arXiv:2209.14415v1 [cs.CL] 28 Sep 2022

Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding

Jun Wang, Patrick Ng, Alexander Hanbo Li, Jiarong Jiang,
Zhiguo Wang, Ramesh Nallapati, Bing Xiang, Sudipta Sengupta
Amazon AWS Al Labs
{juwanga, patricng, hanboli, jiarongj, zhiguow, rnallapa, bxiang, sudipta} @amazon.com

Abstract

Most recent research on Text-to-SQL semantic
parsing relies on either parser itself or simple
heuristic based approach to understand natural
language query (NLQ). When synthesizing a
SQL query, there is no explicit semantic infor-
mation of NLQ available to the parser which
leads to undesirable generalization perfor-
mance. In addition, without lexical-level fine-
grained query understanding, linking between
query and database can only rely on fuzzy
string match which leads to suboptimal perfor-
mance in real applications. In view of this, in
this paper we present a general-purpose, mod-
ular neural semantic parsing framework that
is based on token-level fine-grained query un-
derstanding. Our framework consists of three
modules: named entity recognizer (NER), neu-
ral entity linker (NEL) and neural semantic
parser (NSP). By jointly modeling query and
database, NER model analyzes user intents
and identifies entities in the query. NEL model
links typed entities to schema and cell values
in database. Parser model leverages available
semantic information and linking results and
synthesizes tree-structured SQL queries based
on dynamically generated grammar. Experi-
ments on SQUALL, a newly released seman-
tic parsing dataset, show that we can achieve
56.8% execution accuracy on WikiTableQues-
tions (WTQ) test set, which outperforms the
state-of-the-art model by 2.7%.

1 Introduction

As a natural language interface to database, Text-
to-SQL semantic parsing has made great progress
in recent years with availability of large amount
of annotated data and advances of neural models
(Guo et al., 2019; Ma et al., 2020; Rubin and Be-
rant, 2020; Wang et al., 2020; Zeng et al., 2020).
These models typically employ a standard encoder-
decoder modeling paradigm where model first en-
codes query and schema, then autoregressively de-
codes an executable program which could be a se-

quence of logical form tokens for flat decoding (Shi
et al., 2020) or an abstract syntax tree (AST) for
structured decoding (Lin et al., 2019; Wang et al.,
2020). Either way, columns and tables are copied
from input schema and literal values are copied
from input query using pointer network in output
program (Shi et al., 2020; Wang et al., 2020).

Despite the success of these models, there are
several issues that are left unaddressed for real ap-
plications. First, without fine-grained query under-
standing, autoregressive top-down decoding suffers
from generalizing to unseen query patterns at in-
ference time (Herzig and Berant, 2020; Oren et al.,
2020; Scholak et al., 2021), a problem commonly
known as compositional generalization. Specifi-
cally, model may fail to synthesize correct SQL
for compound input queries like “where is the cy-
clist who has the most points from” given training
queries such as “where is the runner from”, “which
cyclist gets the most medals”. Second, in previous
works literal values in output logical forms are ei-
ther omitted (Wang et al., 2020) or directly copied
from input utterances (Brunner and Stockinger,
2020; Shi et al., 2020). The former will gener-
ate non-executable queries. The latter is problem-
atic because mentions in query are often different
from their canonical forms in database. For in-
stance, assuming a query like “how many points
does LBJ get in last game”, directly copying word

“LBJ” into SQL query won’t match the name “Le-
Bron James” in the database. Third, as is shown
in Guo et al. (2019); Lin et al. (2019), structured
decoding is effective in semantic parsing tasks as
it’s more likely to generate coherent, executable
SQL queries. In structured decoding, a sequence
of production rules is generated from context free
grammars along with schema and literal values.
However, among existing solutions, some parsers
require manually designed grammars (Lin et al.,
2019). Others like RAT-SQL in Wang et al. (2020)
use grammar generated from compiler tool which is

316

Proceedings of EMNLP 2022 Industry Track, pages 316-322

December 9-11, 2020. ©2022 Association for Computational Linguistics

often redundant, opaque to understand and offering
no flexibility in model design.

