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Abstract
In order to assist the drug discov-
ery/development process, pharmaceutical
companies often apply biomedical NER and
linking techniques over internal and public
corpora. Decades of study of the field of
BioNLP has produced a plethora of algorithms,
systems and datasets. However, our experience
has been that no single open source system
meets all the requirements of a modern
pharmaceutical company. In this work, we
describe these requirements according to our
experience of the industry, and present Kazu,
a highly extensible, scalable open source
framework designed to support BioNLP for
the pharmaceutical sector. Kazu is a built
around a computationally efficient version of
the BERN2 NER model (TinyBERN2), and
subsequently wraps several other BioNLP
technologies into one coherent system.

1 Introduction

One of the promises of the applications of A.I.
within the pharmaceutical sector is to empower
the search for new drugs, and quicken their devel-
opment into safe, effective medicines. Within the
field of NLP, this commonly involves the applica-
tion of named entity recognition (NER, which is
the task of finding entities from a document) and
entity linking (EL, also known as grounding, or nor-
malisation), and other techniques to internal and ex-
ternal documents. Documents enhanced with such
metadata have a wide variety of use cases, such as
improving the performance of enterprise search sys-
tems, phase 4 monitoring of adverse events or as a
precursor to relationship extraction (for instance in
biomedical knowledge graph construction (Geleta
et al., 2021)).

Our experience has been that high quality NER
remains at the core of many typical NLP use cases
within the pharmaceutical industry, and therefore
is the prominent focus of our work. BioNER as
a field is notable for it’s technical complexity and

chronic shortage of sufficiently sized training/test
datasets, relative to general domain corpora. Al-
though recent advances have produced excellent
results on benchmark datasets, recent work (Kim
and Kang, 2022) has also suggested that such ap-
proaches may be overfit, and may not necessarily
generalise sufficiently to meet the needs of a pro-
duction system.

Similarly, the tendency of academic products to
focus on minimising the error rate over a given
benchmark ignores practical issues of productioni-
sation, such as the computational complexity of an
algorithm, ecological impact and the maintenance
of a coherent codebase. While a low overall error
rate is undoubtedly important for any enterprise
A.I. system, world class performance often comes
at the expense of speed. Therefore, striking a bal-
ance between an acceptable error rate and other
performance metrics is central to user acceptance.
We posit that ‘near’ (rather than ‘absolute’) state of
the art is sufficient for most use cases.

While several commercial solutions are avail-
able to address this requirement, we suggest that a
freely available open source solution to deal with
the intricacies of this area has not been forthcom-
ing. In this piece, we describe the practical chal-
lenges and requirements of enterprise BioNLP an-
alytics. We present our TinyBERN2 biomedical
NER model, which utilises weak supervision to
address generalisability issues, and our associated
Kazu framework by which we deploy it for enter-
prise applications within a large pharmaceutical
company. The Kazu framework and models (in-
cluding TinyBERN2 and distillated PubMedBERT
(Gu et al., 2021)) are open-sourced 1.

1https://github.com/AstraZeneca/KAZU

https://github.com/AstraZeneca/KAZU
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2 Challenges of BioNLP in the
Pharmaceutical Sector and the Kazu
Framework

The priorities of academic research in NLP often
do not focus on the various practical elements of
productionising algorithms within the context of a
corporate environment. Nevertheless, this is one of
the domains where their outputs can deliver value
- via extending existing systems and enabling new
projects. The challenges of managing A.I. sys-
tems in such environments are acknowledged by
the emergence of the field of MLOps, and we re-
peat some of the most salient aspects relevant to
BioNLP here.

2.1 Language/technology agnostic and
scalability

The majority of algorithms for BioNLP are typi-
cally written in JVM languages or Python, each of
which may have dependency conflicts with other
algorithms within the overall Kazu pipeline. Here,
we utilise the scalable Ray framework (Moritz et al.,
2018) which allows different processes to run with
distinct Python virtual environments/JVM class-
paths, substantially reducing the chance of a con-
flict.

