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Abstract

Relations between words are governed by hi-
erarchical structure rather than linear ordering.
Sequence-to-sequence (seq2seq) models, de-
spite their success in downstream NLP appli-
cations, often fail to generalize in a hierarchy-
sensitive manner when performing syntactic
transformations—for example, transforming
declarative sentences into questions. However,
syntactic evaluations of seq2seq models have
only observed models that were not pre-trained
on natural language data before being trained
to perform syntactic transformations, in spite
of the fact that pre-training has been found to
induce hierarchical linguistic generalizations
in language models; in other words, the syn-
tactic capabilities of seq2seq models may have
been greatly understated. We address this gap
using the pre-trained seq2seq models T5 and
BART, as well as their multilingual variants
mT5 and mBART. We evaluate whether they
generalize hierarchically on two transforma-
tions in two languages: question formation
and passivization in English and German. We
find that pre-trained seq2seq models general-
ize hierarchically when performing syntactic
transformations, whereas models trained from
scratch on syntactic transformations do not.
This result presents evidence for the learnabil-
ity of hierarchical syntactic information from
non-annotated natural language text while also
demonstrating that seq2seq models are capable
of syntactic generalization, though only after
exposure to much more language data than hu-
man learners receive.

1 Introduction

Human language is structured hierarchically. In
NLP tasks like natural language inference, syn-
tactic competence is a prerequisite for robust gen-
eralization (e.g., McCoy et al., 2019). Probing
studies have found that masked language models
(MLMs) contain hierarchical representations (Ten-
ney et al., 2019; Hewitt and Manning, 2019; Clark

Figure 1: The poverty of the stimulus experimental de-
sign. We fine-tune pre-trained seq2seq models and train
small seq2seq models from scratch to perform syntac-
tic transformations. The training set contains ambigu-
ous examples consistent with hierarchical and linear
transformation rules. The generalization set contains
examples where only the hierarchical rule results in the
correct output. Pre-trained models generalize using the
hierarchical rule, while models trained from scratch gen-
eralize using the linear rule.

et al., 2019), while behavioral studies of recurrent
neural language models (Linzen et al., 2016; Mar-
vin and Linzen, 2018; Wilcox et al., 2018; van Schi-
jndel et al., 2019) and MLMs (Goldberg, 2019; Hu
et al., 2020) have found that models are largely able
to capture long-range syntactic dependencies that
require hierarchical representations of sentences.

Recent evidence suggests that MLMs like BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) can learn to make hierarchical linguistic gen-
eralizations through exposure to text (Warstadt and
Bowman, 2020), though acquiring many of these
linguistic generalizations requires large amounts of
data (Warstadt et al., 2020). However, this evidence
comes from binary acceptability judgment tasks,
where a classifier head is attached to an MLM and
the model is fine-tuned to classify which sentence
in a given minimal pair is consistent with a hi-
erarchical linguistic generalization, rather than a
positional surface heuristic. Consider the following
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two transformations of Example (1):

(1) The yak that your unicorns have amused hasn’t
entertained a newt.
a. Hasn’t the yak that your unicorns have

amused entertained a newt?
b. *Have the yak that your unicorns amused

hasn’t entertained a newt?

Example (1a) correctly forms the question by mov-
ing the main auxiliary verb to the front of the sen-
tence, while (1b) relies on the incorrect positional
heuristic that the first auxiliary in the declarative
sentence should be moved to the front of the sen-
tence. When differentiating grammatical and un-
grammatical auxiliary movements, a model could
rely on distributional information (Lewis and El-
man, 2001) such as bigram heuristics (Reali and
Christiansen, 2005; Kam et al., 2008) to make cor-
rect judgments in many cases, so high performance
on binary classification tasks may overstate the syn-
tactic competence of a model.

By contrast, performing a syntactic trans-
formation—e.g., given a declarative sentence like
Example (1) as input, transforming it into a polar
question like (1a)—is more difficult. It requires
multiple complex but systematic operations that
rely on hierarchical structure, including movement,
number agreement, and—in languages that have
grammatical case, such as German—case reinflec-
tion. Evaluations of syntactic transformational
abilities can therefore act as more targeted behav-
ioral indicators of syntactic structural representa-
tions in neural models. McCoy et al. (2018) evalu-
ate non-pre-trained recurrent sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014) on the
question formation task, finding that they rely on
linear/positional surface heuristics rather than hier-
archical structure to perform this syntactic transfor-
mation. More recent studies have also exclusively
considered recurrent seq2seq models and Trans-
former models (Petty and Frank, 2021) trained
from scratch on other transformations like tense
reinflection (McCoy et al., 2020) and passiviza-
tion (Mulligan et al., 2021), finding similar results.
These studies were designed to understand the in-
ductive biases of various seq2seq architectures,
which is why they do not pre-train the models on
non-annotated natural language data before train-
ing them to perform syntactic transformations.

In this study, we create German datasets and
modify English datasets for evaluating the induc-

tive biases of pre-trained models. We use these
datasets to analyze performance in monolingual
and zero-shot cross-lingual settings. Further, we
analyze how pre-trained models perform syntac-
tic transformations. Our findings indicate that pre-
trained models generally perform syntactic transfor-
mations in a hierarchy-sensitive manner, while non-
pre-trained models (including randomized-weight
versions of pre-trained models) rely primarily on
linear/positional heuristics to perform the transfor-
mations. This finding presents additional evidence
to Warstadt et al. (2020) and Warstadt and Bowman
(2020) for the learnability of hierarchical syntactic
information from natural language text input. Our
code and data are publicly available.1

2 Syntactic Transformations

2.1 Languages

We evaluate on syntactic transformations in English
and German. We choose English to allow for com-
parisons to previous results (McCoy et al., 2018;
Mulligan et al., 2021). We further extend our eval-
uations to German because it exhibits explicit case
marking on determiners and nouns; this typological
feature has been found to increase the sensitivity of
language models to syntactic structure (Ravfogel
et al., 2019). This allows us to compare transforma-
tional abilities for languages with different levels
of surface cues for hierarchy.

