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Abstract

Text classification can be useful in many real-
world scenarios, saving a lot of time for end
users. However, building a custom classifier
typically requires coding skills and ML knowl-
edge, which poses a significant barrier for many
potential users. To lift this barrier, we introduce
Label Sleuth, a free open source system for la-
beling and creating text classifiers. This system
is unique for (a) being a no-code system, mak-
ing NLP accessible to non-experts, (b) guiding
users through the entire labeling process until
they obtain a custom classifier, making the pro-
cess efficient – from cold start to classifier in a
few hours, and (c) being open for configuration
and extension by developers. By open sourcing
Label Sleuth we hope to build a community
of users and developers that will broaden the
utilization of NLP models.

1 Introduction

Text classification is an NLP task with great prac-
tical importance. Practitioners working with large
amounts of textual data often need to categorize
snippets of text. For instance, a lawyer reviewing
contracts may need to find clauses specifying the
terms under which a contract can be terminated.
Or, a psychologist analyzing treatment notes may
be interested in finding all sentences that indicate
that a patient is suffering from depression. Often,
the text snippets of interest are rare and scattered
throughout the dataset. Manually reviewing the en-
tire dataset is inefficient or impractical, thus raising
the need for an automated solution in the form of a
custom text classification model.

Practitioners, or domain experts (a.k.a subject
matter experts) who need such models, typically
lack the skills to build them, and thus must rely
on Machine Learning (ML) experts. This, in turn,
creates a gap between modern text classification

∗These authors contributed equally to this work.
† Work done while author was working at IBM Research.

techniques and their end users, which we aim to
bridge in this work.

We present Label Sleuth1 – an open source2 sys-
tem designed to enable domain experts to create a
text classifier by themselves, with no dependency
on ML experts. Label Sleuth is both a labeling
platform and a machine learning platform, and is
thus used to collect labeled data as well as to build
text classifiers. It enables a domain expert to create
a good quality custom classifier from a cold start
(no labels) in a few hours, in several short rounds
of labeling – enhanced via active learning (Cohn
et al., 1996) – that provide feedback to models
being trained in the background.

Label Sleuth was designed to be intuitive and
easy to use by domain experts. Rather than trying to
cover many different NLP tasks and increasing the
system complexity, it focuses on a single broadly
applicable use case of binary text classification, and
provides a fully automated flow for building such
classifiers.

To the best of our knowledge, Label Sleuth is
the first text classification platform intentionally
designed for a broad audience - domain experts that
typically lack coding skills or an understanding of
ML concepts. By open sourcing Label Sleuth, we
hope the community will join this effort, to further
expand and improve its existing capabilities for the
benefit of a potentially wide community of users.

2 System description

2.1 A typical workflow
We illustrate a flow for using Label Sleuth through
the eyes of a potential user. We encourage readers
to experience this workflow directly, to get a first-
hand impression of the process.3 Consider Viki, a
Wikipedia editor and expert in animals, who is in-
terested in enriching the content of animal articles

1https://www.label-sleuth.org
2https://github.com/label-sleuth/label-sleuth
3A step-by-step tutorial is provided on the website.
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Figure 1: The workspace screen when the first classifier is ready. Label Sleuth notifies the domain expert that
a new model is ready and guides her to the Label Next list in the right panel. The sentences that are predicted as
positive by the new classifier are marked with a blue frame (both in the document view and in the list on the right).

on Wikipedia. Her goal is to ensure that accurate
information about an animal’s habitat is included
in all animal articles. Manually reviewing all arti-
cles would be extremely grueling. Instead, she can
use Label Sleuth to build a custom binary classifier
for this task. The classifier will identify sentences
describing an animal’s habitat, allowing her to fo-
cus on relevant sentences to review, and to identify
articles missing habitat information.

Upload data and create a classification cat-
egory. To get started, she uploads the set of
Wikipedia articles, split into sentences, into the sys-
tem.4 She then creates a new workspace using the
uploaded corpus. Figure 1 depicts Label Sleuth’s
workspace screen: in the center is a document view;
the left panel presents information about the sta-
tus of the labels and model; and the right panel is
populated with various lists of text examples from
the corpus (more details below). The workspace
enables her to create multiple custom categories
(i.e., classes) for classification. Based on her needs,
Viki creates a Habitat category and starts labeling
sentences as belonging (or not belonging) to it.