To address these challenges, we propose a ro-
bust, unified framework to solve Text-to-SQL prob-
lem. Inspired by a recent work (Herzig and Berant,
2020), the foundation of our parser is based on
fine-grained query understanding. We leverage a
span based named entity recognition (NER) model
to chunk input query and extract SQL-typed enti-
ties. Based on the type information we link enti-
ties to database using neural entity linker (NEL)
model. NEL provides linked literal values to the
parser, thus the generated SQL is executable. The
final module of our framework is a grammar-based
seq2seq parser which synthesizes executable log-
ical forms from natural language query (NLQ),
schema, linking results and grammar. In our parser,
we dynamically build logical form grammars from
training data. This approach frees us from manu-
ally constructing grammars and streamlines devel-
opment of parser model. At the same time, as gram-
mar creation is agnostic to database, our framework
is more general-purpose comparing with previous
works. In addition to NLQ and schema, linking
information from NEL is also fed to the parser
to ensure global reasoning in the decoding. Con-
cretely this linking feature will help guide model
to select proper actions in decoding. A recent work
(Ma et al., 2020) takes a similar approach as our
framework — they have an extractor model to ex-
tract entities and then link mentions to database.
However, they use entity label relations to con-
struct logic forms which greatly limits complexity
of generated program. By decoupling query un-
derstanding, linking and parsing, our framework
offers better explainability and flexibility in model
design and optimization.

A major challenge to build such pipeline sys-
tem is fine-grained annotations which are needed
to train entity recognition model and entity link-
ing model. To tackle this issue, we leverage the
newly released SQUALL dataset which provides
alignment annotations between NLQ tokens and
logical forms (Shi et al., 2020). Instead of using
alignment signal as attention supervision as in Oren
et al. (2020) and Shi et al. (2020), we programmat-
ically convert the alignment annotations to entity
annotations and linking annotations, and use these
supervision signals to train NER and NEL models.
A training example is shown in Figure 1 that illus-
trates how the aforementioned conversion works.

NLQ: How many albums were released under the emi record ?

SQL: SELECT count(C2) FROM w WHERE

='emi'

Alignment: Annotation:

— —

albums ——> (2 albums ——> SELECT COLUMN| C2

emi ——> emi -
emi —— LITERAL.STRING | emi

—

Figure 1: Fine-grained annotation from SQUALL
dataset: based on target logical forms, alignment and
database contents we can derive SQL-semantic annota-
tion types for spans in query. Contents behind vertical
bar in annotation are corresponding linking results.

We evaluate our framework on SQUALL dataset
which has fine-grained alignment annotations. On
the dev set, our framework obtains 49.36% logical
form exact match (EM) accuracy and 69.14% exe-
cution accuracy, which is 2.2% and 2.6% improve-
ment comparing with the best model in SQUALL
paper, respectively.

2 Approach

In this section, we describe our pipeline framework
and its application to chunking, linking and parsing
tasks.

2.1 Problem Definition

The input to Text-to-SQL semantic parsing prob-
lem is a sequence of natural language query
tokens @ = {q1,92,.,q¢} and a rela-
tional database containing multiple tables D =
{t1,t2, ..., }. Each table is represented as 7" =
{h1, ha, ...k g, 1, 2, ...cjc| } Where h; and c; are
column headers and cell values in a table, respec-
tively. The goal of the task is to generate an output
program Y consisting of a sequence of production
rules from grammar, schema and literal values. In
terms of structured decoding, an abstract syntax
tree is generated and the best tree ¢ is computed
by:
y = arg max P(ylq,t, h,c)
y

given query tokens ¢ and database contents includ-
ing, table names ¢, column headers h and cell val-
ues c. Different from previous work (Guo et al.,
2019), we are targeting at generating full-fledged
SQL query which is directly executable.

2.2 Schema and Cell Value Aware NER
Model

The first stage of our framework is an NER model
which serves to understand user intents in the query.

317

Considering the fact that there could be nested enti-
ties, a span based NER model is used to chunk and
identify entities in query (Eberts and Ulges, 2019;
Zhong and Chen, 2020). We extract aggregation
functions, column mentions and literal values from
query. In addition, for columns we add SQL seman-
tics to the NER tags. Specifically, as tags shown
in Figure 1, we have fine-grained tags such as
“WHERE_COLUMN", “GROUPBY_COLUMN"
etc. A pretrained BERT base model is used as its
core (Devlin et al., 2019), as illustrated in Figure 2.

