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Abstract

We recently introduced DRail, a declarative
neuro-symbolic modeling framework designed
to support a wide variety of NLP scenarios. In
this demo, we enhance DRailL with an easy
to use Python interface equipped with meth-
ods to define, modify and augment models in-
teractively, as well as with methods to debug
and visualize the predictions made. We demon-
strate this interface with two challenging NLP
tasks: analyzing moral sentiment in political
discourse, and analyzing opinions about the
Covid-19 vaccine.

1 Introduction

Language in real world settings is complex and
ambiguous, and relies on a shared understanding
of the world for its interpretation. Most current
NLP methods represent language in a latent high-
dimensional space by learning word co-occurrence
patterns from massive amounts of textual data (De-
vlin et al., 2019; Brown et al., 2020). This repre-
sentation is very powerful, but it can be insufficient
to capture non-linguistic context such as the phys-
ical, social and cultural environments (Bisk et al.,
2020). Manually annotating these diverse sources
of context is a major challenge, and as a result, in-
teractive and humans-in-the-loop approaches are
gaining popularity to enhance and correct NLP
models (Lertvittayakumjorn and Toni, 2021). How-
ever, the complexity of the representation learned
by deep learning models create challenges for the
communication between humans and machines. To
circumvent these challenges, most existing humans-
in-the-loop techniques solicit people to provide
feedback on individual predictions instead, or al-
low people to augment the dataset by providing
additional examples (Wang et al., 2021). While
straightforward, working in the space of the raw
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inputs does not take advantage of the ability of hu-
mans to make abstractions and reason over them,
like forming concepts to generalize from observa-
tions to new examples (Rogers and McClelland,
2004), turning raw sensory inputs into high-level
semantic knowledge (Navon, 1977), and deduc-
tively drawing inferences via conceptual rules and
statements (Johnson, 1988).

Neuro-symbolic representations present us with
an opportunity us to enrich expressive language
representations. On the one hand, symbols can be
used to represent higher-level concepts and abstrac-
tions to characterize the information expressed in
the text without resorting to individual annotations.
On the other hand, distributed representations can
help us ground these concepts and generalize to lin-
guistic variations. Moreover, symbolic rules allow
us to explicitly model the dependencies between as-
pects of the language and higher-level abstractions
and behaviors. Most importantly, neuro-symbolic
representations are inherently explainable, making
them particularly useful for interactive and humans-
in-the-loop approaches. Recently, we introduced
DRaiL (Pacheco and Goldwasser, 2021), a neuro-
symbolic modeling framework for NLP. In this
work, we enhance DRailL with a Python interface
to facilitate the interactive exploration of neuro-
symbolic NLP models. We demonstrate how to
model two challenging language scenarios using
DRaiL,, and propose a set of diagnostic and visual-
ization operations to probe and debug DRaiL pre-
dictions. Then, we demonstrate how we can inter-
actively enhance and modify DRaiLL programs to
correct mistakes and introduce additional knowl-
edge. This work represents a first step towards
an interactive neuro-symbolic framework. An exe-
cutable version of this demo is publicly available,
and it includes the full code flow to run an exam-
ple’. The source code for DRail, as well as its
documentation and additional examples have been
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released to the community?

2 Case Studies

Morality Framing in Political Discourse We
previously introduced Morality Framing, a knowl-
edge representation framework for capturing sen-
tence and entity level moral sentiment (Roy et al.,
2021). It is built on top of the Moral Foundation
Theory (MFT) (Haidt and Joseph, 2004; Haidt and
Graham, 2007) that proposes six Moral Founda-
tions (MFs). Morality Frames extend MFT by in-
troducing entity sentiment dimensions. The MFs
are considered as frame predicates, and positive
and negative entity roles are associated with each
predicate. For example, the MF ‘Care/Harm’ is mo-
tivated by entities that are either ‘providing care’
or ‘doing harm’ to a specific target entity.

Morality Frame Predicate: Care/Harm

[New cyber center|c 4 rrnve will provide hands-on learn-
ing to prepare midshipmen to protect [US|7arcer from
[cyber terrorists and thugs| g arrING.