2.2 Tasks

We employ a poverty of the stimulus experimental
design (Wilson, 2006), where we train the model
on examples of a linguistic transformation that are
compatible with either a hierarchical rule or a lin-
ear/positional rule, and then evaluate the model on
sentences where only the hierarchical rule leads to
the generalization pattern that is consistent with
the grammar of the language (Figure 1).2 In other
words, we are interested in whether T5 and mT5
(henceforth, (m)T5), as well as BART and mBART
(henceforth, (m)BART), demonstrate a hierarchi-
cal inductive bias,3 unlike the linear inductive bias
displayed in prior work by non-pre-trained models.

1https://github.com/sebschu/
multilingual-transformations

2There are other rules that could properly transform the
stimuli we use, but we find that the models we test do learn
one of these rules or the other.

3When multiple generalizations are consistent with the
training data, “inductive bias” refers to a model’s choice of
one generalization over others.
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Train, dev, test Generalization

Structure Question Formation Passivization

No RC/PP quest: some xylophones have remembered my yak.
→ have some xylophones remembered my yak?

passiv: your quails amused some vulture.
→ some vulture was amused by your quails.

RC/PP on object quest: my zebras have amused some walrus who has waited.
→ have my zebras amused some walrus who has waited?

passiv: some tyrannosaurus entertained your quail behind your newt.
→ your quail behind your newt was entertained by some tyrannosaurus.

RC/PP on subject quest: my vultures that our peacock hasn’t applauded haven’t read.
→ haven’t my vultures that our peacock hasn’t applauded read?

passiv: the zebra upon the yak confused your orangutans.
→ your orangutans were confused by the zebra upon the yak.

Table 1: The distribution of syntactic structures in the train, test, and generalization sets. To expose the model to
all structures during training and fine-tuning, we also include identity transformations for all structures using the
“decl:” prefix, where the input and output sequences are the same declarative or active sentence (see §3.1). We use
the test set to evaluate whether models have learned the task on in-distribution examples, and the generalization set
to evaluate whether models generalize hierarchically. See Appendix A for example sentences in German.

We focus on two syntactic transformation tasks:
question formation and passivization. See Table 1
for a breakdown of which structures we present to
the model during training and which we hold out
to evaluate hierarchical generalization. See Table 2
for examples of hierarchical and linear generaliza-
tions for each transformation.

Question formation. In this task, a declarative
sentence is transformed into a polar question by
moving the main (matrix) auxiliary verb to the
start of the sentence; this hierarchical rule is called
MOVE-MAIN. The linear rule, MOVE-FIRST, en-
tails moving the linearly first auxiliary verb to the
front of the sentence. Examples of both rules are
provided in Figure 1 and Example (1). We train the
model on sentences with no relative clauses (RCs)
or with RCs on the object, where the first auxiliary
verb is always the matrix verb. Disambiguating
examples are those which place RCs on the sub-
ject, where the matrix auxiliary verb is the linearly
second auxiliary in the sentence.

In English, we use the auxiliaries “has”, “hasn’t”,
“have”, and “haven’t”, with past participle main
verbs (e.g., “have entertained”, “has amused”). We
use affirmative and negative forms to distinguish
between the multiple auxiliaries: exactly one of
the auxiliaries in such sentences is negative and the
other is positive (counterbalanced across examples).
As a result, we can determine whether the induced
mapping is linear or hierarchical. In German, nega-
tion is realized as a separate word that is not fronted
with the auxiliary. To distinguish the multiple aux-
iliaries, we therefore use the modal “können” (can)
along with the auxiliary “haben” (have), together
with infinitival or past participle main verbs as ap-
propriate. This allows us to distinguish models
with a hierarchical bias from those with a linear
bias on the basis of the fronted auxiliary.

Passivization. In this task, an active sentence is
transformed into a passive sentence by moving the
object noun phrase (NP) to the front of the sentence
(MOVE-OBJECT). Our training examples are also
compatible with a linear rule, MOVE-SECOND, in
which the linearly second NP moves to the front of
the sentence. We train on sentences with no prepo-
sitional phrases (PPs) or with PPs modifying the
object, where the second NP is always the object.
Disambiguating examples are those which place
prepositional phrases (PPs) on the subject, where
the object is the linearly third NP in the sentence.

Passivization additionally requires other move-
ments, insertions, tense reinflection, and (for Ger-
man) case reinflection. In Examples (2) and (3)
below, the object (in blue) is fronted; ‘be’/‘werden’
(in red) is inserted and inflected to agree with the
fronted NP; the original subject NP (in brown) is
moved to a ‘by’/‘von’ phrase after the inserted verb;
and the main verb (in orange) is reinflected to be
a past participle or infinitive. In German, the case
of the NPs (reflected largely in the determiners)
must be reinflected, and the main verb needs to be
moved to the end of the sentence.

(2) English Passivization:
a. Your quails amused some vulture.
b. Some vulture was amused by your quails.

(3) German Passivization:
a. Ihr

Your.NOM
Esel
donkey

unterhielt
entertained

meinen
my.ACC

Salamander.
salamander.

b. Mein
My.NOM

Salamander
salamander

wurde
was

von
from

ihrem
your.DAT

Esel
donkey

unterhalten.
entertained.
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Input Output (hierarchical) Output (linear)

quest: My unicorn that hasn’t amused
the yaks has eaten.

Has my unicorn that hasn’t amused the yaks
eaten?

Hasn’t my unicorn that amused the yaks
has eaten?

quest: Die Hunde, die deine Löwen be-
wundern können, haben gewartet.

Haben die Hunde, die deine Löwen bewun-
dern können, gewartet?

Können die Hunde, die deine Löwen
bewundern, haben gewartet?

passiv: Her walruses above my uni-
corns annoyed her quail.