Unlike regular NER tasks, entities in this use
case highly depend on underlying database con-
tents. To this end, we design a schema and cell
value aware NER model to take database informa-
tion into account. As is shown in Figure 2, we
append schema and cell values to query tokens as
input to the BERT encoder and separate them using
“[SEP]” token. Let S = {s1, S, ..., sp, } denote all
spans built from NLQ tokens. A span is represented
as:

€s = [ecta:§ €start; €end; elength]

which is concatenation of representations of con-
text ecsy, start of span token egqrt, €nd of span
token e.,q and learned span length embedding
€length- The span vector then goes through a mul-
tilayer perceptron to predict whether the span is
an entity and determine the corresponding entity
types. We minimize the negative log-likelihood for
all spans during training.

p(yslg, t, h, ¢) = softmax (Wes + b)

LNER(Q) = - Z logp(y8|Q7 tv h7 G 0)

Here ¢, t, h, c have the same definition as Sec-
tion 2.1 which represent query tokens, table names,
table headers and cell values. 6 are learnable pa-
rameters in NER model. As in Zhong and Chen
(2020), a None token is added into vocabulary of
entity types. At inference time, spans which are
classified as None will be discarded.

As the first stage of our pipeline, recall of NER
model has great impact on the system performance.
To improve recall performance, we introduce an
additional post-processing step where we collect all
schema and cell values and use them as gazetteer
list. When there are exactly matched spans in
NLQ, we force model to generate a valid entity
type for such spans. At the same time, if a span
overlaps with a gazetteer matched span, we choose
to keep gazetteer matched span as it is more likely
to be a valid span.

To further leverage matching information, we
add constrained decoding after filtering (Lester
et al., 2020). Concretely in decoding process we
force model to predict labels based on gazetteer
matching category. For instance, when chunking
query “how many points does LeBron James get
in last game”, if there is an exact match of span
“LeBron James” with an entry in cell value gazetteer
list, the decoding logic will force the model to give
a prediction tag which is compatible with cell value

type.

2.3 Neural Entity Linking (NEL) Model

The sketch of generated SQL logical forms consists
of rules from grammar. To populate the sketch we
use a pointer network in parser to copy table names,
column names and cell values from input schema
and query. However, directly copying these entities
will lead to non-executable SQL as columns and
literal values in NLQ can be different from their
canonical form in the database. Our entity linking
model bridges the gap between entity mentions in
query and entity values in SQL. Even though fuzzy
string match is widely used for linking task in liter-
ature (Wang et al., 2020; Shi et al., 2020), in real
application purely relying on fuzzy match could
lead to suboptimal performance. For instance, in
SQUALL dataset, there are less than 50% of enti-
ties that have exact matches in database. In light
of this, we use a neural ranking model for entity
linking task. Specifically, given a mention in NLQ
and a list of candidates in database, NEL model
selects the best matched candidate for each entity
(Ledell Wu, 2020).

For column and literal value entities from output
of NER model, we construct an input to the NEL
model using NLQ tokens, mention and candidates.
For example, input to NEL model can take the
following format:

NLQ [SEP] Mention [SEP] Candidate

As we know the mention type from NER model,
we could narrow down candidates to a specific type.
For instance, if a mention is literal value type, then
candidates are only limited to cell values. It is
worth to note that without fine-grained query un-
derstanding, for each mention in NLQ, linking can-
didates have to be all contents in database. Thus
it is challenging for end-to-end model to deal with
cases where there are overlapping column names
and cell values. In addition, we could append ad-
ditional meta features to the input of NEL model.

318

Entity: select_column

Entity: where_column

A A
constraint decoding
gazetteer filtering & overlap filtering
A A

1st: select_column
2nd: literal.string

MLP

2nd: where_column

MLP

A 4
ctx |start|end width Span Representation |:|:¥‘
Token [cis | [n Ib d h i d [label
Representation C*S ;w many | album ##S w;re rele;sed un$er t; e;m Tecort abel
BERT Encoder
Token | | | | | | | | | | |
Embedding liow many |album| | ##s were | released |under the emi record labelJ
RS RS
NLQ tokens Fuzzy matched schema and cell values

Figure 2: Span based schema and cell value aware NER model architecture. Input tokens are tokenized by BERT

tokenizer.