The full list of morality frames can be found in
the original paper. Given a text, the task is to iden-
tify - (1) the predicate (MF), and (2) the moral roles
of the entities mentioned in the text. The dataset
contains 1.5k tweets by US congress-members an-
notated for MF and entity roles.. We also released
a dataset of 9.5k unlabeled tweets on the abortion
issue, which we explore in this demo.

The Covid-19 Vaccination Debate In previ-
ous work, we proposed a holistic analysis frame-
work to analyze opinions about the Covid-19 vac-
cine (Pacheco et al., 2022). This framework builds
on Morality Frames, and connects it with opinion
analysis. In addition to predicting MFs and entity
roles, we predict the stance with respect to the vac-
cine (i.e. pro-vax or anti-vax), and we model a set
of repeating themes frequently used to discuss the
vaccine in social media.

Stance: Anti-Vax, Theme: Government distrust

I never saw anything like this [government|o prESsING
’s obsession with [citizens]r 4 rc e getting the Covid vac-
cine. Is this a trial run for a socialist dictatorship?

Our analysis identifies the stance expressed in
the post (anti-vaccination) and the reason for it
(distrust of government). Given the ideologically
polarized climate of social media discussion on this
topic, we also aim to characterize the moral atti-
tudes expressed in the text (oppression), and how

3https ://gitlab.com/purdueNlp/DRail

different entities mentioned in it are perceived. The
dataset contains 750 tweets geo-located in the U.S.
annotated for morality frames and stance, as well
as a set of themes identified interactively. We also
released a dataset of 85k unlabeled tweets about
the covid vaccine, which we explore in this demo.

3 Problem Specification

In this section, we demonstrate how to model the
scenarios described in Section 2. To model a prob-
lem in DRaiL., we need to decompose the domain
into a set of entities, labels, predicates and prob-
abilistic rules that express the different decisions
and their inter-dependencies. To predict morality
frames, we break down the problem into two main
decisions: 1) the most prominent moral founda-
tion expressed in the tweet, and 2) for each entity
mentioned in the tweet, the role they playing. In
addition to this, we include some contextualizing
information. For political tweets, we model the
topic being discussed, the author of the tweet, and
their party affiliation. In the case of covid-19 de-
bate, we model the stance (i.e. pro or anti vax), as
well as the main theme highlighted in the argument
(e.g. government distrust).

In this demo, we present a Python API that al-
lows us to instantiate and learn DRailL programs.
The API is centered around a Learner class. We
currently support two types of learners, a Local-
Learner in which rule weights are learned inde-
pendently of each other, and a GloballLearner in
which all rule weights are learned jointly. The
learner receives a set of parameters, including the
inference algorithm and loss function to be used,
as well as the learning rate.

from drail.learn.global_learner import Globallearner

learner = GloballLearner(
infer_algorithm="ad3",
loss_fn="hinge_loss",
learning_rate=2e-5)

Entities and Predicates Entities are the base ele-
ments in a DRailL program. Entities are named, and
can correspond to either symbolic elements (e.g. a
topic) or attributed elements (e.g. a tweet associ-
ated with its textual content). Then, we can specify
relations between one or more entities in DRaiL.
Relations can correspond to observed or predicted
information. When observations are available for
a particular relation, either as input information or
as training data, it can be passed to DRaiL using
column separated files. Each column in the file will
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correspond to each of the entities involved in the
relation. For example:
learner.define_entity("Tweet")

learner.define_entity("Entity")
learner.define_entity("Role")

learner.define_predicate("HasEntity”,
ents=["Tweet”, "Entity"],
data_file="has_entity.txt")

learner.define_predicate("HasRole",
ents=["Tweet”, "Entity”, "Role"],
data_file="has_role.txt")

Rules and Constraints In DRail., decisions and
dependencies between different decisions can be
modeled using probabilistic rules. We can ex-
press these rules using templates of the form:
Po A Py... APp_1 = P,, where the body of the
rule template can contain observed or predicted
predicates, and the head corresponds to the output
to be predicted (given the body). Rules can be
grounded in data, and each rule grounding is asso-
ciated with a weight representing the likelihood of
the rule grounding holding true. In DRaiL, these
weights are learned using neural nets. For this rea-
son, each rule template is associated to a feature
function and a neural scoring function.

