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Abstract

Graph-based methods, which decompose the
score of a dependency tree into scores of de-
pendency arcs, are popular in dependency pars-
ing for decades. Recently, Yang and Tu (2022)
propose a headed-span-based method that de-
composes the score of a dependency tree
into scores of headed spans. They show im-
provement over first-order graph-based meth-
ods. However, their method does not score
dependency arcs at all, and dependency arcs
are implicitly induced by their cubic-time al-
gorithm, which is possibly sub-optimal since
modeling dependency arcs is intuitively use-
ful. In this work, we aim to combine graph-
based and headed-span-based methods, incor-
porating both arc scores and headed span
scores into our model. First, we show a di-
rect way to combine with O(n4) parsing com-
plexity. To decrease complexity, inspired by
the classical head-splitting trick, we show two
O(n3) dynamic programming algorithms to
combine first- and second-order graph-based
and headed-span-based methods. Our exper-
iments on PTB, CTB, and UD show that
combining first-order graph-based and headed-
span-based methods is effective. We also con-
firm the effectiveness of second-order graph-
based parsing in the deep learning age, how-
ever, we observe marginal or no improve-
ment when combining second-order graph-
based and headed-span-based methods 1.

1 Introduction

Dependency parsing is an important task in natural
language processing. There are many methods to
tackle projective dependency parsing. In this paper,
we focus on two kinds of global methods: graph-
based and headed-span-based methods. They both
score all parse trees and globally find the highest

∗Corresponding Author
1Our code is publicly available at
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Figure 1: An example projective dependency parse tree
with all its headed spans.

scoring tree. The difference between the two is how
they score dependency trees. The simplest first-
order graph-based methods (McDonald et al., 2005)
decompose the score of a dependency tree into the
scores of dependency arcs. Second-order graph-
based methods (McDonald and Pereira, 2006) ad-
ditionally score adjacent siblings, i.e., pairs of adja-
cent arcs with a shared head. There are many other
higher-order graph-based methods (Carreras, 2007;
Koo and Collins, 2010; Ma and Zhao, 2012). In
contrast, the headed-span-based method (Yang and
Tu, 2022) decomposes the score of a dependency
tree into the scores of headed spans: in a projective
tree, a headed span is a word-span pair such that
the subtree rooted at the word covers the span in the
surface order. Fig. 1 shows an example projective
parse tree and all its headed spans.

First-order graph-based parsers have difficulties
in incorporating sufficient subtree information be-
fore the deep learning era. Dozat and Manning
(2017) show that first-order graph-based parsers
with neural encoders and biaffine scorers can obtain
high parsing accuracy. Falenska and Kuhn (2019)
argue that powerful neural encoders—such as BiL-
STMs (Hochreiter and Schmidhuber, 1997)—can
encode rich subtree information implicitly, ques-
tioning the utility of high-order features. However,
recent works found that high-order graph-based
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methods can outperform first-order graph-based
methods (Fonseca and Martins, 2020; Zhang et al.,
2020; Wang and Tu, 2020) even with powerful
neural encoders, indicating the insufficient subtree
modeling of first-order graph-based methods. To
encode more subtree information, in contrast to the
line of work on higher-order parsing, Yang and Tu
(2022) choose to model headed spans, which con-
sist of all words within the corresponding subtrees.
Thus their model can utilize more subtree informa-
tion than first-order graph-based methods. How-
ever, to retain the cubic parsing complexity, they
abandon modeling arcs as the parsing complexity
would be O(n4) otherwise (§3.1). Modeling de-
pendency arcs can capture the direct interactions
between two words and is thus useful. Therefore, it
is intuitively helpful to combine first-order graph-
based and headed-span-based methods.

To decrease the parsing complexity, inspired by
the classical head-splitting trick (Eisner, 1997), we
propose to decompose the score of a headed span
into two terms, assuming that the score of the left
span boundary is independent of that of the right
span boundary for each headword. This allows us
to adapt the Eisner algorithm to parse in cubic time
considering both arc and headed span scores (§3.2)
at the cost of imposing a stronger independence as-
sumption. More interestingly, we can also combine
second-order graph-based and headed-span-based
methods and need only cubic time to parse (§3.3),
which would be much slower (to the best of our
knowledge, O(n7)) if we do not apply the head-
splitting trick.