Finding examples to label. Viki can use the
document view to skim articles and label sentences.
However, since sentences about habitats are rela-
tively rare, this would lead to her mostly labeling
negative examples. To quickly find positive exam-
ples, Viki leverages Label Sleuth’s search function-

4The Label Sleuth installation includes this dataset.

ality. Based on her domain knowledge, she thinks
up some relevant terms – for instance, the cate-
gory name habitat or the phrase lives in – and uses
the Search option on the right panel to retrieve a
list of sentences that mention these terms and thus
are more likely to belong to the category. Search
results can be labeled directly using the ✓ and ✗

buttons. If an example’s context is needed to make
a decision, clicking on it shows the source article
in the document view, highlighting the example.

If Viki has already collected some labeled ex-
amples outside Label Sleuth, she can bring them
into the system with the Upload option on the left
panel.

Automated model training. Once a sufficient
set of labeled examples is provided (see App. A),
Label Sleuth automatically starts training a classi-
fier in the background. Viki does not need to man-
ually invoke training. However, she can use the
progress bar on the left panel to track her progress
and see how many more labels are needed before
the system starts training a new classifier.

Receive guidance on what to label. Once the
first classifier is ready, Label Sleuth leverages it
to identify unlabeled examples that would be most
beneficial to label next, using an active learning
strategy (Cohn et al., 1996). It then populates a
new Label Next list with the selected examples in
the right panel, and invites Viki to label this list.
Fig. 1 depicts the system when the first classifier
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is available. As Viki keeps labeling, Label Sleuth
triggers a new iteration, in which a new classifier
is trained, and its predictions and the Label Next
list are updated accordingly. With the additional
labeled examples, the classifier improves with each
such iteration.

Review model predictions. At any point, Viki
can review the predictions of the current classifier
to get an impression of its performance and provide
feedback. She can do this by skimming through
different articles in the main document view, which
have the positive predictions highlighted. Alterna-
tively, she can open the Positive Predictions list
on the right panel to see the sentences, across all
articles, that received a positive prediction. If she
disagrees with a prediction, she can directly label
the corresponding element to provide focused feed-
back to the model.

Evaluate model quality. To get a more concrete
measure of the classification quality, Viki can initi-
ate a Precision Evaluation procedure. The system
samples n sentences that are predicted as positive
by the current classifier. Viki is asked to label these
sentences and her feedback is used to estimate the
precision of the classifier.

Receive guidance on potential labeling errors.
While working on a repetitive labeling task, it is
natural to make mistakes. These mistakes intro-
duce noise to the labeled data, resulting in de-
graded model performance. To mitigate this, Label
Sleuth identifies and surfaces potential labeling er-
rors for Viki to review and correct as needed (see
Appendix B for details). Identifying labeling errors
and understanding their causes early on not only
improves the performance of the resultant classifier
but can also sharpen the user’s understanding of
the task for future rounds of labeling.

Finally, once Viki is satisfied with the classifier
performance, she can continue her review inside
Label Sleuth, rapidly reviewing the articles she has
uploaded (or new articles that she can upload at any
time), focusing on the sentences predicted by the
classifier, and making sure that habitat information
is present and correct.5

2.2 Guiding design principles

Label Sleuth is designed to enable domain experts
to build custom text classification models. This is

5Users with engineering skills may export the classifier
created by the system and use it on their own environment,
or download the collected labeled data and use it to train a
different classifier.

in stark contrast to alternative systems that focus on
technical users, be it data scientists or ML experts
(see § 3). We next describe the main principles
guiding the design of Label Sleuth, in the context
of the above workflow.

Minimize the labeling effort. The time of do-
main experts is typically limited and expensive.
The system should thus make effective use of their
time, as well as demonstrate a quick return on in-
vestment to keep them engaged. Label Sleuth ac-
complishes this in the following ways:

Focus on value-added positive examples. When
it comes to building a text classifier, not all labels
are equally important. For instance, in the common
case where positive examples are scarce, it is these
positive examples that are more valuable. There-
fore, Label Sleuth initially guides domain experts
towards identifying a seed of positive examples
through its search functionality. Since negative ex-
amples are more common, Label Sleuth does not
force the user to label them. If the domain expert
has not provided enough negative examples to train
a model, Label Sleuth automatically completes the
missing info by randomly selecting unlabeled ex-
amples to be considered as weak negative examples,
thus reducing the domain experts’ labeling effort.