When a mention is column type, we could construct
the following input:

NLQ [SEP] Mention [SEP] Candidate [SEP] value [SEP]

column type

where value is the cell value in current candidate
column which has the highest fuzzy matching score
with NLQ. Column type could be meta information
such as data type integer, string etc.

In our experiments, we use BERT base model
for linking model. After BERT encoding, a linear
layer is applied on the classification token “[CLS]”
to produce a logit score for each candidate. During
training, cross-entropy loss is calculated over all the
linking candidates. During inference, each linking
candidate is fed to the BERT model independently
and is scored by BERT model. Then best candidate
is selected based on ranking scores.

2.4 Neural Semantic Parsing (NSP) Model

Neural semantic parser model takes as input NLQ,
a database and outputs a sequence of production
rules which can be used to deterministically build
up an output program. The backbone of our neural
semantic parser is a BART Large model which
is pretrained with large amount of parallel text
data for both its encoder and decoder (Lewis et al.,
2020).

Encoder Encoder encodes NLQ tokens and
schema information. Specifically, NLQ tokens,
table names and column names are concatenated
together with a “[SEP]” token used as separator.
As we have already got literal value spans from

NER stage, at the output of BART encoder, we col-
lect representations for all of these literal spans by
pooling average token representations in the span.

From query understanding, we have SQL-
semantic tags for each column mentions. For ex-
ample, in Figure 1 we know that “album” is a “SE-
LECT_COLUMN”. At the same time, in NEL re-
sults we know “album” is linked to column “C2”.
Consequently, we know that “C2” is used in the log-
ical forms as a selection column. In order to utilize
this information in parser, we have a column type
embedding layer in the encoder. When constructing
column representations, we concatenate column
type embeddings to the original column represen-
tations. To alleviate upstream errors, during parser
model training, we randomly drop column type
feature for 20% of time so that when NER model
gives incorrect predictions, parser model learns to
handle these cases. In our experiments, we will
show that this feature can give big boost to parser
performance.

Decoder The generated program at the output of
a semantic parser can be a sequence of logical form
tokens or an AST tree. The former decoding is
generally referred to as flat decoding and the latter
one is called structured decoding. To synthesize
syntactically correct SQL program, in our frame-
work a grammar based autoregressive top-down
decoder is utilized to generate AST. Contrary to im-
plementation in Yin and Neubig (2017) where AST
grammar is collected through compiler’s tool, we
dynamically generate context free grammar from
training data. Concretely, during training stage, we
319

collect ground truth SQL queries and parse them
into SQL trees. Then we collect all the rules as
our grammar using breadth-first search algorithm.
The distinguishing feature of our grammar gen-
eration comparing with the one discussed in Lin
et al. (2019) is that we don’t need so-called "linked
rules” because we get linked entity from NEL re-
sults. This method saves us from manually writing
rules for each dataset. At the same time, it decou-
ples SQL grammar from domain knowledge which
makes our framework more general-purpose than
previous works.

At each decoding step, decoder takes as input
previous decoding result and iteratively apply pro-
duction rules to non-terminal nodes. Owing to our
query understanding based framework, we are able
to employ soft copy mechanism (See et al., 2017)
to directly copy tables, columns and values from
output representations of encoder. Finally, beam
search is used during inference time.

3 Experiment

3.1 Data

SQUALL (Shi et al., 2020) is collected based on
WikiTableQuestions which is a question-answering
dataset over structured tables. In SQUALL, each
query only relies on one table to get the answer.

To obtain supervision labels for NER and NEL
model, we first parse ground truth SQL queries
into trees. Then based on alignment information
provided by the dataset, we programmatically de-
rive entity labels and linking labels for each entity
span in the query. In total, there are 11276 training
instances and 4344 testing instances in the dataset.
Train, dev, test set partition is based on the pre-
defined setting in the released dataset. We use
logical form exact match accuracy and execution
accuracy as our evaluation metric.

