Using Two Losses and Two Datasets Simultaneously
to Improve TempoWiC Accuracy

Mohammad Javad Pirhadi, Motahhare Mirzaei and Sauleh Eetemadi
Iran University of Science and Technology at Tehran, Iran

{mohammad_pirhadi,

Abstract

WSD (Word Sense Disambiguation) is the task
of identifying which sense of a word is meant
in a sentence or other segment of text. Re-
searchers have worked on this task (e.g. Puste-
jovsky, 2002) for years but it’s still a chal-
lenging one even for SOTA (state-of-the-art)
LMs (language models). The new dataset, Tem-
poWiC introduced by Loureiro et al. (2022b)
focuses on the fact that words change over time.
Their best baseline achieves 70.33% macro-
F1. In this work, we use two different losses
simultaneously to train RoBERTa-based clas-
sification models. We also improve our model
by using another similar dataset to generalize
better. Our best configuration beats their best
baseline by 4.23% and reaches 74.56% macro-
FI.

1 Introduction

In 2019, Pilehvar and Camacho-Collados (2018)
introduced WiC dataset. It is framed as a binary
classification task between pairs of sentences in-
cluding one identical target word with different
meanings. In 2020, XL-WiC was introduced by
Raganato et al. (2020) and made WiC richer by pro-
viding more examples and adding more languages.
We benefit from the English part of XL-WiC as
a helping dataset to improve the generalization of
our model.

Loureiro et al. (2022b) baselines include:
RoBERTa (Liu et al., 2019) base and large,
TimeLMs (Loureiro et al., 2022a) 2019-90M
and 2021-124M and BERTweet (Nguyen et al.,
2020) base and large. They examine two dif-
ferent methods of using these models: Fine-
tuning and SP-WSD layer pooling weights as ex-
plained in Loureiro et al. (2022c). The best re-
sult is for TimeLLMs-2019-90M with SP-WSD with
70.33% macro-F1. We examine RoBERTa-base
and TimelLMs-Jun2022-153M.

For classification, many previous works (e.g. Pe-
ters et al., 2019) use standard practice and con-

12

m_mirzaei96}@comp.iust.ac.ir,sauleh@iust.ac.ir

catenate both sentences with a [SEP] token and
fine-tune the [CLS] embedding. In this work, we
use two different losses simultaneously, cross en-
tropy loss on RoOBERTa classification head output
as standard practice and add cosine embedding loss
on average of target word output embeddings.

2 Methodology

2.1 Model

We use LMs as base model. We add classification
head and also cosine similarity + sigmoid on top
of them. The classification head consists of two
FC (fully connected) layers and a dropout layer be-
tween them (like standard RoBERTa classification
head). RoBERTa uses a byte-level BPE (Byte-Pair
Encoding) encoding scheme so it’s possible that
we have multiple embeddings for a single word.
For second output path, we average embeddings (it
can be more than one as explained) related to tar-
get word in first sentence and second sentence and
compare them using cosine similarity, finally we
apply sigmoid activation to get a binary classifica-
tion. Our experiments shows that the second output
path is more accurate by a large margin. Figure 1
shows an overview of described architecture.

2.2 Loss Function

For the loss function, we have the sum of two
losses, one on standard RoBERTa classification
head and another on similarity (in case of the same
meaning) or dissimilarity (in case of the different
meaning) of the embeddings of the last layer re-
lated to the target word. For the former, we use
cross entropy loss and for latter we use cosine em-
bedding loss. The second loss, help our model
to make similar contextual embeddings for target
word closer and push dissimilar ones away from
each other.

Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP), pages 12 - 15
December 7, 2022 ©2022 Association for Computational Linguistics

FC for classification
and cross entropy loss for training

T

AVG(T 11,T12)

Cosine similarity + sigmoid for classification
and cosine embedding loss for learning

/\

AVG(T 22,T 23)

[CLS] | [TOK 11| [TOK 12| |TOK 13| ..

TOK 1N

[SEP] || TOK 21| [TOK22||TOK 23| ... [TOK2M

s

Target Word in Sentence 1

Cr— —T

Sentence 1

S

Target Word in Sentence 2

Cr— —

Sentence 2

Figure 1: An overview of architecture. We use two losses simultaneously. First one is cross entropy loss on
standard classifier head (black path) and the second one is cosine embedding loss on average of target word output

embeddings (red path).

2.3 Dataset

The main dataset is TempoWiC, but we also use
the XL-WiC dataset to make our model more ro-
bust. It’s important to know that XL-WiC samples
are not tweets so it is out-of-domain data and the
added data may cause model accuracy to degrade
if the combined dataset is not representative. We
explored using the main dataset without adding
any sample from the XL-WiC dataset, by adding a
random subset of XL-WiC, and also by adding the
whole XL-WiC.

2.4 Framework & Tools

We use PyTorch (Paszke et al., 2019) + Hugging-
Face transformers (Wolf et al., 2020) to implement
our models and for reporting results we use the
Codalab online platform’.

2.5 Hyper-parameters

We use Ray Tune (Liaw et al., 2018) to tune
our hyper-parameters including learning rate, train
epochs, random seed, batch size and weight decay.

"https://codalab.lisn.upsaclay.fr/
competitions/5360

13

Increasing weight decay helps us avoid over-fitting
which was the main problem in our initial model.