We conduct extensive experiments on PTB, CTB,
and UD. We find that combining first-order graph-
based and headed-span-based methods is effective,
and applying the head-splitting trick or not result in
a similar performance, thus it is more advantageous
to apply this trick to enjoy a lower parsing complex-
ity. We also confirm the effectiveness of second-
order parsing in the deep learning age, however,
we observe only marginal improvement or even no
improvement when combining second-order graph-
based and headed-span-based methods.

2 Scoring and Learning

2.1 Scoring

Given an input sentences x1, ..., xn, we add <bos>
(beginning of sentence) and <eos> (end of sen-
tence) as x0 and xn+1. We apply mean-pooling
at the last layer of BERT (Devlin et al., 2019)

(i.e., averaging all subwords embeddings) to ob-
tain the word-level embeddings ei2. Then we feed
e0, ..., en+1 into a three-layer BiLSTM network to
get c0, ..., cn+1, where ci = [fi; bi], fi and bi are
the forward and backward hidden states of the last
BiLSTM layer at position i respectively. We use
hk = [fk, bk+1] to represent the kth boundary lying
between xk and xk+1, and use ei,j = hj − hi−1 to
represent span (i, j) from position i to j inclusive
where 1 ≤ i ≤ j ≤ n. Then we compute:

• sarc
i,j (for arc xi → xj , used in all three models)

by feeding ci, cj into a deep biaffine function
(Dozat and Manning, 2017).

• sspan
i,j,k (for headed-span (i, j, k) where xk is

the headword of span (i, j), used in §3.1) by
feeding ei,j , ck to a deep biaffine function.

• sleft
k,i and sright

k,j (for headed-span (i, j, k), used
in §3.2 and §3.3) by feeding ck, hi−1 and
ck, hj into two different deep biaffine func-
tions.

• ssib
i,j,k (for adjacent siblings xi → {xj , xk}

with k < j < i or i < j < k, used in §3.3) by
feeding ci, ck, cj into a deep triaffine function
(Zhang et al., 2020).

2.2 Learning

We decompose the training loss L into Lparse +
Llabel. For Lparse, we use the max-margin loss
(Taskar et al., 2004):

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))

(1)
where ∆ measures the difference between the in-
correct tree and gold tree y. Here we let ∆ to
be the Hamming distance (i.e., the total number
of mismatches of arcs, sibling pairs, and (split)
headed-spans depending on the setting). We use
cost-augmented inference (Taskar et al., 2005) to
compute Eq. 1, which involves the use of parsing
algorithms described in the next section. We use
the same label loss Llabel in Dozat and Manning
(2017).

3 Parsing

We use the parsing-as-deduction framework
(Pereira and Warren, 1983) to describe the pars-
ing algorithms of our proposed models.

2For some datasets requiring the use of gold POS tags, we
additionally concatenate the POS tag embedding to obtain ei
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Figure 2: Deduction rules for our modified Eisner-Satta algorithm (Eisner and Satta, 1999). Our modifications are
highlighted in red. All deduction items are annotated with their scores. Note that “finished” spans are marked by
double underlines, whereas “unfinished’ spans take the original triangle notations.
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Figure 3: Deduction rules for our modified Eisner algorithm (Eisner, 1997) (first two rows) and its second-order
extension (McDonald and Pereira, 2006) (all rows). Our modifications are highlighted in red. All deduction items
are annotated with their scores. Note that “finished” (in)complete spans are marked by double underlines.

3.1 O(n4) modified Eisner-Satta algorithm
In this case, we combine first-order graph-based
parsing and headed-span-based parsing. The score
of a dependency tree y is defined as:

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(li,ri,xi)∈y

s
span
li,ri,i

We adapt the Eisner-Satta algorithm for pars-
ing. The O(n4) Eisner-Satta algorithm (Eisner and