Her quail was annoyed by her walruses
above my unicorns.

My unicorns were annoyed by her wal-
ruses.

passiv: Unsere Papageie bei meinen Di-
nosauriern bedauerten unsere Esel.

Unsere Esel wurden von unseren Papageien
bei meinen Dinosauriern bedauert.

Meine Dinosaurier wurden von un-
seren Papageien bedauert.

Table 2: Examples from the generalization set with hierarchical- and linear-rule transformations. Glossed German
examples are provided in Appendix A.

3 Experimental Setup

3.1 Data

We modify and supplement the context-free gram-
mar of McCoy et al. (2020) to generate our training
and evaluation data.4 For each transformation, our
training data consists of 100,000 examples with
an approximately 50/50 split between identity ex-
amples (where the input and output sequences are
the same) and transformed examples. The identity
examples include the full range of declarative or ac-
tive structures (including sentences with RCs/PPs
on subjects), thereby exposing the network to the
full range of input structures we test. For the trans-
formed examples, however, training data includes
only examples with no RCs/PPs or RCs/PPs on
the object NP—i.e., cases that are compatible with
both the hierarchical and linear rules. We also gen-
erate development and test sets consisting of 1,000
and 10,000 examples, respectively, containing sen-
tences with structures like those used in training;
these are for evaluating in-distribution transforma-
tions on unseen sentences.

For each transformation, we also generate a gen-
eralization set consisting of 10,000 transformed ex-
amples with RCs/PPs on the subject NP. For such
examples, models relying on the linear rules will
not generalize correctly.

3.2 Models

We experiment with T5 (Raffel et al., 2020) and
BART (Liu et al., 2020), two English pre-trained
sequence-to-sequence models. We also experiment
with their multilingual variants mT5 (Xue et al.,
2021) and mBART (Liu et al., 2020).5 These are

4We generate our evaluation set such that it consists of
grammatical but semantically improbable sentences which
are unlikely to occur in a natural language corpus. This is to
alleviate the confound of token collocations in the pre-training
corpus.

5We use HuggingFace implementations (Wolf et al., 2020).

12-layer Transformer-based (Vaswani et al., 2017)
architectures with bidirectional encoders and au-
toregressive decoders. While we use the base sizes
of (m)T5, we use the large sizes of (m)BART to
keep the sizes of the models similar.

When fine-tuning (m)T5 and (m)BART, we use
task prefixes in the source sequence. We use
“quest:” for question formation and “passiv:” for
passivization. As in previous work, we also in-
clude identity transformation examples (prefixed
with “decl:”), i.e., examples for which the model
has to output the unchanged declarative or active
sentence. When training seq2seq baselines from
scratch, we follow McCoy et al. (2020) and append
the task markers to the end of the input sequence.

For fine-tuning on syntactic transformations, we
use batch size 128 and initial learning rate 5×10−5.
We fine-tune for 10 epochs and evaluate every 500
iterations. We find that the validation loss generally
converges within 1–2 epochs.

To confirm the finding of McCoy et al. (2020)
and Petty and Frank (2021) that non-pre-trained
models fail to generalize hierarchically, we also
train baseline seq2seq models similar to the models
used in those studies. We implement 1- and 2-layer
LSTM-based seq2seq models, as well as 1- and
2-layer Transformer-based seq2seq models where
the Transformers have 4 attention heads.6 We find
that the 1-layer models consistently achieve higher
sequence accuracies on the dev sets, so we focus
on the 1-layer baselines. We re-use all hyperparam-
eters from McCoy et al. (2020). All baseline scores
are averaged over 10 runs.

3.3 Metrics

For all transformations, we are primarily interested
in sequence accuracy: is each token in the tar-

6Our implementations are based on the syntactic-
transformation-focused transductions repository: https:
//github.com/clay-lab/transductions
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Question Formation Passivization

Model English German English German

LSTM 0.95 0.94 0.97 0.97
Transformer 0.95 0.93 0.98 0.98

T5 1.00 – 1.00 –
mT5 1.00 1.00 1.00 1.00
BART 0.96 – 0.95 –
mBART 1.00 1.00 1.00 1.00

Table 3: Sequence accuracies on the (in-distribution)
test sets for English and German syntactic transforma-
tions. All models learn the in-distribution transforma-
tions.

Question Formation Passivization

Model English German English German

LSTM 0.11 0.33 0.05 0.44
Transformer 0.07 0.05 0.04 0.07

T5 0.87 – 1.00 –
mT5 0.99 1.00 1.00 1.00
BART 0.96 – 1.00 –
mBART 0.59 0.82 0.80 0.98

Table 4: Main auxiliary accuracies (for question forma-
tion) or object noun accuracies (for passivization) on the
generalization sets for English and German syntactic
transformations. Only pre-trained models generalize
hierarchically.

get sequence present in the proper order in the
predicted sequence? However, it is possible that
models could generalize hierarchically while mak-
ing some other mistake, so we also use two more
relaxed metrics. For question formation, we use
main auxiliary accuracy, which evaluates whether
the correct auxiliary was moved to the front of the
sentence. The first word in the target sequence is al-
ways the main auxiliary verb, so we calculate main
auxiliary accuracy by checking if the first word
is the same in the predicted and target sequences.
For passivization, we use object noun accuracy,
which measures whether the correct object noun
was moved to the subject position. The second
word in the target sequence is always the original
object noun, so we calculate object noun accuracy
by checking if the second word is the same in the
predicted and target sequences.

4 Results

All models learn the in-distribution transfor-
mations. We first present results on unseen sen-
tences whose structures were seen in training,
where both the hierarchical and the linear rules

result in correct generalization (Table 3). All
models perform well in this setting, including
the LSTM- and Transformer-based models trained
from scratch. However, (m)T5 converges to higher
sequence accuracies than the non-pre-trained mod-
els. Additionally, while the non-pre-trained models
require about 15–20 epochs of training to converge
to a high score, (m)T5 and (m)BART converge to
near-perfect sequence accuracy after only a fraction
of an epoch of fine-tuning.

