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Abstract

Pre-trained language models (PLMs) have been
shown effective for zero-shot (0shot) text clas-
sification. 0shot models based on natural lan-
guage inference (NLI) and next sentence predic-
tion (NSP) employ cross-encoder architecture
and infer by making a forward pass through
the model for each label-text pair separately.
This increases the computational cost to make
inferences linearly in the number of labels. In
this work, we improve the efficiency of such
cross-encoder-based 0shot models by restrict-
ing the number of likely labels using another
fast base classifier-based conformal predictor
(CP) calibrated on samples labeled by the 0shot
model. Since a CP generates prediction sets
with coverage guarantees, it reduces the num-
ber of target labels without excluding the most
probable label based on the 0shot model. We
experiment with three intent and two topic clas-
sification datasets. With a suitable CP for each
dataset, we reduce the average inference time
for NLI- and NSP-based models by 25.6% and
22.2% respectively, without dropping perfor-
mance below the predefined error rate of 1%.

1 Introduction

Zero-shot (0shot) text classification is an important
NLP problem with many real-world applications.
The earliest approaches for 0shot text classifica-
tion use a similarity score between text and labels
mapped to common embedding space (Chang et al.,
2008; Gabrilovich and Markovitch, 2007; Chen
et al., 2015; Li et al., 2016; Sappadla et al., 2016;
Xia et al., 2018). These models calculate text and
label embeddings independently and make only
one forward pass over the text resulting in a mini-
mal increase in the computation. Later approaches
explicitly incorporate label information when pro-
cessing the text, e.g., Yogatama et al. (2017) uses
generative modeling and generates text given label
embedding, and Rios and Kavuluru (2018) uses
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label embedding based attention over text, both re-
quiring multiple passes over the text and increasing
the computational cost.

Most recently, NLI- (Condoravdi et al., 2003;
Williams et al., 2018; Yin et al., 2019) and NSP-
(Ma et al., 2021) based 0shot text classification for-
mulations have been proposed. NLI and NSP make
inferences by defining a representative hypothesis
sentence for each label and producing a score corre-
sponding to every pair of input text and hypothesis.
To compute the score, they employ a cross-encoder
architecture that is full self-attention over the text
and hypothesis sentences, which requires recom-
puting the encoding for text and each hypothesis
separately. It increases the computational cost to
make inferences linearly in the number of target
labels.

NLI and NSP use large transformer-based PLMs
(Devlin et al., 2019; Liu et al., 2019b; Lewis et al.,
2019) and outperform previous non-transformer-
based models by a large margin. However, the size
of PLMs and the number of target labels drasti-
cally reduce the prediction efficiency, increasing
the computation and inference time, and may sig-
nificantly increase the carbon footprint of making
predictions (Strubell et al., 2019; Moosavi et al.,
2020; Schwartz et al., 2020; Zhou et al., 2021).

In this work, we focus on the correlation between
the number of labels and prediction efficiency and
propose to use a conformal predictor (CP) (Vovk
et al., 2005; Shafer and Vovk, 2008) to filter out un-
likely labels from the target. Conformal prediction
provides a model-agnostic framework to generate a
label set, instead of a single label prediction, within
a pre-defined error rate. Consequently, we use a
CP, with a small error rate we select, based on
another fast base classifier to generate candidate
target labels. Candidate labels are then used with
the larger NLI/NSP-based 0shot models to make
the final prediction.

We experiment with three intent classification
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(SNIPS (Coucke et al., 2018), ATIS (Tur et al.,
2010) and HWU64 (Liu et al., 2019a)) and two
topic classification (AG’s news and Yahoo! An-
swers (Zhang et al., 2015)) datasets using 0shot
models based on a moderately sized bart-large
(NLI) (Lewis et al., 2020) and a small bert-base
(NSP) PLM. We use four different base classifiers,
each with different computational complexity, and
a small error rate of 1%. By using the best CP for
each dataset, we reduce the average computational
time by 25.6% (22.2%) and the average number of
labels by 41.09% (43.38%) for NLI-(NSP-) based
models.

2 Methodology

We improve the efficiency of NLI/NSP models by
restricting the number of target labels with a Con-
formal Predictor (CP). Using a fast but weak base
classifier-based CP, we produce the label set that
removes some of the target classes for the 0shot
model without reducing the coverage beyond a pre-
defined error rate.

