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Abstract

Current practices in metric evaluation focus on
one single dataset, e.g., Newstest dataset in
each year’s WMT Metrics Shared Task. How-
ever, in this paper, we qualitatively and quan-
titatively show that the performances of met-
rics are sensitive to data. The ranking of met-
rics varies when the evaluation is conducted
on different datasets. Then this paper further
investigates two potential hypotheses, i.e., in-
significant data points and the deviation of In-
dependent and Identically Distributed (i.i.d) as-
sumption, which may take responsibility for
the issue of data variance. In conclusion, our
findings suggest that when evaluating auto-
matic translation metrics, researchers should
take data variance into account and be cautious
to claim the result on a single dataset, because
it may leads to inconsistent results with most
of other datasets.

1 Introduction

Assessing the quality of machine translation (MT)
systems is always crucial to promote MT re-
search (Marie et al., 2021). Since it is costly and
time-consuming for human graders to evaluate ma-
chine translation (MT) systems, designing auto-
matic metrics for MT has drawn booming attention
during the past decades, and many metrics such
as BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) have been proposed consequently.
Generally, it is non-trivial to measure auto-
matic metrics. Conference Machine Translation
(WMT) (Ma et al., 2019, 2018; Machacek and Bo-
jar, 2013a,b; Bojar et al., 2016) thereby holds the
Metric Shared Task to evaluate the performance of
automatic metrics. In each year, WMT organizers
collect a dataset consisting of many MT outputs
annotated with human judgments, and automatic
metrics are evaluated on the dataset in terms of

*Work done while J. Xiang was an intern at Tencent Al
Lab.

their correlations to human judgments. Over the
past ten years, the official evaluation reports only
independently analyzed the results of that year. To
the best of our knowledge, there are no studies to
put the evaluation results of ten years together and
make a more systematic analysis. Therefore, some
key questions remain unknown: are the evaluation
results consistent across different years? Are the
results on each dataset reliable?

One may simply summarize the existing results
from the official evaluation reports of the past years
and answer the above questions accordingly. How-
ever, the existing results use Pearson’s correlation
for evaluation which suffers from sensitivity to out-
lier data points as argued by Mathur et al. (2020).
Besides, involved metrics in the evaluation are dif-
ferent year by year, thus it is difficult to directly
compare the results among different years. To
this end, in this work, we firstly re-evaluate ten
popular metrics on all available datasets in the
past ten years, with the Error Number evaluation
method (Mathur et al., 2020). We then empiri-
cally investigate the fluctuation of metric evalua-
tion results. Surprisingly, our experiments show
that the evaluation result is sensitive to the choice
of datasets, which suggests that the results on some
datasets may not be reliable (§3).

Then we investigate two potential hypotheses
about the emergence of data variance, i.e., the in-
significant data points (§4.1) and deviation of Inde-
pendent and Identically Distributed (i.i.d) assump-
tion (§4.2). First, we show that the data variance
issue is substantially alleviated when the insignifi-
cant data points are removed. To further understand
the variance that cannot be alleviated by the first
hypothesis, we design a simple method to measure
the distributional differences between datasets, and
hypothesize that the deviation of the i.i.d assump-
tion may contribute to the variance. For future met-
ric evaluation, we recommend WMT community
pay attention to the potential issue of data variance
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Dataset Size  System Number Link
Newssyscombtest2010 2,034 31 http://www.statmt.org/wmt10/results.html
Newssyscombtest2011 2,000 26 http://www.statmt.org/wmtll/results.html
Newstest2012 3,003 16 http://www.statmt.org/wmtl2/results.html
Newstest2013 3,000 23 http://www.statmt.org/wmt1l3/results.html
Newstest2014 3,003 13 http://www.statmt.org/wmtl4/results.html
Newstest2015 2,169 13 http://www.statmt.org/wntl5/results.html
Newstest2016 2,999 10 http://www.statmt.org/wmtl6/results.html
Newstest2017 3,004 11 http://www.statmt.org/wmtl7/results.html
Newstest2018 2,998 16 http://www.statmt.org/wmt18/results.html
Newstest2019 2,000 16 http://www.statmt.org/wntl1l9/results.html

Table 1: The data statistics for German-English language pair.

when conducting evaluations.