2.2 Flexibility of datasource ingestion

The biomedical domain is awash with ontolo-
gies and knowledgebases, representing various at-
tempts to standardise and model biological con-
cepts. These typically form the basis of EL targets
and/or dictionary based NER vocabularies. Thus,
we have built a parsing system to allow any data
source to be converted into a vocabulary, suitable
for curated dictionary based entity matching and/or
entity linking.

2.3 Robustness of data model

The biomedical literature is known for the over-
representation of certain linguistic phenomena,
such as multi section documents/abstracts, nested
entities (Alex et al., 2007) and non-contiguous en-
tities (Lever et al., 2020). We note that the data
models of many popular NLP frameworks don’t
contain native support for these concepts, and have
thus built these into the standard Kazu dataclasses.

2.4 Extensibility of pipeline design

The current pace of NLP development is extremely
rapid. We present Kazu with implementations of

several algorithms that we have chosen based on
our preference at the time of writing. However, we
recognise that any or all of these are likely to be
super-ceded in the short to medium term. There-
fore, we have designed Kazu in a modular pipeline
fashion, wherein new algorithms can be introduced
relatively easily.

2.5 Stability in execution
Executing NLP algorithms over large corpora of
text is notoriously unreliable, due to the difficulties
in building systems that are able to cope with highly
arbitrary input. For instance, certain strings of text
may cause NER processes to crash due to high
memory usage. Systems that are able to identify
problematic text, and either a) avoid processing ex-
ceptions or b) recover from such situations are help-
ful in production environments. To deal with these
scenarios, we leverage several techniques such
as process memory monitoring/automatic worker
restarting, which in turn allows the processing of
millions of documents with relative ease.

3 Methods

3.1 Model Architecture
Historically, BioNER approaches have utilised ‘se-
quence tagging’ style tasks (Yoon et al., 2019; Lee
et al., 2020), wherein a string of text is tokenized,
and a model assigns each token a label according to
the popular Begin, Inside, Outside schema. How-
ever, this single-label classification approach can
not properly predict nested entities (Katiyar and
Cardie, 2018), where the spans of multiple types
of entities are overlapped, without additional pro-
cessing or methods.

To mitigate the problem from nested entity, we
applied multi-label label prediction for each token.
The method is straight-forward and neither require
complicated training strategy nor additional param-
eters that leads to significant speed reduction in
inference.

Our model is composed of BERT layers and a
dense output layer. For the case where the number
of entity classes is k and using the B-<entity class>,
I-<entity class>, and O tag schema (Ramshaw and
Marcus, 1999), the output layer o is defined as
follows:

o = Sigmoid(hW + b) (1)

where h ∈ Rd is the output of the final layer of
BERT layers for a token W ∈ Rd∗(2∗k+1), and
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b ∈ R2∗k+1. The output layer will produce a vector
(with 2 ∗ k + 1 elements) of probability for each
tokens.

The training objective is to reduce loss between
the output of the model (vector of size 2 ∗ k + 1)
and the annotation vector. Each element of the an-
notation vector represents whether the token is a
part of the corresponding entity class. Note that the
elements are independent and an annotation vector
can label multiple entity classes. The element can
be a binary value (hard-label) or a probability value
(soft-label) of an off-the-shelf model. We used
a standard Binary Cross Entropy loss (as imple-
mented in the pytorch library) as our loss function
2.

3.2 Weakly supervised learning

To address the aforementioned generalisability con-
cerns, we adapt a weakly supervised learning strat-
egy (Ratner et al., 2018). Figure 1 shows an exam-
ple of our training dataset generation. Off-the-shelf
models or existing models can be used to gener-
ate weakly-labeled datasets. In our case, we uti-
lized predictions of BERN2 (Sung et al., 2022) on
PubMed articles, that is available on the official
web-page 3 (downloaded Feb 7, 2022 version v1.0).
Statistics of the downloaded dataset are shown in
Table 1. We pre-processed about 25 Million MED-
LINE abstracts available in PubMed website 4. In
order to reduce ecological footprint during exper-
iments, we used about 10% of BERN2-labeled
dataset to make our weakly labeled dataset. Ar-
ticles in test set of benchmark datasets are filtered
out from our weakly-labeled training dataset by
PMIDs to prevent any downstream models from di-
rectly learning/memorizing of BERN2 predictions.