2.1 Building a Conformal Predictor (CP) for
Label Filtering

Conformal prediction (Vovk et al., 1999, 2005;
Shafer and Vovk, 2008; Maltoudoglou et al., 2020;
Angelopoulos and Bates, 2021; Giovannotti and
Gammerman, 2021; Dey et al., 2021) generates la-
bel sets with coverage guarantees. For a given error
rate α and a base classifier f̂ : x → RK (here K
is the total number of class labels), a CP outputs
a label set Γα that also contains true class label y
with probability at least 1− α.

To build a CP, we need calibration data
{(x1, y1), (x2, y2), .., (xn, yn)} and a measure of
non-conformity s(xi, yi) that describes the dis-
agreement between the actual label yi and the pre-
diction f̂(xi) from the base classifier. As an ex-
ample, a non-conformity score can be defined as
the negative output logit of the true class. Assum-
ing the base classifier outputs logit scores, in this
case s(xi, yi) will be −f̂(xi)yi . Next, we define q̂
to be the ⌈(n + 1)(1 − α)⌉/n empirical quantile
of scores s(x1, y1), s(x2, y2), .., s(xn, yn) on the
calibration set. Finally, for a new exchangeable
test data point xtest, we output the label set Γα =
{yk : s(xtest, y

k) < q̂}, i.e., the classes correspond-
ing to which the non-conformity score is lower than
the q̂. Γα is finally used with the 0shot model to
predict the final class label. Next, we discuss the

two components of a CP, namely the calibration
dataset and the non-conformity score.

2.2 Calibration Dataset
We require a calibration dataset that is exchange-
able with the test data. However, in a typical
0shot setting, we do not expect the availability of a
human-labeled dataset. Therefore, we use the 0shot
classifier to label samples for calibration. Since
our goal is to obtain a label set that contains the
class label which is most probable according to the
0shot classifier, we do not explicitly require human-
labeled samples. Using model-predicted labels for
calibration guarantees the required coverage.

2.3 Non-Conformity score based on a Base
Classifier

We want the base classifier to be computationally
efficient when compared to the 0shot model. We
experiment with four base classifiers with different
complexity for building our CPs,

• Token Overlap (CP-Token): For each target class
label (yk ∈ {y1, .., yK}), we make a list of rep-
resentative tokens (Ck

w) that includes all tokens
in the calibration data samples corresponding to
that class. Then, we define the non-conformity
score using the percentage of common tokens
between Ck

w and the input text (x). Given #x
defines the unique tokens in x, the token overlap-
based non-conformity score is defined as:

s(x, yk) = 1.0− |Ck
w ∩ x|
#x

(1)

• Cosine Similarity (CP-Glove): Token overlap-
based non-conformity score suffers from sparsity
unless we use a large representative words-set
for each target class label. Therefore, we also
experiment with the cosine distance between the
bag-of-words (BoW) representation of a target
label description (Ck

E) and input text (xE). We
use static GloVe embeddings (Pennington et al.,
2014) to obtain BoW representations for labels.

s(x, yk) = 1.− Ck
E · xE

∥Ck
E∥2∥xE∥2

(2)

• Classifier (CP-CLS): Besides the broadly appli-
cable token overlap and cosine similarity, we
propose to use a task-specific base classifier to
generate label sets of smaller sizes. We fine-tune
a distilled bert-base model on the data labeled
using the 0shot model and use the negative of
class logits as the non-conformity scores.
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Figure 1: Coverage of CP-predicted label sets for different non-conformity score and calibration dataset on the
Intent/ Topic-classification tasks with the NLI 0shot model.

Figure 2: Average Prediction Set (APS) size for different non-conformity score and calibration dataset on the Intent/
Topic-classification tasks with the NLI 0shot model.

• Distilled NLI Model (CP-Distil): Fine-tuning a
PLM (CLS) requires data labeled by the 0shot
model, which may not be always accessible.
In such scenarios, we propose to use another
parameter-efficient NLI 0shot model (e.g. distil-
roberta-base-nli) as the base classifier. While
NLI-based 0shot models are computationally ex-
pensive, they may make a good base classifier
for relatively larger PLMs, with many parameters
(e.g. GPT-3 (Brown et al., 2020)), or when there
are many target class labels (e.g. 64 labels in
HWU64). We define the non-conformity score
as the negative entailment probability.

