb
of the model trained with label smoothing as the
confidence estimator for SP. To the best of our
knowledge, LS is designed for classification tasks
only. Hence, we do not evaluate it for QA tasks.

4 Results and Analysis

4.1 Slight Improvement in IID

We compare the selective prediction performance
of various approaches in the IID setting in Figure
1. Though all the approaches except Calib T out-
perform MaxProb in most cases, the magnitude
of improvement is very small. For instance, MCD
achieves an average AUC improvement of just 0.28
across all NLI datasets.

Calib C and Calib R achieve the highest im-
provement on DNLI: We find that these ap-
proaches benefit from using the predicted label as
a feature for calibration. Specifically, the model’s
prediction accuracy varies greatly across labels
(0.94, 0.91, and 0.76 for entailment, contradiction,
and neutral predictions respectively). This implies
when the model predicts the label to be neutral, it
is relatively less likely to be correct as compared to
the scenario when the prediction is entailment or
contradiction. Calib C and R approaches leverage
this signal by training a calibrator over a held-out
dataset and thus achieve superior SP performance.
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(a) Out-Of-Domain (b) Adversarial

Figure 2: Comparing AUC of risk-coverage plot of various approaches with MaxProb in OOD and ADV settings.
The results have been averaged over all the task-specific OOD/ADV datasets mentioned in Section 3 to highlight the
general trend. Results of individual datasets have been provided in the Appendix.

4.2 Negligible Improvement / Degradation in
OOD and ADV

In Figure 2, we compare the selective prediction
performance of various approaches in OOD and
ADV settings. To highlight the general trend, the
results have been averaged over all the task-specific
OOD/ADV datasets mentioned in Section 3. Indi-
vidual scores are provided in Appendix.

In OOD setting, we find that the approaches lead
to a negligible improvement in AUC. Notable im-
provement is achieved only by MCD in the case
of the QQP dataset. In the ADV setting, all ap-
proaches degrade SP performance. Surprisingly,
MCD that performed relatively well in IID and
OOD settings, degrades more (by 1.74 AUC) in
comparison to other approaches (except Calib T
which does not perform well in all three settings).
This is because the individual models of the ensem-
ble achieve poor prediction accuracy in the ADV
setting and thus ensembling them further degrades
the overall confidence estimate.

4.3 Calib T Degrades Performance

Calib C and Calib R slightly outperform MaxProb
in most IID and OOD cases. However, Calib T con-
siderably degrades the performance in nearly all the
cases. We hypothesize that associating correctness
directly with the input text embeddings could be a
harder challenge for the model as embeddings of
correct and incorrect instances usually do not dif-
fer significantly. In contrast, as discussed before,
providing features such as predicted label and soft-
max probabilities explicitly assists Calib C and R
approaches in finding some distinguishing patterns
that improve the selective prediction performance.

4.4 Existing Approaches Fail to Utilize
Additional Resources

Unlike typical ensembling, MCD does not re-
quire training or storing multiple models but, it
requires making multiple inferences (using differ-
ent dropout masks) and can still become practi-
cally infeasible for large models such as BERT as
their inference cost is high. Calibration-based ap-
proaches need additional held-out data and careful
feature engineering to train the calibrator. Despite
being computationally expensive, these approaches
fail to consistently outperform MaxProb that does
not require any such additional resources.

4.5 Effect of Increasing Dropout Masks in
Monte-Carlo Dropout

With the increase in number of dropout masks used
in MCD, the SP performance improves (from MCD
lite with 10 masks to MCD with 30 masks). This
is due to the ensembling effect as combining more
predictions on the same input results in a more
accurate overall output. However, we note that
both MCD lite and MCD degrade SP performance
in the ADV setting as discussed in 4.2.

4.6 No Clear Winner
None of the approaches consistently and consid-
erably outperforms MaxProb in all three settings.
Most approaches do not fare well in OOD and
ADV settings. Furthermore, a single approach
does not achieve the highest performance across all
tasks. For instance, MCD outperforms all other ap-
proaches on Duplicate Detection datasets but does
not perform well on NLI datasets (Calib C achieves
better performance, especially in the OOD setting).
This reveals that the existing selective prediction
approaches do not translate well across tasks.
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5 Conclusion

Selective prediction ability is crucial for NLP sys-
tems to be reliably deployed in real-world applica-
tions and we presented the most systematic study of
existing selective prediction approaches. Our study
involved experiments in IID, OOD, and ADV set-
tings with 17 datasets across several NLP tasks. We
showed that despite leveraging additional resources
(held-out data/computation), existing approaches
fail to consistently and considerably outperform
the simplest baseline (MaxProb). Furthermore, we
demonstrated that these approaches do not translate
well across tasks. Overall, our results highlight that
there is a need to develop stronger selective predic-
tion approaches that perform well across multiple
tasks (QA, NLI, etc.) and settings (IID, OOD, and
ADV) while being resource-efficient.
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Appendix

A Related Tasks

A.1 Confidence Calibration

Selective Prediction is closely related to confidence
calibration (Platt et al., 1999) i.e aligning model’s
output probability with the true probability of its
predictions. Calibration focuses on adjusting the
overall confidence level of a model, while selective
prediction is based on relative confidence among
the examples i.e systems are judged on their ability
to rank correct predictions higher than incorrect
predictions.