Metrics Features Average Type
BLEU n-grams macro
WER Levenshtein distance macro

TER edit distance macro
PER edit distance macro
chrF character n-grams micro
chrF+ character n-grams micro
BEER char. n-grams, trees micro
CharacTER char. edit distance micro
BERTScore neural representations micro
MoverScore  neural representations micro

Table 2: Features for the metrics we use in the paper.
Note that we implement PER by ourselves.

2 Experiment Settings

2.1 Datasets and evaluation metrics

We collect the testing set data and the human as-
sessments of the WMT Metrics Task from 2010 to
2019. In this work, we mainly conduct experiments
on the De=-En task and more details about datasets
are shown in Table 1. However, as shown in §3.1,
our conclusions are consistent on other translation
tasks, such as Ru=-En.

Since participating metrics in the WMT Metrics
Task varied over years, we collect ten most popular
metrics and re-evaluate them on all ten datasets
to study their performance.These metrics are sum-
marized as follows: BLEU (Papineni et al., 2002),
WER (Morris et al., 2004), PER (Tillmann et al.,
1997), TER (Snover et al., 2006), chrF (Popovié,
2015), chrF+ (Popovié, 2017), BEER (Stanojevi¢
and Sima’an, 2014), CharacTER (Wang et al.,
2016), BERTScore (Zhang et al., 2020), and Mover-
Score (Zhao et al., 2019). The first 4 metrics are
in system-level (i.e., macro) while others are in
sentence-level (i.e., micro), as shown in Table 2.
Since extending sentence-level metrics to system-
level is more natural (Zhang et al., 2020), we only

compare them on the system-level.

For each system pair, metrics or humans give a
comparison result about whether one system is bet-
ter than another. Following Graham et al. (2014),
we use statistical significance tests to detect if
the difference in scores (metrics or humans) be-
tween two systems is significant. Specifically, for
RR scores, we use the bootstrap method (Koehn,
2004). For DA scores, we apply the Wilcoxon
rank-sum test. For macro-average metrics, i.e.,
BLEU, WER, PER, and TER, we use the bootstrap
method (Koehn, 2004). For other micro-average
metrics, we use the paired t-test method.

2.2 Measuring Automatic Metrics

The previous WMT Metrics Tasks used Pearson’s
r to measure the ability of a metric to evaluate MT
systems. However, as pointed out by Mathur et al.
(2020), Pearson’s r is unstable for a small sample
size and sensitive to outlier systems. Besides, in
practice, metric scores are always used to compare
pairs of MT systems'. Thus following Mathur et al.
(2020), we measure an automatic metric with the
number of errors made by the metric when compar-
ing system pairs. Error Number can be considered
as an absolute view of measuring a metric.

Error Number Following Mathur et al. (2020),
we measure the performance of a metric by its con-
sistency with humans. Specifically, each metric or
human can judge whether a system performs bet-
ter compared to another system (details of system
comparison process are presented in the appendix),
and the error number is the number of contrary
cases between the results of metric and human. As
mentioned by Graham and Liu (2016), when the
number of compared MT systems are too small
on a dataset, differences among different metrics

"Unless otherwise specified, a system always denotes MT
system in our work, rather than an evaluation metric.
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Dataset