Continuous labeling guidance. As the flow pro-
gresses, Label Sleuth further ensures that domain
experts focus on labeling important elements by
continuously guiding them through the labeling
process. This guidance comes in two forms. First,
by providing active learning suggestions, the sys-
tem focuses domain experts on labeling examples
useful for improving the model, instead of wasting
effort on labeling uninformative examples. Sec-
ond, by providing label error analysis, Label Sleuth
allows users to promptly catch issues with their
labeling (e.g., caused by concept drift or ill-defined
categories) and revise their work before wasting
more time on erroneous labeling.

Progress feedback. Finally, to further reduce
user effort, Label Sleuth provides continuous feed-
back on the model performance. By showing the
classifier’s predictions, as well as via the precision
evaluation mechanism, the system enables users
to understand when the classifier’s performance is
adequate and they can safely stop labeling.

Abstract the ML process. Domain experts,
while proficient in their domain, may not be famil-
iar with ML techniques or even ML terminology.
As a result, the system should abstract the ML pro-
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cess as much as possible. This is accomplished in
Label Sleuth through the following features:

Automated and transparent ML processes. All
ML steps, including model training, inference, and
active learning, are automatically initiated and per-
formed in the background without user intervention.
Once completed, a colorful confetti animation noti-
fies the user that a new classifier is ready (this also
serves as a surprisingly effective means for keeping
users engaged). Other than being aware of the clas-
sifier being iteratively trained by the system, users
are not expected to have any ML knowledge.

Out-of-the-box configuration. Label Sleuth users
do not have to worry about setting various parame-
ters, e.g., choosing the model architecture or active
learning strategy. The default system configuration
defines a workflow that suits a typical classification
use case (see App. A). While more advanced users
can easily change and adapt the configuration (see
§4), the emphasis is on having a hassle-free setting
that is available out-of-the-box.

2.3 Real usage examples

Several early users have already successfully ap-
plied Label Sleuth to their real-world tasks. For
instance, a legal user needed a text classifier to
identify clauses of interest in long contracts. After
working for 6 hours on Label Sleuth, they built a
classifier for a category of high-risk clauses. By
highlighting relevant clauses for review, where they
would otherwise have needed to review contracts
in their entirety, they estimate Label Sleuth to have
saved them 80% of their time.

In another example, Gretz et al. (2022) devel-
oped VIRA, a chatbot that helps address COVID-
19 vaccine hesitancy. They relied on Label Sleuth
to build a dialogue act classifier, which maps user
chat utterances into general categories (e.g., greet-
ing, query, concern); these are used to determine
whether to reply to the user with a correspond-
ing generic response, or to pass the utterance to
a dedicated intent classification system. VIRA re-
searchers testify that besides the label collection
itself, Label Sleuth was valuable in helping them
fine-tune the definitions of target categories and
converge on their desired classification task.

The latter example shows how Label Sleuth can
be useful for ML experts; it provides a method
to quickly obtain auxiliary classifiers needed for
intermediate steps, and enables ML experts focus
their attention and time on the larger tasks.

3 System comparison

Text labeling (or annotation) tools have proliferated
in recent years. Neves and Ševa (2021) surveyed 78
tools. They can be classified into two categories:

Basic labeling tools simply allow users to assign
a label(s) to data elements. Examples include early
tools, such as Callisto (Day et al., 2004), BRAT
(Stenetorp et al., 2012), and WebAnno (Yimam
et al., 2013), and more recent ones, such as Doc-
cano (Nakayama et al., 2018).

Labeling tools with ML support are more sim-
ilar to Label Sleuth, since in addition to collecting
labels, they train a classifier with these labels, or
accelerate the labeling process by integrating ML.