A.2 Out-of-Domain Detection

Using OOD Detection systems for selective pre-
diction (abstain on all detected OOD instances)
would be too conservative as it has been shown
that models are able to correctly answer a signifi-
cant fraction of OOD instances (Talmor and Berant,
2019; Hendrycks et al., 2020; Mishra et al., 2020).

B Why Lower AUC is Better?

Small magnitude values of area under curve (AUC)
are preferred as they represent low average risk
across all confidence thresholds.

C Comparing SP Approaches

Table 1 compares SP performance (AUC of risk-
coverage curve) of various approaches for Dupli-
cate Detection datasets. Table 2 compares SP per-
formance (AUC of risk-coverage curve) of various
approaches for QA datasets. Table 3 compares
SP performance (AUC of risk-coverage curve) of
various approaches for NLI datasets.

Train On Method IID↓ OOD avg.↓ ADV avg.↓

QQP

MaxProb 2.0 31.72 60.9
MCD lite 1.85 23.83 62.53
MCD 1.8 23.61 62.52
LS 2.08 27.92 61.92
Calib C 2.04 31.09 61.22
Calib R 2.07 28.53 60.68
Calib T 4.21 38.25 60.25

MRPC

MaxProb 6.13 40.46 63.88
MCD lite 5.48 38.23 65.76
MCD( 5.35 38.21 65.62
LS 6.08 39.05 64.99
Calib C 6.17 39.82 64.99
Calib R 6.52 39.99 65.13
Calib T 13.35 39.75 64.22

Table 1: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for Duplicate Detection datasets. Lower AUC is better
in SP. MaxProb baseline scores are underlined, best
performance is in bold, and scores that considerably
outperform MaxProb are highlighted .

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SQuAD

MaxProb 6.71 46.73 33.69
MCD lite 6.06 44.56 33.34
MCD 6.00 44.35 33.05
Calib C 6.15 45.93 33.27
Calib R 6.25 45.94 33.18
Calib T 14.72 60.31 47.87

Table 2: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for QA datasets. Lower AUC is better in SP. MaxProb
baseline scores are underlined, best performance is in
bold, and scores that considerably outperform MaxProb
are highlighted .

D MaxProb for Selective Prediction

Figure 3a shows the trend of accuracy against max-
Prob for various models in the IID setting. It can be
observed that with the increase in MaxProb the ac-
curacy usually increases. This implies that a higher
value of MaxProb corresponds to more likelihood
of the model’s prediction being correct. Hence,
MaxProb can be directly used as the confidence
estimator for selective prediction. We plot the risk-
coverage curves using MaxProb as the SP tech-
nique in Figure 3b. As expected, the risk increases
with the increase in coverage for all the models.
We plot such curves for all techniques and compute
area under them to compare their SP performance.
This shows that MaxProb is a simple yet strong
baseline for selective prediction.
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(a) With increase in MaxProb, the accuracy usually
increases.

(b) With increase in coverage (i.e decrease in ab-
stention threshold), the risk usually increases.

Figure 3: Trend of Accuracy vs. MaxProb, Risk vs. Coverage for various models in the IID setting.

Train On Method IID↓ OOD avg.↓ ADV avg.↓

SNLI

MaxProb 2.78 23.34 32.4
MCD(K=10) 2.52 23.96 32.61
MCD(K=30) 2.47 23.81 32.47
LS 2.7 22.42 31.7
Calib C 2.57 22.47 33.0
Calib R 2.61 23.12 33.95
Calib T 7.02 34.74 40.68

MNLI

MaxProb 5.47 16.48 28.39
MCD(K=10) 5.07 16.29 29.42
MCD(K=30) 4.92 16.18 29.18
LS 5.18 16.94 28.55
Calib C 5.16 14.16 29.57
Calib R 5.28 14.84 29.67
Calib T 13.51 26.12 35.79

DNLI

MaxProb 7.36 53.59 51.85
MCD(K=10) 7.17 53.77 53.23
MCD(K=30) 6.69 53.67 53.24
LS 5.13 53.04 53.67
Calib C 3.88 52.35 52.91
Calib R 3.9 53.08 52.83
Calib T 5.46 53.58 58.13

Table 3: Comparing selective prediction performance
(AUC of risk-coverage curve) of various approaches
for NLI datasets. Lower AUC is better in SP. MaxProb
baseline scores are underlined, best performance is in
bold, and scores that considerably outperform MaxProb
are highlighted .

E Comparing Risk-Coverage Curves of
MCD and Calib C for DNLI Dataset in
IID Setting

We compare the risk-coverage curves of MCD and
Calib C approaches on DNLI in Figure 4. We ob-
serve that at all coverage points, Calib C achieves
lower risk than MCD and hence is a better SP tech-
nique. We find that they benefit from using the
predicted label as a feature for calibration. Specifi-
cally, the model’s prediction accuracy varies greatly

Figure 4: Comparing risk-coverage curves of MCD and
Calib C for DNLI dataset in IID setting.

across labels (0.94, 0.91, and 0.76 for entailment,
contradiction, and neutral labels respectively). This
implies that when the model’s prediction is neutral,
it is relatively less likely to be correct (at least in
the IID setting). Calib C and R approaches lever-
age this signal and tune the confidence estimator
using a held-out dataset and thus achieve superior
SP performance.

F Composite SP Approach:

We note that calibration techniques can be used in
combination with Monte-Carlo dropout to further
improve the SP performance. However, it would
require even more additional resources i.e held-out
datasets in addition to multiple inferences.
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