Only pre-trained models generalize hierarchi-
cally. Evaluations on the generalization-set ex-
amples (where the linear rule leads to incorrect
generalization) reveal that none of the trained-from-
scratch models have learned the hierarchical rule.
These models consistently stay at or near 0% se-
quence accuracy on the generalization set through-
out training, so we present main auxiliary/object
noun accuracies (Table 4). Accuracy remains low
even on these more forgiving metrics, indicating
that the non-pre-trained models have not acquired
the hierarchical rules.

Low accuracies do not necessarily indicate
reliance on the linear MOVE-FIRST or MOVE-
SECOND rules. To test whether the non-pre-trained
models have learned the linear rules, we imple-
ment metrics which calculate the proportion of
generalization-set examples for which the MOVE-
FIRST rule (for question formation) or MOVE-
SECOND rule (for passivization) were used; we
refer to these as the move-first frequency and move-
second frequency, respectively. For each model and
language, the sum of the main auxiliary accuracy
and move-first frequency for question formation is
≈ 1.0; the sum of the object noun accuracy and
move-second frequency for passivization is also
≈ 1.0. Thus, where the model did not move the
main auxiliary or object noun, it generally used the
linear rule. In other words, the non-pre-trained
models demonstrate linear inductive biases. This
finding is in line with prior evaluations of non-pre-
trained seq2seq models (McCoy et al., 2020; Mul-
ligan et al., 2021; Petty and Frank, 2021).7

By contrast, (m)T5 and (m)BART achieve very
high main auxiliary/object noun accuracies on the
generalization sets. mBART struggles with En-

7Nonetheless, higher accuracies on German transforma-
tions support the hypothesis that more explicit cues to syn-
tactic structure (here, case-marked articles and nouns) allow
models to learn hierarchical syntactic generalizations more
easily. This agrees with the findings of Ravfogel et al. (2019)
and Mueller et al. (2020).

1356



Figure 2: Accuracies at every 500 fine-tuning iterations across 10 epochs of fine-tuning on each syntactic trans-
formation. Xs indicate mean accuracies across epochs. T5 models are generally better at performing syntactic
transformations than BART models. Monolingual models tend to achieve higher accuracies than multilingual
models. We present full learning curves in Appendix B.

glish question formation, achieving an average 59%
main auxiliary accuracy throughout fine-tuning.
However, it does achieve a maximum accuracy
>90%, indicating that it is capable of hierarchi-
cal generalization after observing certain training
examples. These accuracies are still well above the
≈0% accuracies of the non-pre-trained models.

Because sequence accuracy on the generalization
set is often unstable for all pre-trained models, we
present plots showing the distribution of accuracies
sampled at every 500 fine-tuning iterations through-
out 10 epochs of fine-tuning (Figure 2). Each pre-
trained model learns the in-distribution transforma-
tion before the first 500 iterations of fine-tuning,
so each plotted accuracy can be taken as indicative
of model preferences after they have learned the
transformations. (m)T5’s sequence accuracies are
generally close to 100% for all transformations ex-
cept German passivization; this is far better than
the non-pre-trained models’ 0% sequence accu-
racies. (m)BART struggles more with syntactic
transformations as indicated by its lower average
accuracies, though it is still capable of detecting the
correct auxiliaries and objects to move as indicated
by the high maximum main auxiliary and object
noun accuracies in Figure 2. This indicates that
pre-trained seq2seq models demonstrate a hier-
archical inductive bias, and that they can quickly
learn syntactic transformations.

There are two main differences between the two
classes of models we test: (m)T5 and (m)BART are
not only pre-trained, but are also much deeper and
much more parameterized than our non-pre-trained
models. Are hierarchical inductive biases a feature
of deep architectures, then, or are they acquired dur-
ing pre-training? To control for pre-training while
keeping the model size consistent, we randomize
the weights of mT5 (the better-performing model)

Question Formation Passivization

Model English German English German

T5 0.48 – 0.25 –
mT5 0.50 0.44 0.25 0.50
BART 0.40 – 0.30 –
mBART 0.48 0.38 0.29 0.44

Table 5: Maximum main auxiliary and object noun accu-
racies through 500 epochs of fine-tuning after random-
izing the weights of each pre-trained model. Sequence
accuracies remain near 0 throughout fine-tuning.

and fine-tune for up to 500 epochs using an initial
LR8 of 5 × 10−4. For all of the transformations,
the maximum accuracies of the randomized mod-
els are much lower than the average accuracies of
the pre-trained models (Table 5), which suggests
that the deeper architecture on its own does not
lead to structure-sensitive generalizations. This in
return indicates that pre-trained models do not
start with a hierarchical inductive bias; they ac-
quire it through pre-training, extending the find-
ings of Warstadt and Bowman (2020) to generative
sequence-to-sequence models. However, as indi-
cated by the non-zero main auxiliary/object noun
accuracies, the randomly initialized mT5 models
do not exhibit a consistent linear generalization
either—unlike the 1-layer non-pre-trained models.
This may be due to the large number of parameters
compared to the size of the transformations train-
ing corpus. A randomly initialized model of this
size would likely need orders of magnitude more
training data to learn stable generalizations.

Each pre-trained model almost always chooses
the correct auxiliary/object to move; what errors

8We tune over learning rates ∈ 5× 10{−2,−3,−4,−5} for
the randomized models, finding that 5× 10−4 yields the best
main auxiliary and object noun accuracies on in-domain eval-
uations.
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account for their sub-perfect sequence accuracies,
then? We perform a detailed error analysis, finding
that pre-trained models drop PPs from the second
noun phrase but otherwise perform many complex
hierarchy-sensitive transformations properly. See
Appendix C for details.