3 Experiments

We evaluate our CP-based framework on the test
set of intent (SNIPS, ATIS and HWU64) and topic
(AG’s news and Yahoo! Answers) classification
datasets. SNIPS, ATIS, HWU64, AG’s news and
Yahoo! Answers have 7, 17, 64, 4 and 10 target la-
bels, respectively. We use “facebook/bart-large-nli”
and “bert-base-uncased” models from the Hugging
Face hub (Wolf et al., 2020) as our 0shot NLI and
NSP baselines. Our experimental setup is described
in appendix (§A).

In Fig. 1 and 2, we plot the empirical coverage
and the average prediction set (APS) size of four
base classifiers on ATIS, HWU64 and Yahoo! An-

swers datasets. Coverage defines the proportion of
samples for which the predicted set contains the
0shot model-predicted label. APS size equals the
average number of labels in the set predicted by the
CP base classifier.

In Table 1, we compare the accuracy (A), aver-
age inference time (T) and the APS size (|L|) used
with the 0shot model. Average inference time is re-
ported relative to the full model. “Full” represents
the 0shot model that uses the full label set. Dur-
ing inference, we create one batch for all text-label
pairs in a sample. For instance, with 64 labels, a
batch includes 64 text-label pairs where each pair
consists of text and one label. This allows us to
measure the reduction in inference time while fully
utilizing the available compute resources.

3.1 Results

A CP achieves a valid coverage. We find that for
smaller values of α, all four base classifiers achieve
valid coverage (Fig. 1), i.e., empirical and nominal
coverages are identical, implying that we can use a
CP to filter unlikely target labels without dropping
the performance below a low predefined error rate
α. For larger αs (>∼0.5), empirical coverage drops
to 0 on intent datasets for token overlap-based non-
conformity score. The reduced coverage for token
overlap at lower α results from an empty label set,
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ATIS HWU64 SNIPS AGNEWS YAHOO
A ↑ T ↓ |L| ↓ A ↑ T ↓ |L| ↓ A ↑ T ↓ |L| ↓ A ↑ T ↓ |L| ↓ A ↑ T ↓ |L| ↓

Entailment: bart-large-mnli
Full 71.5 1.0 17.0 49.3 1.0 64.0 76.7 1.0 7.0 75.9 1.0 4.0 51.8 1.0 10.0
CP-Token 70.1 0.63 9.1 49.4 0.79 47.6 75.8 0.88 5.9 75.5 0.91 3.5 51.4 0.91 9.7
CP-Glove 71.0 1.01 16.7 49.3 1.0 63.4 76.0 0.98 6.8 75.0 0.99 3.9 51.4 1.05 9.8
CP-CLS 71.5 0.98 9.2 49.3 0.71 30.59 77.0 0.98 3.5 76.2 0.99 2.4 51.7 0.80 8.1
CP-Distil 71.5 0.98 14.0 49.7 0.50 27.7 76.7 0.91 4.6 75.9 0.94 2.9 51.9 0.83 7.2

Next Sentence Prediction: bert-base-uncased
Full 23.6 1.0 17.0 47.2 1.0 64.0 81.7 1.0 7.0 79.3 1.0 4.0 52.0 1.0 10.0
CP-Token 23.1 0.41 5.3 47.2 0.85 53.8 81.0 0.94 6.0 78.9 0.96 3.5 52.0 0.97 9.6
CP-Glove 23.9 0.99 16.4 47.1 1.0 63.0 80.8 1.0 6.8 78.3 0.99 3.9 51.8 1.0 9.6
CP-CLS 23.6 0.61 6.1 47.3 0.69 39.3 81.8 0.88 4.4 80.4 1.41 2.1 52.3 0.95 7.8
CP-Distil 23.7 1.51 16.1 47.3 1.15 57.7 82.7 1.97 4.2 80.1 2.13 3.0 52.6 1.69 8.8

Table 1: Performance comparison of different base classifiers. We use the error rate α of 0.01, and report accuracy
(A), average time to make inference (T) and average prediction set size (|L|). We underline the cases where a CP
increases the inference time.

as evident from 0 APS size in Fig. 2.