In our comparison, we focus on representative
systems that are most similar to Label Sleuth and
have gained users popularity. All these systems
offer some form of ML labeling support, However,
they are designed with technical users in mind, such
as data scientists and developers; they often require
complex actions to get started, which assume ML
knowledge. They do not offer ML integration out-
of-the-box, relying instead on the user to configure
the system (e.g., by connecting it to external mod-
els). Furthermore, ML support is typically limited
to active learning and lacks advanced features that
could help domain experts, such as identifying and
guiding the user in resolving potential labeling is-
sues. We next provide a brief overview of each of
the reviewed systems. Table 1 summarizes their
features compared to Label Sleuth.

Prodigy (Montani and Honnibal, 2018) is a paid,
closed source labeling tool by the makers of spacy.
While it offers an intuitive frontend, it targets
mainly data scientists, as most tasks (except for
basic labeling) - including dataset upload - require
using the command-line. Moreover, it does not
show examples in context and thus the user must
label them in isolation from their source document,
and according to a predefined order.

Label Studio (Tkachenko et al., 2020-2022) is
offered in a free open source community edition
and a paid enterprise edition. While the latter offers
ML and active learning support, setting up the pro-
cess requires invoking external models (which in
their simplest form are pre-built container images).

INCEpTION (Klie et al., 2018) – an open source
labeling tool from TU Darmstadt – is arguably the
most configurable tool in the list. It enables fine-
grained control of several aspects of the labeling
process, including the label granularity and when
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No technical
expertise needed

ML guidance on
what to label

ML guidance on
label errors

Open
source

Tasks other than
text classification

Prodigy ✗ ✓ ✗ ✗ ✓
Label Studio (Free) ✗ ✗ ✗ ✓ ✓

Label Studio (Paid) ✗ ✓✗ ✗ ✗ ✓

INCEpTION ✗ ✓✗ ✗ ✓ ✓

Label Sleuth ✓ ✓ ✓ ✓ ✗

Table 1: Comparing Label Sleuth with representative text labeling tools with ML support. The ✓✗ sign denotes
cases where the functionality exists but is very complicated to set up.

model predictions are shown. However, this cus-
tomizability further increases the barrier to entry
compared to other tools. Even setting up a classi-
fication task requires creating complex annotation
layers, while integrating a model, in many cases,
requires the use of external libraries.

In contrast to Label Sleuth, these systems sup-
port NLP tasks other than text classification, such
as NER and question answering, or even non-
textual tasks, such as audio and image classification.
Thus, Label Sleuth and these systems correspond
to different points on the trade-off between ease of
use and task support. Existing systems support a
wide variety of tasks but assume a technical user,
while Label Sleuth focuses on text classification but
creates an end-to-end model building experience
tailored specifically to non-technical users. We be-
lieve that it is important to have tools that strike
different balances in this trade-off.

4 Architecture

Label Sleuth is composed of backend and frontend
layers. The backend is written in Python and uses
the Flask framework for exposing a web service;
the frontend is a React application which uses the
MUI design library. For additional details see our
architecture webpage.

While Label Sleuth is well-suited to users with
no ML background, it also offers configurability
and extensibility options for advanced users. Users
can choose from the available models and active
learning strategies, and can also contribute new
ones by implementing one or two straightforward
functions. In addition, it is possible to configure
the system to dynamically switch between models
and/or strategies as the labeling progresses. Large
models that require a GPU are also supported.

Another extensible component is training set
selection. While a basic approach would be to train

classifiers using the set of examples labeled by the
user, more advanced methods can provide added
benefits. The default setting leverages the fact that
the negative prior is high (since positive examples
are relatively rare), and randomly selects elements
from the unlabeled set to be added as weak negative
examples for training.

The various system configurations (e.g., classi-
fication model, active learning strategy, criterion
to trigger the training of a new model) together
constitute a policy that shapes the flow and experi-
ence of building a classifier. The default policy (see
App. A) can be extended and modified to further
improve efficiency or to support different scenarios.

The data access layer is responsible for saving
and exposing the dataset and user labels. The cur-
rent implementation relies on a combination of
in-memory for performance, and local disk stor-
age for persistency. Finally, while English is used
as the default language, Label Sleuth provides an
infrastructure to easily support other languages.

5 Open source and research opportunities

Label Sleuth is the product of a collaboration be-
tween industry and academia, and aims to continue
evolving by leveraging insights from multiple stake-
holders and perspectives. We welcome further con-
tributions and feedback from domain experts and
the open source community, as well as researchers
in related fields, including natural language pro-
cessing and human-computer interaction.