Satta, 1999, Sec. 3) is originally defined with bilex-
icalized PCFGs. Still, we can leverage its dynamic
programming substructure to incorporate both arc
scores and headed span scores, similar to the rela-
tionship between span-based constituency parsing
(Stern et al., 2017) and PCFG parsing. The ax-

iom items are
i i i

with initial score 0 and
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the deduction rules are listed in Fig. 2. Unlike
the original Eisner-Satta algorithm, we distinguish
between “finished” spans and “unfinished” spans.
An “unfinished” span can absorb a child span to
form a larger span, while in a “finished” span, the
headword has already generated all its children,
so it cannot expand anymore and corresponds to
a headed-span for the given headword. By explic-
itly distinguishing between “unfinished“ spans and
“finished“ spans, we can incorporate headed-span
scores sspan into parsing via the newly introduced
rule FINISH. We then modify the rule L-LINK
and R-LINK accordingly as only a “finished” span
can be attached.

3.2 O(n3) modifed Eisner algorithm
In order to decrease the parsing time complexity
from O(n4) to O(n3), we decompose sspan

l,r,i into
two terms:

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(li,ri,xi)∈y

(sleft
i,li

+ s
right
i,ri

)

and modify the Eisner algorithm accordingly. The

axiom items are
i i

and
i i

with initial

score 0 and the deduction rules are shown in the
first two rows of Fig. 3. Similar to the case in the
previous subsection, the original Eisner algorithm
does not distinguish between “finished” complete
spans and “unfinished” complete spans. An “unfin-
ished” complete span can absorb another complete
span to form a larger incomplete span, while a “fin-
ished” complete span has no more child in the given
direction and thus cannot expand anymore. We in-
troduce new rules L-FINISH and R-FINISH to
incorporate the left or right span boundary scores
respectively, and adjust other rules accordingly.

3.3 O(n3) modified second-order Eisner
algorithm

We further enhance the model with adjacent sibling
information:

s(y) =
∑

(xi→xj)∈y

sarc
i,j +

∑
(xi→{xj ,xk})∈y

ssib
i,j,k

+
∑

(li,ri,xi)∈y

(sleft
i,li

+ s
right
i,ri

)

where for each adjacent sibling part xi → {xj , xk},
xj and xk are two adjacent dependents of xi.

Similarly, we modify the second-order extension
of the Eisner algorithm (McDonald and Pereira,

2006) by distinguishing between “unfinished” and
“finished” complete spans. The additional deductive
rules for second-order parsing are shown in the last
row of Fig. 3 and the length of the “unfinished”
complete span is forced to be 1 in the rule L-LINK
and R-LINK.

4 Experiments

4.1 Setup

We conduct experiments on in Penn Treebank
(PTB) 3.0 (Marcus et al., 1993), Chinese Treebank
(CTB) 5.1 (Xue et al., 2005) and 12 languages on
Universal Dependencies (UD) 2.2. Implementation
details are shown in appendix A. The reported re-
sults are averaged over three runs with different
random seeds.

4.2 Main result

Table 1 and 2 show the results on UD, PTB
and CTB respectively. We additionally reim-
plement Biaffine+2O+MM by replacing the
TreeCRF loss of Zhang et al. (2020) with the
max-margin loss for fair comparison. We
refer to our proposed models as 1O+Span
(§3.1), 1O+Span+Headsplit (§3.2), and
2O+Span+Headsplit (§3.3) respectively.

We draw the following observations. (1) Second-
order information is still helpful even with powerful
encoders (i.e., BERT). Biaffine+2O+MM out-
performs Biaffine+MM in almost all cases.
(2) Combining first-order graph-based and
headed-span-based methods is effective. Both
1O+Span and 1O+Span+Headsplit beat
Biaffine+MM, Span in almost all cases; have
similar performance to Biaffine+2O+MM. (3)
Decomposing the headed-span scores is useful.
1O+Span+Headsplit has similar performance
to 1O+Span while manages to decrease the
parsing complexity from O(n4) to O(n3). We
speculate that powerful encoders mitigate the
issue of independent scoring. (4) Combining
second-order graph-based and headed-span-based
methods has marginal effects. We speculate that
the utility of adjacent sibling information and
headed span information is overlapping.