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
BERTScore 1/24.4 1/37.1 2/289 1/106 2/204 1/147 1/145 6/246 2/153 3/37.0
CharacTER  6/27.6 1/37.1 1/242 6/18.0 1/173 1/147 3/17.6 1/208 1/144 4/382
MoverScore  2/25.2 4/393 2/288 2/11.7 2/203 1/147 2/160 5/239 2/154 1/366
chrF 3/267 1/378 4/297 2/12.1 2/208 4/177 4/189 2/229 2/153 1/37.0
BEER 3/263 5/453 5/335 4/134 6/250 5/190 5/195 2/232 2/152 6/384
chrF+ 3/269 5/458 6/35.1 4/138 7/264 6/192 5/202 2/233 2/152 4/37.7
BLEU 8/323 8/583 8/423 7/209 8/293 7/231 8/212 7/263 9/18.1 7/41.3
WER 7/317 7/577 7/40.8 8/234 9/323 7/229 5/197 8§/272 7/17.0 77409
TER 9/350 9/612 9/439 9/247 10/362 7/227 8/209 10/28.6 7/172 9/43.0
PER 10/38.6 9/61.7 10/480 10/269 5/23.8 7/228 10/282 8/27.6 9/184 9/435

Table 3: Metric evaluation results on De=-En datasets from 2010 to 2019. The tuple "R / E” shows the perfor-
mance of a metric, where R denotes Significant Ranking (§2.3) among all metrics and E denotes the Error Rate
(Error Number divided by the total number of system pairs).

may be insignificant. Thus, the results of the met-
ric evaluation can be highly inconclusive. We in-
deed observe similar results in our experimental set-
ting. Therefore, we use the hybrid super-sampling
method (Graham and Liu, 2016) to create a large
number of hybrid system pairs: on each dataset,
we synthesize 142 systems in total, which form
10K system pairs. Finally, we calculate the error
number of each metric on all 10K system pairs.

2.3

Significant Ranking Based on the measurement
of error number, a qualitative approach to know
whether those metrics perform consistently on dif-
ferent datasets is to evaluate the variance of their
rankings. To make the ranking more reliable, we
propose a significant ranking method, which con-
ducts significant test when sorting the error num-
bers of metrics. For example, in Table 3, the sig-
nificant ranking of all metrics on 2010 dataset is
“1, 6, 2,3, 3,3,8, 7,9, 10” where chrF, BEER
and chrF+ are with the same relative ranking of 3.
This is because they are not significantly different,
although their absolute error numbers are slightly
different. We employ the bootstrap re-sampling
method (Koehn, 2004) to test if the number of
errors of one metric is significantly less than the
others. For the bootstrap method, we repeat re-
sampling 1000 times and set the p-value to 0.05 for
all the significance tests.

Measuring Data Variance

Disagreement Number In addition, we also pro-
pose a method to quantitatively measure the vari-
ance between two datasets D and D', namely, dis-
agreement number. Specifically, we construct a
set Sp by collecting all pairwise metrics that one
is significantly better than the other on dataset D.
Then to measure the mismatch between D and 7',

2010- O
2011

2012
2013- 4
2014
2015
2016
2017

2018
2019

Figure 1: The heatmap for the disagreement numbers
between every two datasets on De=-En task.

we count the disagreement number between the
pairwise metrics in Sp and that in Spr. For ex-
ample, disagreement number plus one, if BLEU
is significantly better than TER on D and worse
than TER on D’. Although this number is linear to
Kendall’s Tau (Kendall, 1938), it is able to show
more informative difference between two overall
rankings. For example, two metrics with totally
different ranks may just have a slight difference
on disagreement number. As a result, we employ
disagreement number rather than Kendall’s Tau
to show the quantitative difference between two
overall rankings more intuitively for more detailed
analysis. It is worth mentioning that the disagree-
ment number is at most 45 in our setting where
there are 10 metrics in total.

3 Data Variance in Metric Evaluations

3.1 Variance of Different Datasets

We conduct experiments on all 10 datasets. We
have 10 metrics, which can form 45 metric pairs.
On each dataset, for each metric, we calculate its
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Dataset

Metric 2015 2016 2017 2018 2019
BERTScore 2/18.0 3/167 2/32.1 3/245 1/358
CharacTER  6/20.5 6/194 1/304 1/223 4/372
MoverScore 1/14.9 1/15.1 2/314 3/245 1/36.1
chiF 3/187 2/157 2/319 2/240 4/37.1
BEER 3/19.0 3/17.0 5/332 3/243 9/39.6
chrF+ 5/19.7 5/17.6 5/333 3/245 4/369
BLEU 10/27.9 7/21.0 9/348 8/250 9/39.8
WER 8/234 7/215 5/332 8/250 8/379
TER 8/234 10/233 9/345 10/258 4/36.9
PER 6/21.1 7/215 7/340 2/234 1/35.7

Table 4: Metric evaluation results on Ru=-En datasets
from 2015 - 2019.

error number (described in Section 2.2). In addi-
tion, we perform a statistical significance test for
each metric pairs in terms of both error numbers,
from which we can obtain a ranking result among
10 metrics accordingly.