Some of the obstacles in training with weakly
supervised learning are noises and biases added dur-
ing the labeling (Jiang et al., 2021). In the Section
5.1, we explore both soft-labels (i.e. training with
the confidence values of the supervising model)
and hard-labels (i.e. training with the categorical
labels produced by the supervising model).

3.3 Distillation

Distillation is a key tool to address the scalability
requirement as it enables to make computationally

2https://pytorch.org/docs/1.12/generated/
torch.nn.BCELoss.html

3http://bern2.korea.ac.kr/
4https://www.nlm.nih.gov/databases/download/

pubmed_medline.html

Type BERN2-labeled Our weakly-labeled

Abstracts 25,726,681
Sentences 157,267,033 16,712,485
Words (tokens) 3,646,395,389 438,686,717
Words per sentences 23.18 26.24

Table 1: Statistics of BERN2-labeled dataset and our
weakly-labeled dataset. About 10% of the BERN2-
labeled dataset is used as the weakly-labeled dataset
for the training step of TinyBERN2. Words denotes the
tokens delimited by spaces or special characters in the
sentence.

efficient models while retaining most of the F1 per-
formance. During distillation, both the hidden size
and the number of layers are reduced. The for-
mer reduces the parameter size, resulting a smaller
memory usage, and eventually facilitates inferenc-
ing with much larger batchsize. The latter not
only reduces memory usage, but also decreases
the CPU/GPU time spent for a single example to
be processed.

Following the work of Jiao et al. (2020), we
applied two-stage approach of distillation. In the
first stage, we distillate a biomedical domain spe-
cific transformer language model to build a task-
independent tiny language model (LM). In the sec-
ond stage, the distilled LM can be trained for a task-
specific dataset (such as an NER task) directly or
alternatively, a full-sized transformer model trained
on the specific NER task is used as a teacher model,
which in turn tunes a task-specific distilled LM.

In our experiment, the teacher model for the first
stage is PubMedBERT (Gu et al., 2021). For the
second stage, we first train a full sized BERN2
(Sung et al., 2022) on our weakly labeled dataset,
which is then used as a teacher model for our final,
distilled NER model (TinyBERN2).

4 Experiments and Results

4.1 Benchmark Datasets
For evaluation of our TinyBERN2 model, we
chose 8 benchmark datasets of 6 entity classes:
Gene/Protein, Disease, Chemical, Species, Cell
line, and Cell type (Doğan et al., 2014; Li et al.,
2016; Krallinger et al., 2015; Smith et al., 2008;
Kim et al., 2004; Gerner et al., 2010; Neves et al.,
2013; Kaewphan et al., 2016). While we were de-
signing the experiment, we wanted to examine the
generalizability (i.e. ability to predict unseen en-
tities that are not in the training dataset (Kim and
Kang, 2022), which is essential for real-world use

https://pytorch.org/docs/1.12/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/1.12/generated/torch.nn.BCELoss.html
http://bern2.korea.ac.kr/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Figure 1: Building a weakly supervised dataset and subsequent training our weakly supervised BERN2 (WS-BERN2)
model. We used BERN2 (Sung et al., 2022) to generate weakly-labeled datasets. Alternatively, off-the-shelf models
/ existing models can be used. Additional datasource integration can be applied at the step (b). Generated weakly-
labeled datasets can be used to train a full-sized LM (WS-BERN2, or teacher model in the step (c)) or to train a
tiny-sized LM (distillated LM) directly.

cases. To this end, we evaluate our model on sev-
eral datasets that were not used to train our teacher
model (BERN2). These are marked with † in the
main experiment table (Table 2).

For the benchmark datasets, we used MTL-
Bioinformatics-2016 GitHub repository 5 (Crichton
et al., 2017) with an additional processing step that
ensures all special characters are consistently used
as token delimiters. All benchmark datasets were
pre-processed to have the same format, where a
line contains one token and a corresponding label
tag as in CoNLL-X format (Buchholz and Marsi,
2006).

