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In recent years, deep learning has enabled im-
pressive achievements in Machine Translation.
Neural Machine Translation (NMT) relies on train-
ing deep neural networks with large number of pa-
rameters on vast amounts of parallel data to learn
how to translate from one language to another. One
crucial factor to the success of NMT is the de-
sign of new powerful and efficient architectures.
State-of-the-art systems are encoder-decoder mod-
els (Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani et
al., 2017) that first encode a source sequence into a
set of feature vectors and then decode the target se-
quence conditioning on the source features. In this
thesis we question the encoder-decoder paradigm
and advocate for an intertwined encoding of the
source and target so that the two sequences inter-
act at increasing levels of abstraction. For this pur-
pose, we introduce Pervasive Attention, an NMT
model with a computational graph different from
existing encoder-decoder models. In Pervasive at-
tention, the source and the target communicate and
interact throughout the encoding process towards
abstract features. To this end, our NMT model uses
two-dimensional convolutional neural networks to
process a grid of features where every position rep-
resents an interaction between a target and a source
tokens.

To tackle a different aspect of efficiency in NMT
systems, we explore the challenging task of on-
line (also called simultaneous) machine transla-
tion (Fügen et al., 2007; Mieno et al., 2015; Dalvi
et al., 2018; Ma et al., 2019) where the source is
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read incrementally and the decoder is fed partial
contexts so that the model can alternate between
reading and writing. To improve the translation’s
delay in online NMT systems, we first setup a com-
mon framework for online sequence-to-sequence
models that will allow us to train existing de-
terministic decoders that alternate between read-
ing the source and writing the target in a pre-
determined fashion, and dynamic decoders that
condition their decoding path on the current input.
We first prove the effectiveness of the determin-
istic online decoders and their ability to perform
well outside the delay range they were optimized
for. We then adapt Pervasive Attention models for
the task of online translation with both a determin-
istic and a dynamic decoding strategy.

We also address the resource-efficiency of
encoder-decoder models, namely Transformer
models (Vaswani et al., 2017), state-of-the-art in
a wide range of NLP tasks (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Ng et al., 2019).
Models based on the Transformer architecture can
grow deep, accumulating billions of parameters.
We posit that going deeper in a neural network is
not required for all instances, and design depth-
adaptive Transformer decoders. These decoders
allow for anytime prediction and sample-adaptive
halting mechanisms, to favor low cost predictions
for low complexity instances, and save deeper pre-
dictions for complex scenarios.

Pervasive Attention models and our Online
NMT framework are implemented on top of the
Fairseq library (Ott et al., 2019) in our open-source
code.1
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