3.2 Model Analysis

We first explore the best setup for our framework.
In these experiments, we always use structured de-
coding in the parser. Based on how to utilize query
understanding results, there are three different con-
figurations of our parser model: (1) In our baseline
model setup, we only utilize NER and NEL results
for entity linking purpose and copy linked results
into the generated AST. (2) Instead of using all
schema in parser’s encoder, we only input linked
columns to the parser (3) We inject fine-grained
query understanding results in the parser, i.e. add

Dev
Model
ode ACCLr ACCrxg
(1) Baseline 42.56 60.57
(2) Linked columns only 38.69 56.83
(3) Columns type feature 49.38 69.14
(4) Oracle column type feature 68.21 85.16

Table 1: System performance with different approaches
to utilize query understanding results in semantic
parser. ACCrLr, ACCgxg are logical form accuracy
and execution accuracy, respectively.

linked column type information as meta features to
the encoder of NSP.

In Table 1, we summarize performance of our
system on dev set under different parser config-
urations. Comparing “(2) Linked columns only”
model with baseline model (1), we can see that
system performance suffers because when we only
use linked columns in the parser, NER model er-
rors will propagate to the downstream. With adding
column type feature based approach (row 3 in Ta-
ble 1), we find that it can greatly boost model
performance as it guides parser to choose correct
columns. We also have an oracle experiment where
we use ground truth column type feature. As is
shown in last row in Table 1, it’s around 19% better
than our best configuration (row 3 in Table 1) which
means there is still room to improve our system.

In Table 2, we compare our model performance
with the best model (ALIGN) in SQUALL paper.
Their end-to-end model leverages BERT as the en-
coder and LSTM as decoder using flat decoding
strategy. They’re using supervised attention to help
model learn alignment information. In order to
have a fair comparison with SQUALL paper, we
add two more baselines in our experiments: in
the first experiment we augment ALIGN model by
replacing BERT encoder and LSTM decoder with
BART model; in the second experiment, we replace
structured decoding with flat decoding in our sys-
tem. In a nutshell, we compared performances of
four models: (1) original ALIGN model from Shi
et al. (2020), (2) our augmented implementation of
ALIGN, (3) our framework with flat decoding, (4)
our best configuration (row 3 in Table 1). As can
be seen from the table, our best model outperforms
ALIGN model and augmented ALIGN model in
both logical form accuracy and execution accuracy.
On test set we achieve 56.8% execution accuracy
which is 2.7% higher than the ALIGN model. If

320

Dev Test

Model ACCLr ACCexp ACCrxe
(1) ALIGN(SQUALL) 47.2 66.5 54.1
(2) ALIGN(SQUALL) + BART ~ 47.7 67.1 54.6
(3) Ours + Flat decoding 49.1 68.8 56.2
(4) Ours 49.4 69.1 56.8

Table 2: Performance comparison of our model with
ALIGN model in SQUALL paper. ALIGN + BART
model is our implementation of ALIGN model where
we replace BERT encoder and LSTM decoder with
BART encoder and decoder.

Model ACCLr
ALIGN(SQUALL) 30.29
ALIGN(SQUALL) + BART 30.94
Ours 34.78

Table 3: Model’s performance on nested queries. We
retrained ALIGN model for this experiment.

we compare two ALIGN models and two of our
systems with different decoding strategy, it’s easy
to tell BART model and structured decoding con-
tribute limited benefits in our framework which in
turn suggests that major improvement in our sys-
tem is from fine-grained query understanding part.

We also evaluate the generalizability of our
model. Our assumption is that span based NER
model can chunk query based on how meaning is
composed. As we add NER label information into
parser, we hypothesize that the parser can learn to
generate program based on semantic type of query
tokens rather than just using lexical meaning of
tokens. Thus, we would see better performance
on compositional generalization. Particularly, we
want to see how model works on nested queries
since it is an ideal set to evaluate model’s ability on
generalization. To this end, we collect all nested
queries in dev set and evaluate our system on this
nested query set. The performance is shown in
Table 3. Our model shows 4.5% improvement com-
paring with original ALIGN model and around 3%
improvement comparing with augmented ALIGN
model. The results demonstrates that our frame-
work is better at compositional queries.