4.2 Results

Table 2 shows our experimental results on bench-
mark datasets. We compared the performance
of the off-the-shelf model (BERN2), weakly-
supervised model (WS-BERN2), and distilled
weakly-supervised BERN2 model (TinyBERN2)
in terms of precision/recall/F1 and computational
costs.

4.2.1 Evaluation metrics (accuracy)
We measured entity level Precision, Recall, and F1-
score using SeqEval library 6 (Nakayama, 2018).
Some datasets contain multiple entity classes. As
our model supports multi-label output for each to-
ken, we first save model predictions for all types

5https://github.com/cambridgeltl/
MTL-Bioinformatics-2016

6https://huggingface.co/spaces/
evaluate-metric/seqeval

and collect each type separately using the saved out-
put and evaluate entity classes using the collected
output. Formally, assume that a model can predict
k entity classes and an example has n tokens. If
we use BIO-tagging schema the number of labels
are 2 ∗ k+1 including "O" label. The output of the
model can be denoted as a matrix M ∈ R(2∗k+1)×n.
For evaluating i-th (i ∈ {1 · · · k}) entity class, we
use two rows that marks the given entity class and
a row for "O" in M each of them is a vector of
length n. These three vectors are merged and form
a prediction list, which is used along with the gold
standard labels for evaluating an entity class of a
benchmark dataset.

In our experiments, F1-scores of our weakly su-
pervised model (WS-BERN2) were analogous to
BERN2 model for entity classes where more train-
ing data were available (Gene, Disease, Chemical).
Our weakly supervised model showed better per-
formance in cross-dataset evaluation (i.e. evalua-
tion on datasets that are not used to train BERN2),
which support our assumption on generalisabil-
ity. As expected, our distilled model, TinyBERN2
showed a lower F1 score across most datasets com-
pared to WS-BERN2, although this was marginal
in many cases.

4.2.2 Evaluation metrics (Computational
costs)

For evaluation of the models in respect of through-
put and speed, we used 26,365 sentences from
BC4CHEMD test dataset. One sentence forms a
test sample. Speed in Table 2 is a measurement for

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://huggingface.co/spaces/evaluate-metric/seqeval
https://huggingface.co/spaces/evaluate-metric/seqeval
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BERN2 (*) WS-BERN2 TinyBERN2

Group Benchmark P / R / F1 P / R / F1 P / R / F1

Gene BC2GM † 82.47% / 80.77% / 81.61% 82.52% / 82.55% / 82.54% 80.80% / 79.37% / 80.08%
JNLPBA 67.23% / 72.37% / 69.70% 65.88% / 70.14% / 67.95% 64.72% / 69.08% / 66.83%
CellFinder 63.28% / 52.89% / 57.62% 70.25% / 80.40% / 74.98% 63.67% / 75.71% / 69.17%

Disease NCBI-disease † 86.33% / 80.94% / 83.55% 87.41% / 88.23% / 87.82% 84.95% / 82.92% / 83.92%
BC5CDR-Disease 77.14% / 64.76% / 70.41% 78.26% / 67.36% / 72.40% 76.91% / 66.25% / 71.18%

Chemical BC4CHEMD † 93.66% / 92.06% / 92.86% 91.93% / 91.44% / 91.69% 90.02% / 88.70% / 89.36%
BC5CDR-Chemical 94.41% / 86.57% / 90.32% 94.55% / 87.59% / 90.94% 94.52% / 86.55% / 90.36%

Cell line JNLPBA † 50.00% / 76.10% / 60.35% 33.43% / 71.80% / 45.62% 34.85% / 68.80% / 46.27%
CellFinder 8.52% / 36.07% / 13.78% 10.08% / 45.02% / 16.48% 3.61% / 12.37% / 5.59%
GELLUS 8.61% / 25.70% / 12.90% 9.01% / 24.02% / 13.11% 7.54% / 18.99% / 10.79%