5 Transformation Strategies

Our results indicate that pre-trained seq2seq mod-
els can consistently perform hierarchy-sensitive
transformations. What strategy do they follow to
do this? Because pre-training corpora include ac-
tives, passives, declaratives, and questions, model
representations could encode these high-level sen-
tence features.9 Thus, one strategy could be to
learn a mapping between abstract representations
of different sentence structures (REPRESENTATION

strategy). Alternatively, models could learn to cor-
rectly identify the relevant syntactic units in the
input, and then learn a “recipe” of steps leading to
the correct transformations (RECIPE strategy).

To distinguish which strategy models use to per-
form syntactic transformations, we observe cross-
lingual zero-shot transfer on syntactic transforma-
tions. We exploit that English and German use the
same operations for question formation, whereas
passivization in German involves the additional
steps of case reinflection and moving the main verb.
If structural representations are shared across En-
glish and German,10 we do not expect divergent
behaviors for question formation and passivization:
if a model employs the REPRESENTATION strategy,
then after fine-tuning on only English passivization,
it should also correctly perform German passiviza-
tion, including the additional steps of case reinflec-
tion and moving the main verb. Conversely, if it
employs the RECIPE strategy, we expect a model
trained on English passivization to only perform
the steps that are required for English passivization,
resulting in incorrect case marking and no main
verb movement in German.

We first verify that mT5 and mBART are capable
of cross-lingual transfer by training a model on the
English question formation task and evaluating on
German. In early experiments, we noticed the issue
of “spontaneous translation” (Xue et al., 2021); we

9For example, (sets of) neuron activations have been found
to encode syntactic features in MLMs (Ravfogel et al., 2021;
Finlayson et al., 2021; Hernandez and Andreas, 2021).

10Shared cross-lingual structural representations have been
found for multilingual MLMs (Chi et al., 2020), and we pro-
vide further evidence for shared representations in this section.

Figure 3: Learning curves for mT5 on German trans-
formations after fine-tuning on English/German identity
examples and English transformations. We show ac-
curacies for German question formation with RCs on
objects (top left) and RCs on subjects (top right), as
well as accuracies for German passivization with PPs
on objects (bottom left) and PPs on subjects (bottom
right).

therefore also include German identity transforma-
tions in the training data to train the decoder to also
output German sentences.

As the top two panels of Figure 3 show, mT5
can correctly perform German question formation
on in-domain structures (RCs on objects) after be-
ing exposed only to English transformations. For
out-of-domain structures (RCs on subjects), mT5
almost always moves the main auxiliary but almost
never deletes it from its original position, result-
ing in lower sequence accuracies. Apart from this
error, the model is capable of cross-lingual trans-
fer on the question formation task. By contrast,
mBART achieves poor results on zero-shot German
question formation, so we cannot make conclusive
arguments using this approach; see Appendix D.

Given that cross-lingual transfer is possible for
mT5, how does the model behave in the passiviza-
tion task, which differs between English and Ger-
man? We fine-tune mT5 on English passivization
(as well as German identity transformations on ac-
tive sentences). The results of this experiment (the
lower two panels in Figure 3) show that the model
is still able to move the main object to the subject
position, but also that it never correctly performs
German passivization in its entirety. This is be-
cause the model performs exactly the same steps
for German sentences as for English sentences, re-
sulting in outputs with English syntax:
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(4) Meinen
My.ACC

Kater
cat

bei
by

ihrem
your.DAT

Molch
newt

was
was

verwirrten
confused.PAST

by
by

die
the.NOM

Esel.
donkeys.

These behavioral patterns suggest that mT5 em-
ploys the RECIPE strategy: it succeeds if a transfor-
mation’s required operations are the same across
languages (as for question formation) but fails if the
steps differ (as for passivization). Even in passiviza-
tion, however, the model still learns to move the
correct NPs, which provides additional evidence
that mT5 makes use of structural features when
performing transformations. Given the similarities
between mT5’s and mBART’s architectures and
training setups, one could reasonably presume that
mBART may follow a similar strategy to perform
syntactic transformations; nonetheless, mBART
is less consistent in performing syntactic transfor-
mations, so this method cannot present strong evi-
dence for use of the RECIPE strategy for that model.

6 Corpus Analysis

Pre-trained models learn to use hierarchical fea-
tures for performing syntactic transformations. Is
this because there is explicit supervision for the
hierarchical rules in the pre-training corpora? In
other words, are there disambiguating examples
in these models’ training corpora that helps them
memorize hierarchical transformation patterns?
Here, we focus on English question formation ex-
amples in mT5’s training corpus.11 Disambiguat-
ing examples would be rare, as a single pre-training
context window must contain a declarative sen-
tence as well as the same sentence transformed into
a question; humans would tend to replace at least
some of the constituents with pronouns or delete
them (e.g., Ariel, 2001). It would also require the
MOVE-FIRST rule to not correctly transform the
sentence—and for at least one of the auxiliaries to
be noised in one sentence but not the other, such
that the auxiliary has to be recovered from the other
sentence. For example:

(5) . . . Has this company which hasn’t had any le-
gal violations been reported to the Better Busi-
ness Bureau? This company which hasn’t had
any legal violations <X> been reported to the
Better Business Bureau. . .

11mT5 outperforms mBART. If disambiguating contexts in
the pre-training data lead to syntactic generalizations, then
we expect these examples to be more likely in mT5’s training
corpus.

We search for English disambiguating question for-
mation examples. To this end, we sample 5M En-
glish documents from mT5’s training corpus mC4,
segmenting each document into sentences using
spaCy.12 This yields 118.3M sentences. We exam-
ine each pair of adjacent sentences in each docu-
ment, manually inspecting any sentence pair meet-
ing the following criteria: (1) the token Jaccard sim-
ilarity of the sentences is > 0.7; (2) one sentence
begins with an auxiliary verb and the other does
not; (3) there are at least two distinct auxiliaries
in both sentences. There are 277 sentence pairs in
our sample that met all criteria, of which 13 are
adjacent declarative/question pairs that are equiv-
alent except for the fronted auxiliary. Thus, the
probability of an equivalent declarative/question
pair with two auxiliaries in mC4 is ≈ 1.1× 10−7.
As T5’s and mBART’s training corpora consist of
data from similar webtext distributions, it is likely
that these structures exist in those corpora as well.