To facilitate this, Label Sleuth was released in
July 2022 as open source under the Apache 2.0
license. Following the example of other success-
ful projects, in addition to the source code of the
system, the open source release includes material
aimed to facilitate the use of the system and con-
tributions to its development. The material on the
project’s website includes an overview of the sys-
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Figure 2: Policy setting: Choosing the classification
model. If the model in the last two iterations is BERT,
using the lighter SVM for the first four iterations does
not harm performance in comparison to using the heav-
ier BERT for all iterations. Each point represents the
avg. F1 over 5 classes from 5 different datasets and 5
repetitions (seeds). Each iteration adds 30 examples.
See App. C for details.

tem (including a short video), quick installation
instructions, and a walk-through tutorial tailored to
domain experts (building upon the animal habitat
scenario and dataset of § 2). There is also detailed
documentation of the system’s internals for open
source contributors and/or researchers who want to
understand the underlying techniques and extend
the system for their own needs.

As detailed in § 4, the system is highly exten-
sible, allowing researchers to further improve the
system by incorporating novel techniques. A re-
search aspect that we believe will be of particular
interest to the NLP community is the unique re-
quirements that arise from the interactive nature
with the non-technical target audience of Label
Sleuth. We next outline a few examples of such
requirements, which we hope the NLP community
will contribute solutions to.

Setting the policy. One such challenge is the
selection of employed policy (ML models, active
learning techniques, etc.). For instance, consider
the choice of classification model. In a static sys-
tem with no interaction, performance on the task
may be the most important model characteristic,
and thus a large (and slow) model may be preferred.
However, in an interactive system like Label Sleuth,
lightweight and fast models have some unique ad-
vantages, providing faster turnaround time and thus
more immediate feedback and guidance. Initial
experiments, depicted in Fig. 2, show that utiliz-
ing a light SVM model for most iterations and
only switching to the heavier and high-performing
BERT model (Devlin et al., 2019) for a few final

iterations, leads to an F1 score that is comparable
to using BERT the entire time, while offering a
significantly faster run time which improves the
interactivity experience.

Model evaluation. Another example is model
evaluation. In typical NLP experiments, perfor-
mance is quantified using some metric (e.g., F1)
over a test set. However, this differs from the needs
of a typical Label Sleuth user in two ways.

First, maintaining a separate test set, which is
not utilized for model training, undermines the goal
of minimizing the labeling effort. Cross validation
evaluation is incorrect in this scenario as the la-
beled examples collected in the process are not
necessarily a good representation of the data (be-
ing biased towards positive examples and by active
learning suggestions). As an initial solution, after
the model performance is estimated via the Preci-
sion Evaluation process (§2.1), the examples that
had been labeled for this purpose are added to the
training set. In addition, estimating metrics such as
recall is impractical when the positive prior is low
(common in real-world classification tasks), since
a reliable estimate requires a very large amount of
test labels.

Second, a very important aspect is communi-
cation of evaluation results, especially in such an
interactive system. Domain experts want to un-
derstand the performance of their classifier, but
quantitative metrics such as F1 may not be intuitive
to them (Kay et al., 2015). Thus, there are research
challenges for both finding metrics that are less
data-hungry, and constructing a user experience
to best reflect model performance and convey a
tangible sense of progress.

Warm start. Last but not least, advances in
pretrained language models and in zero-shot text
classification (e.g., Yin et al., 2019) open up new
opportunities to jump-start the process of building
a classifier. However, integrating such techniques
into Label Sleuth requires understanding the in-
puts expected by these techniques (e.g., category
names or descriptions) and how to acquire them
from domain experts. Moreover, work is needed to
combine zero-shot with supervised techniques into
a natural user workflow, where users not only get a
good initial model (through zero-shot techniques),
but also have the ability to further improve it by
providing additional feedback.
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6 Conclusions

Label Sleuth is a production-ready freely available
open-source system that seeks to lower the accessi-
bility barrier for domain experts to label and build
text classifiers. It provides unique opportunities for
a more productive and efficient classifier building
process – one where the system guides the label-
ing process, and both the domain expert and the
ML components can provide timely feedback to
each other. We encourage domain experts, the open
source community, and researchers to use, extend,
and contribute back to the Label Sleuth project.