Cell type JNLPBA † 60.49% / 67.96% / 64.01% 33.43% / 71.80% / 65.33% 66.41% / 64.06% / 65.22%
CellFinder 51.12% / 32.19% / 39.50% 48.86% / 31.81% / 38.53% 52.33% / 25.06% / 33.89%

Species LINNAEUS † 89.13% / 91.56% / 90.33% 80.82% / 44.01% / 56.99% 81.86% / 42.05% / 55.56%
CellFinder 33.38% / 75.08% / 46.21% 38.03% / 52.96% / 44.27% 46.02% / 50.47% / 48.14%

Model complexity Backbone model Bio-LM (Lewis et al., 2020) PubMedBERT (Gu et al., 2021) Distilled model
# Parameters 365M 109M 14M
# Layers 24 12 4

Throughput (CPU) Speed (s/steps) 0.37 sec/steps 0.043 sec/steps 0.017 sec/steps
(batch size = 1) Throughput (samples/s) 2.66 samples/s 22.93 samples/s 57.43 samples/s

Throughput (CPU) Speed (s/steps) N/A 1.204 sec/steps 0.119 sec/steps
(batch size = 32) Throughput (samples/s) N/A 26.56 samples/s 267.40 samples/s

Throughput (GPU) Speed (s/steps) 0.037 sec/steps 0.012 sec/steps 0.006 sec/steps
(batch size = 1) Throughput (samples/s) 26.33 samples/s 83.66 samples/s 160.86 samples/s

Throughput (GPU) Speed (s/steps) N/A 0.086 sec/steps 0.023 sec/steps
(batch size = 32) Throughput (samples/s) N/A 367.89 samples/s 1354.08 samples/s

Table 2: Performance of our TinyBERN2 model and BERN2 model. Benchmark datasets that are used to train
BERN2 is marked with †. WS-BERN2 denotes our model trained on weakly-supervised dataset. # Layers denotes
the number of transformers layer in the backbone model, excluding embedding layer and the output layer. *:
Performance for the BERN2 may vary with the BERN2 paper (Sung et al., 2022) as we applied different tokenization
schema, and application overheads for throughput.

seconds spent for an evaluation step: we divided
the number of steps by time spent to process the
dataset using mini batch size of 1. The models
were loaded in the memory before the experiment.

For BERN2 model (the off-the-shelf model), we
installed BERN2 in a local machine to reduce net-
work overheads. The model codes were modified
to run without normalization and rule-based post-
processing features, with help of the BERN2 au-
thors. For evaluating the memory usage of BERN2,
we only report memory usage of batch_size = 1 set-
ting, as BERN2 doesn’t currently support making
batch predictions 7. For the same reason, we omit
throughput results for BERN2.

We used a bare-metal server (Ubuntu Server
16.04.3 LTS) with single NVIDIA TITAN Xp
(12GB) GPU and Xeon(R) E5-2630 v4 @ 2.2GHz
(10 Core / 20 Threads) CPU for the experiments.

7https://github.com/dmis-lab/BERN2/issues/10

5 Discussions

5.1 Effect of training by soft-labeling

In Section 3.2 we suggested that the traditional
binary labeling, or hard-labeling, can hinder the
weakly-labeled training by adding biases. To exam-
ine this hypothesis, we compared the performance
of models trained using the hard-label dataset and
the soft-label dataset.

Table 3 shows the performance of WS-BERN2
models trained on BIO-tagging with hard-labels
and soft-labels (for the comparison between IO-
tagging and BIO-tagging, see Section 5.2). In
macro average score, WS-BERN2 model trained
with soft-label outperformed model trained with
hard-label by 0.52%. An interesting observation
is that the model benefited from soft-labelling for
entity classes with fewer training instances in the
weakly-labeled dataset. Here, the macro average
improvement was 0.89% in 7 benchmark datasets
across the species, cell line and cell type entity

https://github.com/dmis-lab/BERN2/issues/10
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BIO-Hard BIO-Soft IO-Soft