Crucially, however, none of the declara-
tive/question pairs were disambiguating examples:
each pair was consistent with the linear MOVE-
FIRST rule. What is the probability of a disam-
biguating example, then? If we assume that the
probability of a sentence containing an RC on
the subject is independent from the probability
of a declarative/question sentence pair, we can
take the product of both probabilities to obtain
an estimate. From the same sample of 118.3M
sentences, we use spaCy’s dependency parser to
extract sentences containing an RC on the sub-
ject and where at least one auxiliary verb appears
in the sentence. We obtain 526, 944 such sen-
tences, meaning that the probability of an RC on
a subject in an auxiliary-containing sentence in
mC4’s English corpus is ≈ 4.5 × 10−3. Thus,
the probability of declarative/question pair with
an RC on the subject and auxiliary in the RC is
≈ (4.5×10−3)·(1.1×10−7) = 4.95×10−10. mT5
is trained on up to 1T tokens of data, and 5.67%
of its documents are English; it therefore observes
≈ 56.7B English tokens. If we optimistically as-
sume that English sentences contain an average
of 15 tokens, it observes 3.78B English sentences.
Then we would expect 3.78B×(4.95×10−10) ≈ 2
disambiguating examples. This is not including
the auxiliary masking criterion, which would make
such examples even less likely.

Thus, while we cannot definitively rule out the

12https://spacy.io
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possibility of disambiguating examples in mC4,
they are rare if they exist in the corpus at all.
Nonetheless, we have found evidence for supervi-
sion on question formation in the form of adjacent
declarative/question sentence pairs, even if they do
not explicitly support the hierarchical rule.

7 Discussion

Our experiments provide evidence that pre-trained
seq2seq models acquire a hierarchical inductive
bias through exposure to non-annotated natural lan-
guage text. This extends the findings of Warstadt
and Bowman (2020) and Warstadt et al. (2020) to
a more challenging generative task, where mod-
els cannot rely on n-gram distributional heuris-
tics (Kam et al., 2008). This also provides addi-
tional evidence that masking and reconstructing
subsets of input sequences is a powerful training
objective for inducing linguistic generalizations,
whether in masked language models like RoBERTa
(Warstadt and Bowman, 2020) or sequence-to-
sequence models. Span denoising ((m)T5’s ob-
jective) appears more effective for learning syntac-
tic transformations than full sequence reconstruc-
tion ((m)BART’s objective) given that (m)T5 is
more consistently able to perform transformations,
though there are too many other differences in train-
ing data and hyperparameters between (m)T5 and
(m)BART for us to be able to directly implicate the
training objective. This hypothesis can be tested ex-
plicitly in future work by training identical models
that differ only in their pre-training objective.

Counter to McCoy et al. (2020), our findings
suggest that hierarchical architectural constraints
(e.g., tree-structured networks) are not necessary
for robust hierarchical generalization as long as
the model has been exposed to large amounts of
natural language text—possibly far more language
than humans would be exposed to. However, one
difference between the randomly initialized models
employed by McCoy et al. (2020) and pre-trained
models is that pre-trained models have likely seen
the structures (but not sentences) present in the gen-
eralization set; thus, rather than relying on syntactic
features, the model could choose the correct trans-
formation because it is more similar to the gram-
matical examples it has already seen. We found
declarative/question pairs in mT5’s training corpus,
but we did not find any examples that explicitly
demonstrated the hierarchical rule for question for-
mation. While we cannot fully rule out the possibil-

ity of disambiguating examples, this strategy is still
unlikely given that pre-trained models produce un-
grammatical transformations, both in monolingual
transformations (e.g., not deleting the main aux-
iliary after copying it to the start of the sentence)
and in cross-lingual German passivization. Addi-
tionally, because we use greedy decoding, models
are not able to take future words into account when
predicting the fronted auxiliary: they must select
the appropriate auxiliary to move solely based on
the encoder’s representations.

More broadly, our findings counter the assump-
tion that a hierarchical constraint is necessary in
language learners to acquire hierarchical general-
ization (Chomsky, 1965). While the pre-trained
models that we considered observe far more input
than a child would receive (Linzen, 2020), Hueb-
ner et al. (2021) recently demonstrated high per-
formance on grammaticality judgments for models
trained on much smaller child-directed speech cor-
pora, suggesting that our findings may also hold
when training models on more human-like input.

8 Conclusions

We have performed an analysis of the syntac-
tic transformational ability of large pre-trained
sequence-to-sequence models. We find that pre-
trained models acquire a hierarchical inductive bias
during pre-training, and that the architecture does
not yield this hierarchical bias by itself.

It remains an open question whether such deep
and highly parameterized models or such large pre-
training datasets are necessary for hierarchical gen-
eralization. Future work could ablate over model
depth and pre-training corpus size to observe the
relative contribution of architecture and the train-
ing set to inducing hierarchical inductive biases in
seq2seq models.
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A German Structures

Here, we present examples of the sentences in the
training, development, test, and generalization sets
for the German question formation and passiviza-
tion tasks (Table 6). As in English, we train the
model on declarative or active sentences, as well
as question-formation or passivization examples
with no RCs/PPs or with RCs/PPs on subjects (i.e.,
sentences that are consistent with the hierarchical
and linear rules described in §3.1). Then we evalu-
ate its generalization on sentences where the linear
rule does not properly transform the sentence.

For further clarity, we present glossed examples
of each German structure below for both tasks.

(6) German Question Formation (no RC):
a. Unsere

Our.NOM
Salamander
salamanders

haben
have

die
the.ACC

Pfaue
peacocks

bewundert.
admired.