3.3 Ablation Study

As the first module of our framework, NER model
plays a critical role in our pipeline system. To qual-
itatively study the impact of NER model, we did ab-
lation experiments to study how each component in

Dev Set
Model NERFI System ACCpLp
Our best model 85.14 49.38
-cell 84.23 47.51
-schema 83.70 47.66
-gazetteer 84.15 45.89
-gazetteer-cell-schema 82.98 43.66

Table 4: NER performance ablation study. Baseline
model here is span-based schema and cell value aware
NER model. We gradually remove each component to
see its impact on the system performance.

NER model affects the system performance. Con-
cretely, we use our schema aware and cell value
aware NER model as the baseline and gradually
remove each component to see how system perfor-
mance fluctuates. Table 4 summarizes our findings.
As is shown in the table, when we remove cell val-
ues, schema and gazetteer filtering, NER F1 score
goes down and system performance degrades ac-
cordingly. We can also see that among these three
components, system performance drops the most
(from 49.38 to 45.89) when we remove gazetteer
filtering. Gazetteer filtering in NER serves the role
to combine string match and model prediction. It
forces NER model to output predictions for exactly
matched spans at output which increases recall of
NER model. From system perspective, downstream
parser is more sensitive to missing entities. Thus,
improving NER recall can greatly boost system
performance.

4 Conclusion

In this work, we proposed a novel, general-purpose
Text-to-SQL semantic parsing framework which is
based on fine-grained query understanding. The
framework tackles several pain points in the Text-
to-SQL problem and offers a new robust approach
for real-life applications. Our framework outper-
forms previous state-of-the-art result by 2.7% on
SQUALL test set. In the future, we plan to explore
using fine-grained query understanding results to
constrain decoding search space in parser to further
improve system performance.

5 Limitations

While this work aims to improve Text-to-SQL se-
mantic parsing with fine-grained annotations, we
don’t have enough time and resources to collect
a dataset for such purpose. Due to this issue, our

321

experiments are limited to SQUALL dataset. In the
future, we plan to build a comprehensive dataset to
facilitate research in the area.

References

Ursin Brunner and Kurt Stockinger. 2020. Valuenet: A
neural text-to-sql architecture incorporating values.
ArXiv, abs/2006.00888.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-

ing.

Markus Eberts and Adrian Ulges. 2019. Span-based
joint entity and relation extraction with transformer
pre-training.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. arXiv preprint arXiv:2009.06040.

Martin Josifoski Sebastian Riedel Luke Zettlemoyer
Ledell Wu, Fabio Petroni. 2020. Zero-shot entity
linking with dense entity retrieval. In EMNLP.

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag-
nik Ray Choudhury, and Srinivas Bangalore. 2020.
Constrained decoding for computationally efficient
named entity recognition taggers. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1841-1848, Online. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Be-
rant, and Matt Gardner. 2019. Grammar-based neu-
ral text-to-sql generation. ArXiv, abs/1905.13326.

Jiangiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang, and
Jianping Shen. 2020. Mention extraction and link-
ing for SQL query generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6936-6942,
Online. Association for Computational Linguistics.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. arXiv
preprint arXiv:2010.05647.

Ohad Rubin and Jonathan Berant. 2020. Smbop: Semi-
autoregressive bottom-up semantic parsing. ArXiv,
abs/2010.12412.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard - parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

A. See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the potential
of lexico-logical alignments for semantic parsing to
SQL queries. In Findings of EMNLP.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567-7578, Online. Association
for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440-450, Vancouver, Canada.
Association for Computational Linguistics.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi,
Richard Socher, Caiming Xiong, Michael Lyu, and
Irwin King. 2020. Photon: A robust cross-domain
text-to-SQL system. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 204—
214, Online. Association for Computational Linguis-
tics.

Zexuan Zhong and Dangi Chen. 2020. A frustratingly
easy approach for joint entity and relation extraction.
arXiv preprint arXiv:2010.12812.

322

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.07755
http://arxiv.org/abs/1909.07755
http://arxiv.org/abs/1909.07755
https://www.aclweb.org/anthology/2020.findings-emnlp.166
https://www.aclweb.org/anthology/2020.findings-emnlp.166
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.563
https://doi.org/10.18653/v1/2020.emnlp-main.563
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/2020.acl-demos.24
https://doi.org/10.18653/v1/2020.acl-demos.24