A CP reduces the average number of labels for
the 0shot model. We find that a stronger base
classifier (CLS and Distil) provides lower APS size
for the same empirical (or nominal) coverage (Fig.
2). On average, CP-CLS provides the lowest APS
size, reducing the average number of labels for
both 0shot models by roughly 41% (Table 1). This
suggests that fine-tuning a base classifier should
be preferred when unlabelled samples are easily
available.

A simpler and efficient CP base classifier may
reduce the inference time the most. We observe
that CP-Token achieves the best inference time with
the NLI model on ATIS, SNIPS and AG’s news
datasets, and with the NSP model on ATIS and
AG’s news datasets. On the other hand, it achieves
the lowest APS size for both models only on the
ATIS dataset. Minimal complexity for calculating
token-overlap adds negligible overhead to the 0shot
model, thus, achieving the best speed up despite
higher APS size in several cases.

A CP base classifier needs to be computationally
inexpensive. CP-Distil improves inference time
for the NLI model on all datasets but fails to do
so for the NSP model, despite reduced APS size.
This ineffectiveness is explained by the compara-
ble inference time for the base (distil-nli) classifier
and the 0shot NSP model. When building a CP,
it is imperative to select a base classifier that is
computationally economical relative to the 0shot
model.

A CP improves efficiency the most on the dataset
with many labels. We observe the maximum speed
up on HWU64 and ATIS datasets. This is unsurpris-
ing given the relatively higher number of possible

target labels for both datasets, emphasizing the ben-
efit of a CP for tasks with many target labels.
A CP performs comparably to the 0shot model.
CP-based label filtering retains the performance
of the corresponding models that use a full label
set. Among the four base classifiers, CP-Token
performs the worst (-0.46% absolute drop) and CP-
Distil performs the best (+0.31% absolute gain)
on the average accuracy. It is noteworthy that the
accuracy increases in many cases, suggesting that
pruning label space using a CP may remove noisy
labels and boost the performance.

3.2 Applying a CP in Practical Applications

Our experiments show that the inference speed-up
from a CP depends on the sizes of the zero-shot
model, the base classifier, and the label space. A
strong base classifier (e.g., CP-CLS, CP-Distil) of-
ten gives better APS size leading to faster zero-shot
inference. But it is also slow in generating the label
set for the 0shot model. On the other hand, weaker
base classifiers are fast but generate larger predic-
tion sets resulting in slower 0shot inference. Given
the trade-off, a stronger base classifier model such
as BERT/ RoBERTa (or distilled model) makes a
better choice when the label space is large (e.g., 64
for HWU64) and (or) the zero-shot model is large
(e.g., bart-large-mnli). Otherwise, a faster base
classifier (e.g., token overlap matching) would be
ideal.

4 Discussion and Future Work

In this work, we show that CP-based target label
filtering improves the efficiency of NLI- and NSP-
based zero-shot text classification models. Our
CP framework is generalizable to many formula-
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tions of zero- or few-shot models. For instance,
prompt-based models that auto-regressively gener-
ate verbalizers (Schick and Schütze, 2021) are very
slow, as the number of forward passes increases
with the number of labels and verbalizer’s tokens
(Karimi Mahabadi et al., 2022). Our conformal
prediction framework can be directly used there to
reduce the number of labels and improve efficiency.
Additionally, the proposed conformal prediction
framework can be used to filter training examples
when constructing prompts for in-context learning
(Brown et al., 2020), where we prime PLM with
a sequence of training examples. For a task with
many target labels, a naively constructed prompt
would require at least one training example for
each label. However, with CP, we can limit the
number of labels (and consequently the number of
training examples) in the prompt, minimizing the
computational cost.

In the future, we will explore newer methods to
build conformal predictors that can further reduce
the average prediction set size and inference time,
as well as boost the performance of a 0shot model.

5 Limitations

The datasets utilized in this research contain texts
in English and thus mainly represent the culture of
the English-speaking populace. Gender or age bi-
ases may also exist in the datasets, and pre-trained
models may also exhibit these biases. In addition,
though the likelihood is slim, additional biases may
also be introduced by CP-based label filtering.