"Our salamanders have admired the pea-
cocks."

b. Haben
Have

unsere
our.NOM

Salamander
salamanders

die
the.ACC

Pfaue
peacocks

bewundert?
admired?

"Have our salamanders admired the pea-
cocks?"

(7) German Question Formation (RC on object):
a. Einige

Some.NOM
Molche
newts

können
can

meinen
my.ACC

Papagei,
parrot,

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

nerven.
annoy.
"Some newts can annoy my parrot that can
comfort your ravens."

b. Können
Can

einige
some.NOM

Molche
newts

meinen
my.ACC

Papagei,
parrot,

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

nerven?
annoy?
"Can some newts annoy my parrot that can
comfort your ravens?"

(8) German Question Formation (RC on subject):
a. Ihr

Your.NOM
Hund,
dog,

den
that.ACC

ihr
your.NOM

Geier
vulture

nerven
annoy

kann,
can,

hat
has

einige
some.ACC

Pfauen
peacocks

amüsiert.
amused.
"Your dog that can annoy your vulture has
amused some peacocks."

b. Hat
Has

ihr
your.NOM

Hund,
dog,

den
that.ACC

ihr
your.NOM

Geier
vulture

nerven
annoy

kann,
can,

hat
some.ACC

einige
peacocks

Pfauen
amused?

amüsiert.

"Has your dog that can annoy your vulture
amused some peacocks?"

(9) German Passivization (no PP):
a. Ihr

Your.NOM
Kater
cat

bedauerte
pities

den
the.ACC

Dinosaurier.
dinosaur.
"Your cat pities the dinosaur."

b. Der
The.NOM

Dinosaurier
dinosaur

wurde
was

von
from

ihrem
your.DAT

Kater
cat

bedauert.
pitied.

"The dinosaur was pitied by your cat."

(10) German Passivization (PP on object):
a. Unsere

Our.NOM
Ziesel
ground-squirrels

amüsierten
amuse

einen
a.ACC

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier.
dinosaur.

"Our ground squirrels amuse a cat behind
the dinosaur."

b. Ein
A.NOM

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier
dinosaur

wurde
was

von
from

unseren
our.DAT

Zieseln
ground-squirrels

amüsiert.
amused.
"A cat behind the dinosaur was amused by
our ground squirrels."

(11) German Passivization (PP on subject):
a. Die

The.NOM
Geier
vultures

hinter
behind

meinem
my.DAT

Ziesel
ground-squirrel

akzeptieren
accept

die
the.ACC

Molche.
newts.

"The vultures behind my ground squirrel
accept the newts."

b. Die
The.NOM

Molche
newts

wurden
were

von
from

den
the.DAT

Geiern
vultures

hinter
behind

meinem
my.DAT

Ziesel
ground-squirrel

akzeptiert.
accepted.
"The newts were accepted by the vultures
behind my ground squirrel."

B Learning Curves

Here, we present learning curves for 10 epochs
of fine-tuning for each transformation in each lan-
guage (Figures 4,5,6,7). The accuracies shown
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Train, dev, test Generalization

Question Formation Declarative Question

No RC decl: unsere Salamander haben die
Pfaue bewundert.
→ unsere Salamander haben die Pfaue
bewundert.

quest: ihre Hunde haben unseren Orang-Utan gen-
ervt.
→ haben ihre Hunde unseren Orang-Utan genervt?

RC on object decl: unser Ziesel kann den Salaman-
der, der meinen Pfau verwirrt hat, akzep-
tieren.
→ unser Ziesel kann den Salamander,
der meinen Pfau verwirrt hat, akzep-
tieren.

quest: einige Molche können meinen Papagei, der
deinen Raben trösten kann, nerven.
→ können einige Molche meinen Papagei, der deinen
Raben trösten kann, nerven?

RC on subject decl: dein Molch, den mein Wellen-
sittich bewundert hat, kann meine Di-
nosaurier trösten.
→ dein Molch, den mein Wellensittich
bewundert hat, kann meine Dinosaurier
trösten.

quest: ihr Hund, den ihr Geier nerven kann, hat einige
Pfaue amüsiert.
→ hat ihr Hund, den ihr Geier nerven kann, einige
Pfaue amüsiert?

Passivization Active Passive

No PP decl: die Löwen unterhielten einen
Wellensittich.
→ die Löwen unterhielten einen Wellen-
sittich.

passiv: ihr Kater bedauerte den Dinosaurier.
→ der Dinosaurier wurde von ihrem Kater bedauert.

PP on object decl: ihre Geier verwirrten ihren Raben
über unserem Ziesel.
→ ihre Geier verwirrten ihren Raben
über unserem Ziesel.

passiv: unsere Ziesel amüsierten einen Kater hinter
dem Dinosaurier.
→ ein Kater hinter dem Dinosaurier wurde von un-
seren Zieseln amüsiert.

PP on subject decl: ein Löwe unter unserem Hund
nervte einigie Ziesel.
→ ein Löwe unter unserem Hund nervte
einigie Ziesel.

passiv: die Geier hinter meinem Ziesel akzeptieren
die Molche.
→ die Molche wurden von den Geiern hinter meinem
Ziesel akzeptiert.

Table 6: The distribution of syntactic structures in the German train, test, and generalization sets. We use the test set
to evaluate whether models have learned the task on in-distribution examples, and the generalization set to evaluate
hierarchical generalization.

Figure 4: Learning curves over 10 epochs of fine-tuning for mT5 on both syntactic transformation tasks.
.

Figure 5: Learning curves over 10 epochs of fine-tuning for mBART on both syntactic transformation tasks.
.
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Figure 6: Learning curves over 10 epochs of fine-tuning
for T5 on both syntactic transformation tasks.

Figure 7: Learning curves over 10 epochs of fine-tuning
for BART on both syntactic transformation tasks.

in these curves are the same as those shown in
Figure 2, but now associated with their respective
fine-tuning iteration.