Entity Group Benchmark F1 F1 F1

Gene BC2GM † 82.78% 82.54% 83.76%
JNLPBA 67.93% 67.95% 68.82%
CellFinder 73.71% 74.98% 75.36%

Disease NCBI-disease † 87.38% 87.82% 87.82%
BC5CDR-Disease 72.67% 72.40% 72.85%

Chemical BC4CHEMD † 91.81% 91.69% 92.44%
BC5CDR-Chemical 91.05% 90.94% 91.26%

Cell line JNLPBA † 44.70% 45.62% 48.27%
CellFinder 15.66% 16.48% 14.73%
GELLUS 12.46% 13.11% 12.11%

Cell type JNLPBA † 64.45% 65.33% 66.60%
CellFinder 39.27% 38.53% 38.83%

Species LINNAEUS † 56.70% 56.99% 57.23%
CellFinder 40.86% 44.27% 43.33%

Macro Average 60.10% 60.62% 60.96%

Table 3: Performance of our weakly-supervised BERN2
models by different labeling schema. Benchmark
datasets that are used to train BERN2 is marked with †.

classes. Marginal improvements were observed
for entity classes where more training data were
available (Gene, Disease, Chemical), with a macro
average improvement of 0.14% in 7 benchmark
datasets.

5.2 Tagging Schema

Previous works on Biomedical NER tasks have
preferred to use the BIO-tagging schema over IO-
tagging (i.e. only tag with Inside or Outside), pre-
sumably because BIO-tagging can delimit entity
spans completely (i.e. IO-tagging cannot delimit
two consecutive entities). However, we revisit this
convention for the NER task where the model is
a transformer based language model and the input
text are from the formal scientific literature.

Transformer based language models, such as
BERT and BioBERT, use trained tokenizers, such
as BPE-tokenizers (Sennrich et al., 2016), and do
not remove stopwords or special characters. In-
stead those tokenizers make stopwords or special
characters an independent token.

We hypothesized that in scientific literature, the
writer of the text tend to express themselves in a
way that causes entities to be wrapped with non-
entities, stopwords (such as and, or) or punctuation
characters (such as ",", ".", "’", and """).

From this perspective, we conducted a prelimi-
nary study using BERN2 predictions on 106,921
sentences from randomly sampled articles. Across
102,569 entities, 99,814 entities (97.3%) do not
have adjacent entities, in the sense that an entity

span starts right after an entity span of the same
class ends - only 466 entities were found to have
adjacent entities that cannot be delimited with the
IO-tagging schema.
 
… metabolism of goldfish Carassius auratus (L.).', 
 
 
 
{'doc_id': '9245_00', 
 'inpSeq': 'Influence of anoxia on the energy metabolism of goldfish Carassius auratus 
(L.).', 
 'sentStart': 0, 
 'sentEnd': 80, 
 'annotations': [{'id': ['NCBI:txid7957'], 
   'span': {'begin': 48, 'end': 56}, 
   'obj': 'species', 
   'is_neural_normalized': False, 
   'mention': 'goldfish', 
   'prob': 0.59980309009552},5542535 
  {'id': ['NCBI:txid7957'], 
   'span': {'begin': 57, 'end': 74}, 
   'obj': 'species', 
   'is_neural_normalized': False, 
   'mention': 'Carassius auratus', 
   'prob': 0.9694346785545349}], 
 'tokenized': ['Influence', 
  'of', 
  'anoxia', 
  'on', 
  'the', 
  'energy', 
  'metabolism', 
  'of', 
  'goldfish', 
  'Carassius', 
  'auratus', 
  '(', 
  'L', 
  '.', 
  ')', 
  '.'], 
 'position_original': [{'begin': 0, 'end': 9}, 
  {'begin': 10, 'end': 12}, 
  {'begin': 13, 'end': 19}, 
  {'begin': 20, 'end': 22}, 
  {'begin': 23, 'end': 26}, 
  {'begin': 27, 'end': 33}, 
  {'begin': 34, 'end': 44}, 
  {'begin': 45, 'end': 47}, 
  {'begin': 48, 'end': 56}, 
  {'begin': 57, 'end': 66}, 
  {'begin': 67, 'end': 74}, 
  {'begin': 75, 'end': 76}, 
  {'begin': 76, 'end': 77}, 
  {'begin': 77, 'end': 78}, 
  {'begin': 78, 'end': 79}, 
  {'begin': 79, 'end': 80}], 
 'index_diff_original': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]} 

 

Figure 2: An example of adjacent entities (goldfish and
Carassius auratus).