Table 3 illustrates the error numbers and ranks
on 10 datasets. It shows that the ranks are always
variant along with different datasets. For example,
on the dataset of 2011, the error rate of MoveScore
is larger than chrF (39.3 v.s. 37.8), and the former
ranks 4 while the latter ranks 1. However, it is
opposite on the dataset of 2015, where MoveScore
ranks 1 with an error rate of 14.7 while chrF ranks
4 with an error rate of 17.7. As shown in Table 4,
we observe a similar trend on the Ru=-En task.

As shown in Figure 1, there is a high inconsis-
tency between the results of different datasets and
none of the dataset pairs achieve zero disagree-
ments. The difference between the datasets in 2010
and 2013 is the smallest (i.e., only 4 disagreed
metric pairs). However, most of the disagreement
numbers are larger than 10 (the maximum achieves
18). Moreover, datasets from 2017 to 2019 not only
have a high disagreement number with datasets of
early years, but also have high variances among
themselves. This finding is a little surprising, be-
cause in our sense the quality of WMT’s datasets
must be improved year by year.

4 Potential Reasons for Data Variance

Many factors may contribute to the data variance
issue, but lots of them are difficult to be evaluated,
such as the personal preferences of humans. In
this section, we propose to analyze two potential
factors that can be quantitatively evaluated.

12
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Figure 2: The heatmap for the disagreement numbers
between every two datasets on De=-En task. Insignifi-
cant system pairs according to human assessments are
removed.

4.1 Insignificant Data Points

Intuitively, if the translations H 4 from system A
are much better than those Hp from system B in
translation quality according to human evaluation,
then it is easy to judge the better system even for
a weak automatic metric. In contrast, if H4 is
similar to H p in translation quality, it is typically
difficult to judge the better system even for a good
metric. This motivates us that such an insignificant
data point (H 4, Hp) may take responsibility for
the data variance issue.

To validate the above intuition, we remove the
system pairs that are not significantly different ac-
cording to human evaluation, and compute the dis-
agreement number between any two datasets again.
The experimental results are shown in Figure 2. We
can see the disagreement number decreases greatly
comparing to the results in Figure 1. In the previ-
ous experiment, most of the disagreement numbers
are greater than 10, while in the new experiment
most of them are less than 5, and some of them
even achieve 0, such as the number between 2012
and 2015, which means the ranks of metrics are
exactly the same on those datasets. The results in-
dicate that part of the data variance issue can be
explained by system pairs that humans think are
not significantly different.

However, After the removal of insignificant data
points, some disagreement number are still high,
e.g., the number between 2013 and 2017 is 13. It
demonstrates that there are still some other under-
lying problems that give rise to the data variance
phenomenon. In addition, the datasets for both
2014 and 2017 do not agree well with others. This
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indicates that we should be cautious to report over-
all results on some datasets, e.g., 2014 and 2017.

4.2 Deviation of LI.D Assumption

How to interpret the high variance on datasets, e.g.,
2014 and 2017, remains to be an open question. In
this section we try to give a hypothesis based on
the i.i.d assumption. According to the principle of
statistical sampling, if two samples are drawn from
the same distribution, then a statement made on
one sample is likely to hold on the other sample.
Therefore, one hypothesis about the high variance
may be that datasets from different years deviate
i.i.d assumption. In fact, this may be true in our
scenario because each dataset is generated by a
set of translation systems but the set of systems is
variant each year.