3 Experiments

We have multiple configurations to test:

1. Model

¢ RoBERTa-base

¢ TimelLLMs-Jun2022-153M
2. Output

¢ Standard Classifier Head (FC)

» Cosine Similarity + Sigmoid (CS+S)
3. How we use XL-WiC

¢ Do not use (No)
¢ A subset as described (Sub)
¢ Whole XL-WiC (All)

3.1 Results

The biggest problem we were facing was over-
fitting. This is expected since we use transformer-
based LMs.

https://codalab.lisn.upsaclay.fr/competitions/5360
https://codalab.lisn.upsaclay.fr/competitions/5360

Output Model XL-WiC Use Macro-F1
No 62.35%
RoBERTa-base Sub 65.98%
. All 63.56%
Classifier No 64.54%
TimeLMs-Jun2022-153M Sub 73.16%
All 72.77%
No 67.26%
RoBERTa-base Sub 68.29%
Similarity All 67.29%
No 66.69%
TimeLLMs-Jun2022-153M Sub 74.56 %
All 72.32%
TimeLMs-2019-90M-SIM No 70.33%
RoBERTa-L-SIM No 67.09%
Official Baselines RoBERTa-L-FT No 59.10%
TimelLMs-2019-90M-FT No 57.70%
Random No 50.00%
All True No 26.79%

Table 1: All results are obtained from the Codalab online platform on Tempo-WiC test set.

The most accurate configuration is TimeLMs-
Jun2022-153M with cosine similarity + sigmoid
output trained on TempoWiC and a subset of XL-
WiC. In the following paragraphs, we are going to
analysis the results.

First, the results show that TimeLMs-Jun2022-
153M beats RoBERTa in all possible configura-
tions, the reason is simple: TempoWiC consists of
tweets and TimeLLMs-Jun2022-153M is trained on
tweets too, but RoOBERTa is not trained on tweets.

Second, using XL-WiC improves results in all
cases. Using all XL-WiC example reduces the
accuracy because the distribution is different (the
samples are not tweets) and it has almost 4 x data
in comparison to TempoWiC. If we use all of its
data, we can not expect better accuracy because the
training set distribution will be different from the
test distribution.

Last, the cosine similarity + sigmoid output is
better in most cases in comparison to the standard
classifier head. We think it’s because of more focus
on the target word embedding in comparison to
more focus on the whole context.

4 Future Work

In the future work, more configurations can be
explored:

1. Selecting the subset of XL-WiC more wisely,
instead of randomly selecting. For exam-

14

ple, considering the maximum possible use
of unique words.

. Using more layers to calculate similarity, in-
stead of using only the last layer. For example,
the sum of the last 4 layers is another common
choice in word sense disambiguation settings.

. Exploring more similarity functions, instead
of cosine similarity. For example, euclidean
distance can also be explored.

5 Conclusion

In this work, we beat the best baseline of Loureiro
et al. (2022b) by a large margin. To do this we
use two losses simultaneously (standard classifier
head cross entropy loss and cosine embedding loss
on average of target word output embeddings) to
train SOTA LMs, and also use XL-WiC as a help-
ing dataset to generalize better. The best LM was
TimeLMs-Jun2022-153M which is a pre-trained
model on 153M tweets.

6 Acknowledgements

We would like to express our special thanks of
gratitude to Mohammad Mahdi Javid who helped
us with preparing training resources.

References

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E. Gonzalez, and Ion Stoica. 2018.
Tune: A research platform for distributed model se-
lection and training.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves,
Luis Espinosa Anke, and Jose Camacho-collados.
2022a. TimeLMs: Diachronic language models from
Twitter. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 251-260, Dublin, Ire-
land. Association for Computational Linguistics.

Daniel Loureiro, Aminette D’Souza, Areej Nasser
Muhajab, Isabella A. White, Gabriel Wong, Luis
Espinosa-Anke, Leonardo Neves, Francesco Barbi-
eri, and Jose Camacho-Collados. 2022b. TempoWiC:
An evaluation benchmark for detecting meaning shift
in social media. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3353-3359, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Daniel Loureiro, Alipio Mario Jorge, and Jose Camacho-
Collados. 2022c. Lmms reloaded: Transformer-
based sense embeddings for disambiguation and be-
yond. Artificial Intelligence, 305:103661.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9-14, On-
line. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024-8035. Curran Associates, Inc.

Matthew E. Peters, Mark Neumann, Robert L. Logan
IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced contex-
tual word representations. CoRR, abs/1909.04164.

Mohammad Taher Pilehvar and José Camacho-Collados.
2018. Wic: 10, 000 example pairs for eval-
uating context-sensitive representations. CoRR,
abs/1808.09121.

15

James Pustejovsky. 2002. The generative lexicon. Com-

putational Linguistics, 17.

Alessandro Raganato, Tommaso Pasini, José Camacho-

Collados, and Mohammad Taher Pilehvar. 2020. XI-
wic: A multilingual benchmark for evaluating seman-
tic contextualization. CoRR, abs/2010.06478.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.acl-demo.25
https://doi.org/10.18653/v1/2022.acl-demo.25
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://doi.org/https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://doi.org/10.18653/v1/2020.emnlp-demos.2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1909.04164
http://arxiv.org/abs/1909.04164
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121
https://doi.org/10.2307/415891
http://arxiv.org/abs/2010.06478
http://arxiv.org/abs/2010.06478
http://arxiv.org/abs/2010.06478
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