Limitations

As mentioned in § 3, being focused on a single
task has its limitations. The obvious one is not sup-
porting other useful tasks, such as entity labeling,
relation extraction, question answering. Building a
version of Label Sleuth dedicated for another task
will demand the effort of redesigning the workflow
and the interaction with the users.

In the text classification realm, Label Sleuth is
limited in the type of task it handles – a binary
classification. Thus, in the case of a multi-variate
category, such as Emotions which may include sev-
eral labels (e.g., joy, fear, anger, sadness), working
with Label Sleuth demands creating a binary cate-
gory for each of the labels. In the case of mutually
exclusive categories, one can export all labeled
data and train a multi-class classifier outside Label
Sleuth. However, if the categories are not mutually
exclusive, the selected data cannot be used as is for
training a multi-label classifier, as it is likely that
most collected examples were only labeled for a
subset of the categories.

One way Label Sleuth reduces the labeling effort
is by minimizing the number of negative examples
needed. The system achieves this by automatically
selecting unlabeled examples as weak labeled ex-
amples, relying on the low prior of positives. If
this is not the case, this feature should be disabled
and users would have to spend additional time on
labeling negative examples.

Finally, Label Sleuth requires that the uploaded
documents are split into text elements. This split
is static once the data was loaded. Thus, users are
limited to labeling these standalone elements. They
cannot, for example, mark that several elements
constitute a positive example only when considered
together. This requirement stems from the need
to perform inference during the labeling process,

which in turn requires specifying the text units to
be inferred.

Ethics Statement

We believe that this work has the potential to make
NLP model building more inclusive by making it
accessible to community members that until now
did not have the means to create custom models;
whether that was due to lack of technical knowl-
edge or due to lack of resources to hire ML experts.
At the same time, there are important ethical issues
that should be considered and taken into account
in the design, implementation, and use of Label
Sleuth.

First, since the goal of the system is to automate
parts of the model building process, it has the po-
tential to take over responsibilities that were until
now carried out mainly by ML experts/developers.
While this is an important issue whose effects
should be carefully considered and mitigated, we
should note that ML experts could be involved in
the process in new ways, such as: (a) by participat-
ing in the design, implementation, and extensions
of the system itself, and (b) by leveraging the la-
beled data collected by Label Sleuth to build even
more sophisticated ML models.

Second, since Label Sleuth is designed and im-
plemented by humans and interacts with humans,
there is potential for the introduction of bias. Bias
could be introduced in two main places:

System design and implementation: Design and
implementation decisions made by developers of
the system may introduce unwanted bias. This in-
cludes decisions on the frontend (e.g., using culture-
specific icons, supporting only left-to-right lan-
guages on the frontend, etc) and the backend (e.g.,
selecting model learning algorithms that support or
perform better in specific languages, etc.). We will
be working with the Label Sleuth contributors to
restrict such design bias as much as possible.

Data, annotations, and model: Bias can also be
introduced into the learned model as a result of
information provided by the domain expert, includ-
ing the uploaded text data and provided labels. To
avoid such bias, the system should inform the do-
main expert of potential implicit bias and suggest
ways to mitigate it (such as uploading more diverse
datasets). Understanding how to identify, commu-
nicate, and allow domain experts to limit such bias
is a very interesting area of future research.

Finally, Label Sleuth inherits all considerations
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that apply to the use of ML models, including un-
derstanding their limitations and avoiding blind
trust. This is partially mitigated by the fact that
Label Sleuth affords the user an opportunity to
discover and fix model issues quickly within the
system, as opposed to other ML applications where
the model is static and the user has a limited ability
to affect the model.
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A Default policy

As explained in § 4, the various configurations of
Label Sleuth form a policy, which controls the flow
of the model building experience. Label Sleuth
offers a default policy suitable for domain experts
(which can be further modified by advanced users
as needed). Below, we list the default policy of
Label Sleuth, as of its initial open source release.
While we do not claim that the chosen settings are
optimal, they were chosen empirically, by conduct-
ing multiple experiments on a wide variety of use
cases and have been found to work well for typical
text classification use cases.

Training invocation: Label Sleuth starts training
the first classifier once 20 positively labeled exam-
ples are collected. After the first classifier, a new
classifier is automatically trained for every 20 new
labels (positive or negative) provided by the user.