To this end, we design an experiment to measure
the extent to which each dataset is drawn from the
same distribution during the past ten years. Since
the standard method such as Kolmogorov-Smirnov
test (Massey Jr, 1951) is difficult to scale with re-
spect to feature dimension, we employ adversarial
validation to distinguish the difference between
two datasets (Pan et al., 2020). Its basic idea is to
formulate the i.i.d test as a classification problem
and train a classifier between two datasets. If the
classifier can accurately distinguish the data from
different datasets, then the distributions of the two
datasets are regarded as highly different. Since it is
too slow to train classifiers for all pairs of datasets,
we conduct experiments on three years from 2017
to 2019. More details are shown in appendix.

The results on two kinds of datasets are shown
in Table 5, where higher accuracy indicates clearer
distributional differences between two datasets.
Note that accuracy scores in main diagonal are
got from two subsets of each year via randomly
splitting. As shown in Table 5, the distributional
differences between MT datasets have been intro-
duced by source sentences. After accompanied
with the system outputs, the distributional differ-
ences are more severe between different years. This
fact shows that some datasets in past ten years de-
viate the i.i.d assumption, which may be related to
the inconsistency of metrics.

4.3 Suggestions

According to those potential factors, we propose
some suggestions to alleviate some potential issues
for metric evaluation due to data variance in future.
First, it would be better if pay more attention to

17 18 19 17 18 19
17]50.4 52.8 65.8 17(51.4 753 80.2
18(52.8 514 67.5 18|75.3 55.6 79.2
19165.8 67.5 50.9 19180.2 79.2 52.2

(a) Src

(b) Src+Output

Table 5: The accuracy of classifiers. The higher value
means two datasets deviate i.i.d assumption. We run
the model with 5 different random seeds to calculate
the average accuracy.

those insignificant data points such that their man-
ual annotations are as good as possible. Since it
is costly to hire more annotators for data points, it
would be possible to ask more annotators only for
those insignificant data points. Second, it would
be helpful to construct a dataset with diverse do-
mains and explicitly show the evaluation results
for each subset with the same domain rather than a
single evaluation result for the entire dataset. Gen-
erally, although inconsistent results from different
domains are possible, however, the inconsistency in
the same domain may be undesirable. Thus, show-
ing the domain information could help researchers
to better promote the datasets and metrics.

5 Conclusion

Over the past ten years, the official evaluation re-
ports of WMT Metrics Shared Task only indepen-
dently analyzed the results of that year. In this
paper, we re-evaluate ten popular metrics on all
available datasets in the past ten years and com-
paratively analyze the evaluation results among
different years together. We show the problem of
conducting evaluations with only one dataset. In
addition, we analyze its potential reasons that the
insignificant data points and deviation of i.i.d as-
sumption may induce the issue of data variance.
This fact suggests that future researches on evaluat-
ing automatic translation metrics should take data
variance into account and be cautious to conclude
the result on a single dataset.
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A Settings for Adversarial Validation

To train the classifier, we need to construct a bi-
nary classification dataset first. Since the differ-
ence between distributions may come from both the
source sentences and system outputs, we consider
two types of classification datasets correspondingly.
The first kind of dataset only considers the source
information. Supposing that we want to compare
the distributions of source sentences of MT datasets
from year Y1 and Y2, we follow the three steps
below to construct the classification dataset:

1. We label the source sentences from Y1 and
Y2 with 0 and 1, respectively;

2. We split the data from Y1 and Y2 to train, dev,
and test sets without overlap;

3. We merge the data from Y1 and Y2 according
to their split.

For each pairs of MT datasets from year 2010 to
2019, we construct a classification dataset follow-
ing the steps above. Besides the source informa-
tion, we also construct another kind of classifica-
tion datasets that also consider the information of
system outputs. The procedure to construct this
kind of dataset is almost similar to the previous
one, except that we concatenate each system out-
puts with its source sentences after the Step-2 is
finished. In our experiments, we use mBERT (De-
vlin et al., 2019; Wolf et al., 2020) as the classifier,
thus an unified structure can be used for the two
kinds of datasets.
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