We support different types of rules. We can
define simple rules that map observed inputs to
predicted outputs, and estimate the likelihood of
each possible assignment. For example, mapping
tweets to MFs:
learner.define_rule(

"IsTweet(T) => HasMf(T,M)*?",
Imd=1.0,

features=["tweet_bert"],
nn=BertClassifier(config_ro))

Or we can write rules that capture the dependencies
between different aspects, and estimate the likeli-
hood them co-occurring. For example, MFs and
vaccination stances:
learner.define_rule(

"IsTweet(T) & HasStance(T,S)*? => HasMf(T,M)"?",

Imd=1.0,

features=["tweet_bert”, "stace_lhot"],
nn=Bert1HotClassifier(config_r2))

Here, 1md is a hyper-parameter that can be used to
manually tune the importance of each rule. Given
a learned weight w for a given rule, its final weight
will be calculated by multiplying 1md*w. We use
? after a predicate to signal that this is a predicate
that is not observed, and should be predicted.
Finally, we can also write hard dependencies or
constraints that enforce behaviors. For example,
enforcing entities to maintain the same polarity
when mentioned in tweets with the same stance:

learner.define_hardconstr(

"HasEntity(T1,E) & HasEntity(T2,E) &

< HasStance(T1, 'anti-vax')*? & HasStance(T2,

< ‘'anti-vax')*? & HasSentiment(T1,E, 'neg')*? =>

< HasSentiment(T2,E, 'neg')*?")
Feature Extractors and Scoring Functions
DRaiL gives us the flexibility to define any fea-
ture function and neural architecture to represent
rules and learn their weights. To define feature
functions, we need to extend DRaill’s FeatureEx-
tractor class. This programmatic interface gives
us a lot of flexibility with passing and importing
resources, as well as manipulating features:

from drail.features.feature_extractor import FeatureExtractor
from transformers import AutoTokenizer

class MF_ft(FeatureExtractor):
def __init__(self, id2data):
super(MF_ft, self).__init__()
self.id2data = id2data
self.tokenizer = AutoTokenizer.from_pretrained(
'bert-base-uncased')

def entity_bert(self, rule_gr):
pred = rule_gr.get_body_predicate("HasEntity")
(tweet, entity) = pred['arguments']
text = self.id2dataltweet][entity]['text']
bert_input = self.tokenizer.encode(text)
return bert_input

The constructor allows us to pass any data struc-
ture. In the example above, we pass a dictionary
that maps entity ids to their attributes (e.g. the
text of the tweet). Then, we import the trans-
formers library to obtain the inputs for BERT.
Alternatively, this could be pre-computed and
passed to the constructor directly. DRail. allows
us to obtain the predicates and arguments of each
rule grounding with the function RuleGround-
ing.get_body_predicate(name, position=0),
which returns the predicate as a dictionary of the
form {"name”: name, "arguments"”: [argo,
argl, ...]1}. Custom FeatureExtractors can
be instantiated in the learner by doing:

learner.fe = MF_ft(id2data="id2data.json")

DRail provides a similar programmatic inter-
face to define neural scoring functions, which is
built on top of PyTorch:

from drail.neuro.nn_model import NeuralNetworks
from transformers import AutoConfig, AutoModel, BertModel
import torch

class BertClassifier(NeuralNetworks):

def __init__(self, config):
super(BertClassifier, self).__init__(config)

def build_architecture(self):
self.bert_model = AutoModel.from_pretrained(
'bert-base-uncased',
add_pooling_layer=True)
self.dropout = torch.nn.Dropout(config["dropout_prob”])
self.hidden2label = torch.nn.Linear(config["h_dim"],
— config["o_dim"])
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def forward(self, x):
# will return feats that were defined in feat function
bert_inputs = self.get_inputs(x)
outputs = self.bert_model(bert_inputs['input_ids'],
< bert_inputs['attention_mask'],
< bert_inputs['token_type_ids'])
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.hidden2label(pooled_output)

Given that the neural architectures are defined
programmatically, there is a lot of flexibility as to
what each architecture can look like. For each rule,
we can define a configuration dictionary config
which can be passed to the constructor of the neural
classifier. This allows us to specify variable param-
eters (e.g. number of hidden/output units), and to
reuse classifiers for different rules.