We recommend that any subsequent usage of
the proposed technique clearly states that the con-
formal predictor was used for label filtering. In
addition, while results suggest that our framework
is generally effective for different zero-shot tasks, it
should not be utilized on any new task without thor-
ough evaluation, including evaluating for ethical or
social risks.
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A Experimental Details

We use the entire training set of intent datasets
and 5000 samples from the validation set of topic
datasets to calibrate CP-Token, CP-Glove and CP-
Distil. For CP-CLS, we use the entire training
set of intent datasets and 2500 samples from the

validation set of topic datasets to train the base
classifier, and the entire validation set of intent
datasets and 2500 samples from the validation set
of topic datasets for calibration.

For the CP-Distil base classifier, we use “cross-
encoder/nli-distilroberta-base” model from the
Hugging Face hub. We describe the procedure
for building CP-CLS in §A.1. Note that we only
require the text to be classified (without labels) for
calibrating base classifiers and training CP-CLS
base classifier. We use the 0shot model to label the
corresponding training and calibration samples.

A.1 CP-CLS: Training and Evaluation

We fine-tune distilbert-base PLM for 15 epochs
with the batch size of 16. We use AdamW op-
timizer (Loshchilov and Hutter, 2019) with de-
fault hyper-parameters, warm-up steps of 100 and
weight decay of 0.01. We choose the checkpoint
with the highest accuracy on the calibration dataset.
The accuracy of the CP-CLS base classifier with
respect to the labels generated by the 0shot model
is reported in Table 2.

ATIS HWU64 SNIPS AGNEWS YAHOO
NLI 84.99 67.28 88.0 66.88 87.64
NSP 82.80 71.18 89.40 73.16 88.24

Table 2: Accuracy of the CP-CLS base classifier with
respect to the labels generated by the 0shot model on
the calibration dataset.

B Calibration dataset

Figure 3: Coverage of CP-predicted label sets for differ-
ent size of calibration set.

In our experiments, we assumed the availabil-
ity of text from the target task for calibration (and
training a base classifier). While we can use a
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Figure 4: APS size with different size of calibration set.

Figure 5: Coverage of CP-predicted label sets for cali-
bration set from another dataset.

Figure 6: APS size for calibration set from another
dataset.

0shot base classifier (e.g., CP-Token /Glove/ Dis-
til), we still require a few samples for the CP cali-
bration. Next, we analyze the number of samples
required to build a CP and the transferability of a
CP from another different dataset in Fig. 3, 4, 5 and
6. These plots belong to the NLI-based 0shot model
on the HWU64 dataset with the corresponding best-

performing CP-Distil non-conformity score. 200
(up to 2500) in Fig. 3 and 4 represents the number
of samples used for calibration. The full model is
calibrated on the entire dataset. In Fig. 5 and 6,
SNIPS+ATIS is calibrated using the samples from
SNIPS and ATIS datasets, and ALL is calibrated
using the samples from SNIPS, ATIS, Yahoo! An-
swers and AG’s news datasets. We describe our
findings below.
A small sized-calibration set with low chosen α
improves 0shot classification efficiency without
dropping the performance. We find that the em-
pirical coverage is worse than the nominal coverage
for smaller-sized calibration data (200-1000) (Fig.
3). A model using calibration data with 1500 or
more samples has identical empirical and nominal
coverages. At the same time, the difference in em-
pirical and nominal coverage is negligible for all
calibration data sizes at a low error rate (α = 0.01),
as evident from the same starting point for all plots
(at 1 − α = 0.99). Consequently, we can use the
conformal prediction framework even with a small
calibration set provided we use a low value for α.
Next, as shown in Fig. 4, the dependence between
the APS size and the size of calibration data is not
linear. CP-Distil models based on 200, 400 and full
calibration samples obtain comparable APS sizes.
Additionally, APS sizes for other models are sig-
nificantly better than the full label set (maximum
APS size of 37 for models calibrated on 1000 and
1500 samples vs full label set size of 64).
We can use a calibration set from another
dataset only if the α is set to a low value We ob-
serve that none of the ATIS, SNIPS, ATIS+SNIPS
or ALL calibration sets obtains the same empirical
and nominal coverage. But, similar to our obser-
vations on the size of the calibration set, samples
from another dataset can be used for calibration
(Fig. 5), provided we use a low α. However, the
resulting APS size is larger than that of the model
that uses calibration data from the target task (Fig.
6).
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