Based on this observation, we conducted an ex-
periment to evaluate the usability of IO-tagging.
Performances of WS-BERN2 models trained on
IO-soft and BIO-soft are denoted in Table 3. Based
on the macro average score, the model using IO-
tagging outperformed the model with BIO-schema.
For the performance on entity classes across the
benchmark datasets, 11 scores output 14 were im-
proved by using IO-tagging. Using IO-tagging was
also beneficial for the aspect of the computational
cost required for the training convergence (i.e. fully
trained), as the model is less complex.

However, we do not recommend the IO-tagging
model for enterprise use cases, as the input samples
cannot be guaranteed to be restricted in the scien-
tific/academic writing with complete punctuation.
Absence of statistics for manually-labeled dataset
remains as limitation of this auxiliary study and is
a topic for further research.

5.3 Enterprise usage of Kazu
We have integrated our TinyBERN2 model into our
new Kazu framework, alongside other components
for abbreviation expansion (Neumann et al., 2019),
entity linking (Liu et al., 2020) and additional novel
algorithms outside the scope of this paper (full
details of the other Kazu components can be found
at 8).

Kazu is deployed at AstraZeneca enterprise
wide, and is already in use as a core component
for projects such as biological knowledge graph
(BIKG) construction (Geleta et al., 2021) and clini-
cal trial design via enabling the structured search
of clinical studies. An execution over PubMed (ab-
stracts) and PubMed Central (full text documents)
has extracted the following (uniquely mapped) ref-
erences: 22 532 diseases, 19 884 genes, 18 715
drugs, 6469 anatomy references, 5 372 cell line
references, and 53 cell type references. Additional
deployments of Kazu for other internal projects are
planned in the near future.

8https://github.com/AstraZeneca/KAZU

https://github.com/AstraZeneca/KAZU
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Limitations

One of our objectives in this work was to establish
that the TinyBERN2 model is highly performant,
both in terms of accuracy metrics and computa-
tional efficiency. However, we were limited to
testing this on just a single type of CPU and GPU.
Since hardware varies dramatically, it is difficult to
predict the precise throughput gains for any single
setup. In addition, BERN2 incorporates several
elements of pre/post processing, that it wasn’t pos-
sible to completely disable during throughput test-
ing, which will impact the reported throughput and
accuracy results to a small degree. Nevertheless,
we expect our conclusions to be broadly consistent,
given the massive reduction in parameters/layers
of the TinyBERN2 model vs the original BERN2.

Notably, both the full BERN2 and our weakly
supervised/distilled versions struggled to achieve
high F1 on the cell line/type classes. This may be
due to inconsistencies in the annotation schema
of the cell line/type datasets. However, we also
suspect that this is due to the fact our model does
not make use of dictionary features. This is con-
sistent with the observations of Kaewphan et al
(Kaewphan et al., 2016), in that ML models with-
out dictionary support tend to perform poorly on
this entity class. Further work will seek to supple-
ment our approach to weak supervision with such
dictionary features for entity classes that are likely
to benefit.

Regarding the sizing of our TinyBERN2 model,
we followed the recommendations of the original
TinyBERT paper, and did not attempt a hyperpa-
rameter search to find the optimal trade off between
throughput and performance degradation. Further
work should explore this aspect.
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Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1–10.

David Geleta, Andriy Nikolov, Gavin Edwards, Anna
Gogleva, Richard Jackson, Erik Jansson, An-
drej Lamov, Sebastian Nilsson, Marina Pettersson,
Vladimir Poroshin, et al. 2021. Biological insights
knowledge graph: an integrated knowledge graph to
support drug development. Biorxiv.