To see the full set of rules that were tested for
each use case, we refer the user to our previous
work (Roy et al., 2021; Pacheco et al., 2022), and

to the live demo and repository linked to this paper.

Grounding, Inference and Learning To instan-
tiate our database and ground our rules, we need
to call the create_dataset function and pass the
directory that contains the files that were defined
for each predicate. We are able to specify train, dev
and test splits by creating filters in the database.
This operation is useful when we want to perform
K-fold cross-validation, as it allows us to dynami-
cally change the splits in an execution loop.

db = learner.create_dataset("data_dir")

db.add_filter(
name="isTrain"”, pred_name="IsTweet”, entity_name="Tweet",
< ids=train_tweet_ids

DRaiL transforms all rule groundings into linear
inequalities corresponding to their disjunctive form,
and inference is then defined as an integer linear
program:

yefo,13» P(YlT) =ycio,13n Z Wy Pr (T y Yr)
Y €W (D)

s.t. (e, Ye) <0; Veel

Where each rule grounding r, generated from tem-
plate ¢, with input features x,. and predicted vari-
ables y,. defines the potential ¥, (2, Y, ), added to
the linear program with a weight w,. DRaiLL im-
plements both exact and approximate inference to
solve the MAP problem, in the latter case, the AD3
algorithm is used (Martins et al., 2015). Weights
w, are learned using neural networks defined over
parameter set 8. For training using large-margin
estimation, DRaiLL uses the structured hinge loss:

ma}a{(A(jﬁ Y) + Z (bt(wrv Qr;et)) - Z (I)t(wry yrQQt)
ye PreW Prel

Where @, represents the neural net associated with
rule template ¢, and parameter set #°. Here, y corre-
sponds to the gold assignments, and y corresponds
to the prediction resulting from the MAP inference
defined in Eq. 1. Note that alternative estimations
are also supported. More details can be found in the
modeling paper (Pacheco and Goldwasser, 2021).

Our Python API wraps up all of this function-
ality in just two functions: train and predict.
Additional parameters can be specified to select
the optimizer, use loss augmented inference, or hot
start the parameters by training rules locally first.
We have found that hot starting parameters locally
consistently improves performance across tasks.
This finding is in line with previous work experi-
menting with deep structured prediction objectives
(Han et al., 2019). The predict function returns
two elements: results has the aggregated predic-
tions in a data structure that can be directly used to
evaluate performance using the sklearn.metrics
library, while preds contains the resulting set of
active predicates.

from sklearn.metrics import classification_report

learner.train(db,
train_filter="isTrain"
dev_filter="isDev",
patience=10,
local_hot_start=True)

results, preds = learner.predict(db,
test_filter="isTest")

y_gold = results.metrics["HasMF"]['gold_data']
y_pred = results.metrics["HasMF"]['pred_data']
classification_report(y_gold, y_pred, digits=4)

4 Interactive Evaluation and Debugging

In this section, we present an evaluation module
equipped with functions to interactively debug and
visualize DRailL models. These functions are espe-
cially valuable when evaluating model predictions
over unlabeled data, where we cannot directly mea-
sure performance. To showcase this capability, we
use the sets of unlabeled tweets about abortion and
the covid-19 vaccine described in Sec. 2.