Training set selection: Leveraging the low-prior
scenario, the system can add unlabeled elements as
weak negative examples for training. If there are
fewer than 2 labeled negative examples for every
labeled positive example, the system automatically
adds weak negatives to meet this 2:1 ratio.

Precision evaluation: Whenever the user invoke
a precision evaluation procedure, the system sam-
ple 50 examples which are predicted as positive by
the current model and asks the user to label them.
Once labeled, the system can report precision and
add these newly labeled examples to the training
set to be used by subsequent training iterations.

Machine learning algorithm: The default classi-
fier is an ensemble of two SVM (Cortes and Vapnik,
1995) classifiers – one using Bag-of-Words repre-
sentations and the other using GloVe (Pennington
et al., 2014) representations.

Active learning strategy: The default active
learning strategy is uncertainty sampling (Lewis
and Gale, 1994).

B Labeling quality analysis

Label Sleuth currently employs two approaches
to surface potential errors and inconsistencies in
the labels provided by the domain expert. Each
approach yields a list of labeled elements, which is
then presented to the domain expert to review and
correct as needed.

In the first method, the list of elements to review
is based on disagreements between classifier predic-
tions and user labels. The classifier was given these
labels as training examples, which presumably low-
ers the chance of such direct disagreements. There-
fore, the implementation relies on cross-validation:
several classifiers are trained on different parts of
the labeled data; if a classifier’s prediction on a
left-out element disagrees with the user-provided
label for that element, it is added to the list for re-
view. This list is sorted according to the classifier’s
confidence score.

In the second approach, the system presents pairs
of examples that have been assigned contradicting
labels w.r.t. the target category by the domain ex-
pert even though they are semantically similar to
each other. This raises the possibility that one ele-
ment in the pair was given an incorrect label. The
list of pairs to be reviewed by the user is sorted
based on decreasing similarity. In the current im-
plementation, similarity is calculated by the dis-
tance between the average GloVe (Pennington et al.,
2014) embeddings of the two texts.

C Figure 2 experimental details

Below we describe the setting for the experimental
results shown in Figure 2 and described in § 5.

We experiment with the use of different models
over 6 active learning iterations. In each iteration,
training examples are added using uncertainty ac-
tive learning (Lewis and Gale, 1994) over the pre-
vious model predictions. We compare two settings:
One setting uses a BERT classifier for all iterations,
while the other uses SVM for iterations 0-4 and
BERT for iterations 5-6 only.

Iteration 0 starts with a query tailored for the
target class. Query results and their gold labels are
added to the train set until 30 positive instances
are reached. These query instances are used to
train the iteration 0 model. In each subsequent
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Dataset Target category Query Test size

20 Newsgroup sci.med ’health | medicine’ 7532
AG News World News OR over a list of countries and territories 3000
DBPedia Company ’company’ 3000
ISEAR Joy ’joy | happy’ 1534

Yahoo! Answers Sports ’sports’ 3000

Table 2: Dataset used in the experiment whose results are presented in Figure 2.

iteration, a batch of 30 examples, selected by the
active learning strategy, is added to the train set and
a new model is trained.

Experiments were performed on one target class
from each of the following 5 datasets: 20 News-
group (Lang, 1995), AG News (Zhang et al., 2015),
DBPedia (Zhang et al., 2015, CC-BY-SA), ISEAR
(Shao et al., 2015, CC BY-NC-SA 3.0) and Yahoo!
Answers (Zhang et al., 2015). Each experiment was
repeated 5 times, using different random seeds for
sampling from the query. Class and query details
appear in Table 2.

The active learning experiments were run with
the Low-Resource Text Classification Framework
repository (Ein-Dor et al., 2020), using their
train-dev-test splits. For BERT, we fine-tuned
BERTBASE (110M paramaters) for 5 epochs, with
a learning rate of 5× 10−5 and batch size 32. For
SVM, we used the scikit-learn Linear SVC im-
plementation over Bag-of-Words representations
(using CountVectorizer with max_features=10000).
In total, the experiment included 175 BERT fine-
tuning and inference runs, equaling about 12 total
GPU hours using a Tesla V100-PCIE-16GB GPU.
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