Martin Gerner, Goran Nenadic, and Casey M Bergman.
2010. Linnaeus: a species name identification sys-
tem for biomedical literature. BMC bioinformatics,
11(1):85.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin,
and Tuo Zhao. 2021. Named entity recognition with
small strongly labeled and large weakly labeled data.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1775–1789, Online. Association for Computational
Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

https://aclanthology.org/W06-2920
https://aclanthology.org/W06-2920
https://doi.org/10.18653/v1/2021.acl-long.140
https://doi.org/10.18653/v1/2021.acl-long.140
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372


636

Suwisa Kaewphan, Sofie Van Landeghem, Tomoko
Ohta, Yves Van de Peer, Filip Ginter, and Sampo
Pyysalo. 2016. Cell line name recognition in support
of the identification of synthetic lethality in cancer
from text. Bioinformatics, 32:276 – 282.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Hyunjae Kim and Jaewoo Kang. 2022. How do your
biomedical named entity recognition models general-
ize to novel entities? Ieee Access, 10:31513–31523.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction to
the bio-entity recognition task at jnlpba. In Proceed-
ings of the international joint workshop on natural
language processing in biomedicine and its applica-
tions, pages 70–75. Association for Computational
Linguistics.

Martin Krallinger, Obdulia Rabal, Florian Leitner,
Miguel Vazquez, David Salgado, Zhiyong Lu, Robert
Leaman, Yanan Lu, Donghong Ji, Daniel M Lowe,
et al. 2015. The chemdner corpus of chemicals and
drugs and its annotation principles. Journal of chem-
informatics, 7.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jake Lever, Russ B. Altman, and Jin-Dong Kim. 2020.
Extending textae for annotation of non-contiguous
entities. Genomics & Informatics, 18.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: Understanding and extending
the state-of-the-art. In Proceedings of the 3rd Clini-
cal Natural Language Processing Workshop, pages
146–157, Online. Association for Computational Lin-
guistics.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases &
Curation, 2016.

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco
Basaldella, and Nigel Collier. 2020. Self-alignment
pre-training for biomedical entity representations.
CoRR, abs/2010.11784.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. 2018. Ray: A distributed frame-
work for emerging AI applications. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 561–577, Carlsbad, CA.
USENIX Association.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and Robust Models
for Biomedical Natural Language Processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association for
Computational Linguistics.

Mariana Neves, Alexander Damaschun, Nancy
Mah, Fritz Lekschas, Stefanie Seltmann, Harald
Stachelscheid, Jean-Fred Fontaine, Andreas Kurtz,
and Ulf Leser. 2013. Preliminary evaluation of the
cellfinder literature curation pipeline for gene expres-
sion in kidney cells and anatomical parts. Database,
2013.

L. A. Ramshaw and M. P. Marcus. 1999. Text Chunking
Using Transformation-Based Learning, pages 157–
176. Springer Netherlands, Dordrecht.

Alexander J. Ratner, Braden Hancock, Jared A. Dunn-
mon, Roger E. Goldman, and Christopher Ré. 2018.
Snorkel metal: Weak supervision for multi-task learn-
ing. Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando,
Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-
Shi Lin, Roman Klinger, Christoph M Friedrich, Kuz-
man Ganchev, et al. 2008. Overview of biocreative ii
gene mention recognition. Genome biology, 9(2):S2.

Mujeen Sung, Minbyul Jeong, Yonghwa Choi,
Donghyeon Kim, Jinhyuk Lee, and Jaewoo Kang.
2022. Bern2: an advanced neural biomedical named
entity recognition and normalization tool. arXiv
preprint arXiv:2201.02080.

Wonjin Yoon, Chan Ho So, Jinhyuk Lee, and Jaewoo
Kang. 2019. Collabonet: collaboration of deep neu-
ral networks for biomedical named entity recognition.
BMC bioinformatics, 20(10):55–65.

https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
http://arxiv.org/abs/2010.11784
http://arxiv.org/abs/2010.11784
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.1007/978-94-017-2390-9_10
https://doi.org/10.1007/978-94-017-2390-9_10
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