4.1 Visualizing and Interpreting Results

In this section, we present a non-exhaustive list of
the visualization operations supported by our APL
freq_graph(pred,ent.filters): plots a bar graph
of frequencies for entity ent in active pred pred-
icates (e.g. frequency_graph("HasMF"”, "MF")
will plot the distribution of MFs for all tweets. The
optional parameter filters allows us to specify
filters in the form of logical predicates. For exam-
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ple, if we want to plot MF frequencies by political
party, we can do:

learner.freqg_graph("HasMF", "MF", filters=["IsAuthor(T,A) &

< HasParty(A, 'democrat')", "IsAuthor(T,A) & HasParty(A,

< 'republican')"])

Note that more than one filter can be used to com-
pare frequencies. If no filters are passed, general

frequencies will be plotted (one bar per value).

m democrat
republican

care authority sanctity faimess layalty

freq_ents(pred,ent,k. filter): outputs the top k
most frequent ent entities in predicate pred.

learner.freg_ents("HasEntity”, "Entity”, k=10)

[('women', 325),

('abortion', 235),

('life', 207),

('wade', 115),

("trump', 111),

('roe', 104),

('planned parenthood', 91),
('reproductive rights', 90),
('health care', 62),
('unborn', 56)]

diag_rank_graph(pred,ent,ent_inst,top_filter,
bottom_filter): plots a graph that visualizes the
normalized rank scores based of the frequencies
of entity ent=ent_inst in active predicates
pred. This graph uses a diagonal to contrast the
frequencies of the predicate activations that satisfy
the top_filter and the bottom_filter. For
example:

learner.diag_rank_graph("HasEntity”, "Entity”, "planned

< parenthood”, top_filter="IsAuthor(T,A) &

< HasParty(T, 'republican')”, bottom_filter="IsAuthor(T,A) &
< HasParty(T, 'democrat')")

il-auth-over
10 Ia

=]
@

iause-degmdaﬁnn

o
s

Rank Score in Republicans
=
o

o
[¥]

0.0
0.0 02 0.4 0.6 0e 10

Rank Score in Democrats

ent_rel_graph(pred,k filter): plots an entity-
relation graph for active predicates pred. Option-
ally, a k can be used to limit the graph to the top k
most frequent activations. For example:

learner.ent_rel_rank_graph("HasRole", k=8,
«— filter="IsAuthor(T,A) & HasParty(T, 'democrat') &
< HasMF(T, 'fairness')")

reproductive rights

corr_matrix(pred_1,ent_1.filter_1,pred_2,ent_-
1filter_2): plots a correlation matrix between
ent_1 and ent_1. Optionally, filters can be
specified to constrain the examples considered.

learner.corr_matrix(pred_1="HasMF", ent_1="MF",
< pred_2="HasTheme", ent_2="Theme")

2 >
z3 E B =® E
2 & 8 2 o 3
£ g ¢ ¢ S s ¢
R 8 2 & £ 5 ¢
VaccineTested - ' ' ' ' ' ' '
CovidFake - 0.5
VaccineOppression - | ]
VaccineSafe - 0.4
BigPharmaAnti -
CovidReal -
wvaccineDoesntWork - 03
VaccineExperimentsOnDogs -
NaturallmmunityAnti - -02
vaccineWorks -
GovDistrust - —o1
BillGatesMicroChip -
vaccineNotAgainstRelition -
BigPharmaPro - -00
VaccineNotTested
vaccineAgainstReligion - ] 01

VaccineNotOppression -

VaccineDanger -
--0.2

plot_embed(pred, ent, filter): plots a 2D visual-
ization of the representation learned for a given
entity. To reduce the dimensionality, we use t-
sne (van der Maaten and Hinton, 2008). Note that
DRaiL will learn a representation for each entity
and relation in the program using the neural archi-
tecture specified. These representations can also be
shared across rules. For more details, see (Pacheco
and Goldwasser, 2021).

learner.plot_embed("HasTheme”, "Theme")

4.2 Human Interventions

In this section, we focus on the ability of inter-
actively correcting and enhancing DRail. models.
Going by the visualizations demonstrated above
for political tweets, we can observe that overall,
the results are what we would expect. However,
we can spot some unexpected predictions. For ex-
ample, in the normalized rank graph for planned
parenthood, we found that the moral role do-cheat
had a high democrat score, which contradicts the
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general sentiment of liberals towards Planned Par-
enthood. Additionally, in the entity-relation graph,
we observe the entity abortion being portrayed as
a cheating entity in a high number of cases. To
tackle this likely errors, we experiment with the
following interventions:

Introducing bias with new rules and constraints
Given that democrats generally have a pro-choice
stance, we can introduce a rule that discourages a
negative polarity for the abortion entity:
learner.define_rule(

"IsTweet(T) & IsAuthor(A,T) & HasParty(A, 'democrat') &

< HasEntity(T, 'abortion') & HasPolarity(R, 'neg') =>

< ~HasRole(T, 'abortion',R)*?"),

1md=1.0,

features=None,
nn=None

To represent this rule, we set the features and neural
net to None. This will make DRaiL learn a single
weight for the rule, instead of learning a neural
scoring function over a feature representation. Note
that this is a design choice, and we always have the
option of defining features and a neural classifiers
for newly introduced rules. By adding this rule, we
are able to alter our entity-relation graph:

 stopkavanaugh ) [ scotus (abortion ) wade  constitutional right > | roe

‘ensure-fair

Augmenting programs with new predicates
While the rule introduced above altered our high-
frequency entity-relation graph, upon closer inspec-
tion of the cases that were not covered by the soft
constraint (using the freq_ents function to look at
example tweets), we find that we likely still have
errors. Tweets that have an overall negative tone
are wrongly identified as portraying abortion in
negative light. Some examples are: we do not want
to go back to the days before women had a consti-
tutional right to abortion, president trump has said
that women should face punishment for exercising
their constitutional right to abortion.

By looking at these examples, we can see that
they talk about abortion as a constitutional right.
To deal with this challenge, we can take advantage
of the fact that we can represent entities in DRailL
using distributed representations, and introduce a
new predicate that captures the similarity between
a custom phrase explaining the concept of constitu-
tional rights and the text of a tweet:

learner.define_entity("Phrase”)

learner.define_latent_predicate(
"MentionsConcept”,
ents=["Phrase”, "Tweet"])

Given that we do not have supervision for this
predicate, DRailL allows us to define it as latent.
Then, we can define two additional rules, the first
one uses SBERT, a pre-trained sentence similarity
model (Reimers and Gurevych, 2019) to capture
the likelihood that a tweet mentions constitutional
rights. The second one is a constraint that enforces
tweets that frame abortion as a constitutional right
to have the entity abortion in a positive role.

learner.define_rule(
"InEvent(T,Z) => MentionsConcept('abortion is a
< constitutional right', T)*?",
1Imd=1.0,
features=["tweet_bert"],
nn=SBERT())
learner.define_hardconstr(
"InEvent(T,Z) & HasEntity(T, 'abortion') &
< HasPolarity(R, 'neg') MentionsConcept('abortion is a
<% constitutional right', T)*? =>
< ~HasRole(T, "abortion',R)*?"))
Upon further inspection of example tweets, we
found that the addition of the new predicate reduced

more than 50% of the remaining errors.

5 DRaiL vs. Other Systems

In previous work, we have positioned the modeling
approach of DRailL with respect to related work, in-
cluding declarative languages to express probabilis-
tic graphical models (Richardson and Domingos,
2006; Bach et al., 2017), relational and graph em-
beddings (Bordes et al., 2013; Schlichtkrull et al.,
2018), and a comprehensive set of neuro-symbolic
systems (Wang and Poon, 2018; Manhaeve et al.,
2018; Cohen et al., 2020). While performing an
exhaustive comparison between systems is beyond
the scope of this demo, we refer the reader to the
DRaiL. modeling paper for this analysis (Pacheco
and Goldwasser, 2021), as well as to the many
successful applications of our modeling strategy
(Pujari and Goldwasser, 2019; Jain et al., 2020;
Widmoser et al., 2021; Lee et al., 2021; Roy et al.,
2021; Mehta et al., 2022; Pacheco et al., 2022).

6 Summary

In this paper, we present an interactive API for
DRaiL, a recently introduced neuro-symbolic mod-
eling framework. We demonstrate how to use
this API to model a challenging NLP problem,
and interactively debug predictions on unlabeled
datasets, where traditional evaluation techniques
cannot be applied. We motivate the advantage of
neuro-symbolic representations to communicate
knowledge from humans to machines, and show
that we can effectively enhance the performance of
the model by interactively adding new knowledge.
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