4.3 Error analysis

Following (McDonald and Nivre, 2011), we plot
UAS as a function of sentence length; F1 scores as
functions of distance to root and dependency length
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bg ca cs de en es fr it nl no ro ru Avg

+BERTmultilingual

Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Span 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
1O+Span 91.44 94.54 92.68 85.75 91.23 93.84 91.67 94.97 91.81 94.35 87.17 94.49 91.99
1O+Span+Headsplit 91.46 94.53 92.63 85.78 91.25 93.77 91.91 94.88 91.59 94.18 87.45 94.47 91.99

Biaffine+2O+MM 91.58 94.48 92.69 85.72 91.28 93.80 91.89 94.88 91.30 94.23 87.55 94.55 92.00
2O+Span+Headsplit 91.82 94.58 92.59 85.65 91.28 93.86 91.80 94.75 91.50 94.40 87.71 94.51 92.04

For reference

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61

Table 1: Labeled Attachment Score (LAS) on twelves languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means reported by Yang and Tu (2022). MFVI2O: Wang and Tu (2020). Span: Yang and Tu (2022).

PTB CTB
UAS LAS UAS LAS

+BERTlarge +BERTbase

Biaffine+MM† 97.22 95.71 93.18 92.10
Span 97.24 95.73 93.33 92.30
1O+Span 97.26 95.68 93.56 92.49
1O+Span+HeadSplit 97.30 95.77 93.46 92.42
Biaffine+2O+MM 97.28 95.73 93.42 92.34
2O+Span+HeadSplit 97.23 95.69 93.57 92.47

For reference

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47

+XLNetlarge +BERTbase

HPSG[ 97.20 95.72 - -
HPSG+LAL[ 97.42 96.26 94.56 89.28

Table 2: Results on PTB and CTB. [ denotes use of ad-
ditional constituency tree data and thus not comparable
to our work. † denotes results reported by Yang and Tu
(2022). HPSG: Zhou and Zhao (2019); HPSG+LAL:
Mrini et al. (2020); HierPtr: Fernández-González and
Gómez-Rodríguez (2021).

on the CTB test set. We also follow (Yang and Tu,
2022) to plot F1 score as a function of span length.

Fig. 4a shows that compared with first-order
graph-based method (i.e., Biaffine+MM), headed-
span-based method (i.e., Span) has an advantage
in predicting long sentences (of length > 30) but
has a difficulty in predicting short sentences (of
length < 20). By combining first-order graph-based
and headed-span-based methods, 1O+Span can
predict both short and long sentences correctly. It
achieves the best results for all sentence length
intervals except for 30-39. Fig. 4b shows that
1O+Span achieves the best performance for almost
all cases, indicating its strong ability in predicting
complex subtrees with high tree depth. Also, Fig.
4c shows that 1O+Span achieves the best perfor-
mance for almost all cases, especially for depen-
dency arcs of length ≥ 6, showing its ability in
capturing long-range dependencies. Fig. 4d shows
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Figure 4: Error analysis on the CTB test set.

that Span has the best performance in identifying
the range of a subtree, although it has no direct
relation to the final performance.

5 Conclusion

In this paper, we have studied different ways to
combine graph-based and headed-span-based meth-
ods. We found that applying the head-splitting trick
can retain the cubic parsing complexity and mean-
while improve parsing performance when combin-
ing first-order graph-based and headed-span-based
methods. We also confirmed the effectiveness
of second-order parsing, however, we observed
marginal or no improvement when combining it
with the headed-span-based method.
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A Implementation details

We use "bert-large-cased" for PTB, "bert-base-
chinese" for CTB, and "bert-multilingual-cased"
for UD. We set the hidden size of BiLSTM to
1000. We set the hidden size of biaffine functions
to 600/300 for spans,arcs/labels. We set the hid-
den size of triaffine functions to 400. We add a
dropout layer after the embedding layer, LSTM
layers, and MLP layers with dropout rate 0.33. We
use Adam (Kingma and Ba, 2015) as the optimizer
with β1 = 0.9, β2 = 0.9 to train our model for
10 epochs with gradient clipping of 5. The max-
imal learning rate is lr = 5e − 5 for BERT and
lr = 25e − 5 for other components. We linearly
warmup the learning rate to their maximal value
for the first epoch and gradually decay them to zero
for the rest of the epochs. We batch sentences of
similar lengths so that the token number is 4000
for each batch.
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