All models except mBART immediately achieve
near-perfect main auxiliary and object noun accu-
racies. Their loss on the validation sets converges
almost immediately, so it’s possible that reductions
in generalization accuracies throughout fine-tuning
are due to overfitting to the training distribution.
For mBART, however, main auxiliary and object
noun accuracies start high and then begin to vary
dramatically throughout fine-tuning. This is per-
haps due to quick overfitting on the training distri-
bution. We analyze what errors cause mBART’s
deficiencies in §C.2.

C Error Analysis

Each pre-trained model almost always chooses the
correct auxiliary/object to move; what other errors
account for their sub-perfect sequence accuracies?
We implement more specific metrics to observe
more closely what mistakes (m)T5 and (m)BART
are making. We show results for mT5 in §C.1
and mBART in §C.2, but the errors we discuss
are generally consistent across models. We also
present more detailed metrics for the most complex
transformation, German passivization, in §C.3.

C.1 mT5
Figure 8 depicts results for mT5 for German pas-
sivization, the transformation on which all models

Figure 8: Learning curves displaying alternative accu-
racy metrics for mT5 on German passivization. We
present the accuracy of the model in properly moving
the object NP to the start of the sentence (top left), mov-
ing the subject NP after the auxiliary verb (top right),
moving the subject NP after the auxiliary verb with or
without its attached PP (bottom left), and the full se-
quence accuracy (bottom right).

achieve the lowest sequence accuracy. mT5 is al-
most always successful at the hierarchical transfor-
mation of moving the object NP to subject position
(including its attached PP when present), and it
correctly moves the original subject noun to a “by”
phrase following the auxiliary. However, for both
English and German passivization, the main error
accounting for sub-perfect sequence accuracies is
that the model fails to preserve the PP on the second
NP (in the by-phrase):

(12) My yaks below the unicorns comforted the
orangutans.
→ The orangutans were comforted by my yaks.

As mT5 has not been fine-tuned on output se-
quences where PPs appear at the end of the sen-
tence, the decoder could be assigning low prob-
abilities to end-of-sentence PPs while otherwise
encoding a hierarchical analysis of sentence struc-
ture.

Errors for question formation are more varied.
Pre-trained models’ sub-perfect main auxiliary ac-
curacies on question formation are mainly due to
improper negations on the main auxiliary: when
the noun in the relative clause and the main noun
agree in number, models will sometimes delete the
main auxiliary (as expected) while copying the in-
correct auxiliary to the beginning of the sentence.
Additionally, the discrepancy between sequence
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and main auxiliary accuracies is almost always at-
tributable to models not deleting the main auxiliary
after moving it to the start of the sentence. These
results (as with the passivization results) suggest
that pre-trained seq2seq models are better at
performing hierarchy-sensitive transformations
than the sequence accuracies initially suggest—
but also that they can fail to perform theoret-
ically simpler operations, such as deletions and
moving all parts of a constituent.

We present more detailed error analyses in Ap-
pendix C.3. We find that pre-trained models also
consistently succeed in case reinflection, tense re-
inflection, and passive auxiliary insertion.

C.2 mBART
We have shown in §C.1 that mT5 achieves sub-
perfect sequence accuracies on passivization due to
its dropping the prepositional phrase on the second
NP. Here, we present results for mBART (Figure 9).
The takeaways for mBART are similar to mT5’s:
the model succeeds in moving the proper nouns,
but it often drops the prepositional phrase from the
second NP during movement.

As the model also fails to perform English ques-
tion formation consistently, we also observe what
errors it makes in that task. We find that deficien-
cies in main auxiliary accuracy are due to the model
copying the incorrect auxiliary to the beginning of
the sentence, while gaps between main auxiliary
and sequence accuracy are due to the model drop-
ping the relative clause on the second NP.

C.3 More Detailed Metrics
We also present more detailed analyses of other
required operations in passivization: namely, are
mT5 and mBART capable of tense reinflection,
case reinflection, and auxiliary insertions? And
are they capable of this in zero-shot settings? Re-
sults for mT5 (Figure 10) and mBART (Figure 11)
suggest that both models are generally capable of
tense reinflection, case reinflection, and auxiliary
insertion in supervised contexts.

D Zero-shot mBART Accuracies

Here, we present learning curves for mBART on
zero-shot cross-lingual syntactic transformations
(Figure 12). While mBART is typically able to
select the correct auxiliary verb or object noun
to move, it never transforms the sequence fully
correctly.

Figure 9: Learning curves displaying alternative accu-
racy metrics for mBART on German passivization. We
present the accuracy of the model in properly moving
the object NP to the start of the sentence (top left), mov-
ing the subject NP after the auxiliary verb (top right),
moving the subject NP after the auxiliary verb with or
without its attached PP (bottom left), and the full se-
quence accuracy (bottom right).

Figure 10: Learning curves displaying alternative ac-
curacy metrics for mT5 on German passivization. We
present the proportion of examples for which the model
moves the first NP without reinflecting its case (top left),
moves the second NP without reinflecting its case (top
right), reinflects the tense of the main verb (bottom left),
and inserts the passive auxiliary werden with the proper
inflection.
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Figure 11: Learning curves displaying alternative accu-
racy metrics for mBART on German passivization. We
present the proportion of examples for which the model
moves the first NP without reinflecting its case (top left),
moves the second NP without reinflecting its case (top
right), reinflects the tense of the main verb (bottom left),
and inserts the passive auxiliary werden with the proper
inflection.

Figure 12: Learning curves for mBART on Ger-
man transformations after fine-tuning only on En-
glish/German identity examples and English transforma-
tions. We show accuracies for German question forma-
tion with RCs on objects (top left) and RCs on subjects
(top right), as well as accuracies for German passiviza-
tion with PPs on objects (bottom left) and PPs on sub-
jects (bottom right).
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