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Abstract

This paper aims to perform an emotion analy-
sis of social media comments in Tamil. Emo-
tion analysis is the process of identifying the
emotional context of the text. In this paper,
we present the findings obtained by Team Opti-
mize_Prime in the ACL 2022 shared task "Emo-
tion Analysis in Tamil." The task aimed to clas-
sify social media comments into categories of
emotion like Joy, Anger, Trust, Disgust, etc.
The task was further divided into two subtasks,
one with 11 broad categories of emotions and
the other with 31 specific categories of emotion.
We implemented three different approaches to
tackle this problem: transformer-based mod-
els, Recurrent Neural Networks (RNNs), and
Ensemble models. XLM-RoBERTa performed
the best on the first task with a macro-averaged
f1 score of 0.27, while MuRIL provided the
best results on the second task with a macro-
averaged f1 score of 0.13.

1 Introduction

Due to the rise in social media, internet users can
voice their opinion on various subjects. Social net-
working platforms have grown in popularity and
are used for a variety of activities such as prod-
uct promotion, news sharing, and accomplishment
sharing, among others (Chakravarthi et al., 2021).
Emotion analysis or opinion mining is the study
of extracting people’s sentiment about a particu-
lar topic, person, or organization from textual data.
Emotion analysis has many modern-day use-cases
in e-commerce, social media monitoring, market re-
search, etc. Tamil is the 18th most spoken language
globally (Wikipedia contributors, 2022), with over
75 million speakers. Developing an approach for
emotion analysis of Tamil text will benefit many
people and businesses.

Emotion Analysis, at its core, is a text classifi-
cation problem. To date, various approaches have
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been developed for text classification. Earlier, clas-
sification models like logistic regression, linear
SVC, etc., were used. RNN based approaches
like LSTMs also gained much traction because
they produced better results than standard machine
learning models. The introduction of transformers
(Vaswani et al., 2017) changed the course of text
classification due to their consistent performance.
Multiple variations of the transformer have been de-
veloped like BERT (Devlin et al., 2018), AlBERT
(Lan et al., 2019), XLM-RoBERTa (Conneau et al.,
2019), MuRIL (Khanuja et al., 2021), etc.

In this paper, we have tried various approaches to
detect emotions from social media comments. We
have used three distinct ways to get optimal results:
Ensemble models, Recurrent Neural Networks
(RNNs), and transformer-based approaches. This
paper will contribute towards future research in
emotion analysis in low-resource Indic languages.

2 Related Work

Emotion Analysis has recently gained popularity,
as large volumes of data are added to social net-
working sites daily. Earlier studies focus more on
lexicon-based approaches, and they make use of
a pre-prepared sentiment lexicon to classify the
text. e.g., in Tkalčič et al. (2016), Wang and Pal
(2015) and yan Nie et al. (2015), lexicon-based
approaches are used; however, if unrelated words
express emotions, this approach fails.

To overcome the limitations of lexical/keyword-
based approaches, learning-based approaches were
introduced. In this, the model learns from the
data and tries to find a relationship between input
text and the corresponding emotion. Researchers
have tried out both supervised and unsupervised
learning approaches. e.g., in Wikarsa and Thahir
(2015), tweet classification was performed using
naïve Bayes (supervised learning). In Hussien et al.
(2016), SVM and multimodal naïve Bayes were
used to classify Arabic tweets.
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Emotion Neutral Joy Ambiguous Trust Disgust Anticipation Anger Sadness Love Surprise Fear

% 34.24% 15.3% 11.82% 8.6% 6.3% 5.9% 5.7% 5.07% 4.8% 1.63% 0.7%

Table 1: Class-wise distribution of data.

A combination of lexicon-based and learning-
based approaches were used to perform classifica-
tion on a multilingual dataset in Jain et al. (2017).
Transfer learning-based approaches work well for
low-resource languages. Transfer learning allows
us to reuse the existing pre-trained models. For ex-
ample, Ahmad et al. (2020) used a transfer learning
approach to classify text in Hindi.

Lately, transformer-based models have been con-
sistently outperforming other architectures, includ-
ing RNNs. The development of models like MuRiL
(Khanuja et al., 2021), XLM-RoBERTa (Conneau
et al., 2019), Indic BERT (Kakwani et al., 2020),
and M-BERT (Devlin et al., 2018) has encouraged
research in various low resource as well as high
resource languages.

3 Dataset Description

The shared task on Emotion Analysis in Tamil-ACL
2022 aims to classify social media comments into
categories of emotions. The Emotion Analysis in
Tamil Dataset (Sampath et al., 2022) consists of
two datasets. The first dataset is for task A and has
11 categories of emotions which are: Neutral, Joy,
Ambiguous, Trust, Disgust, Anger, Anticipation,
Sadness, Love, Surprise, Fear. While the second is
for task B and has 31 more specific categories of
emotions. The distribution of data among classes
is given in Table 1

3.1 Task A

The train, dev, and test datasets have 14,208, 3,552,
and 4,440 data points, respectively. Each data point
in the training data has the text in Tamil and its
corresponding label in English.

3.2 Task B

The train, dev, and test datasets have 30,180, 4,269,
and 4,269 data points, respectively. Each data point
in the training data has the text in Tamil and its
corresponding label, also in Tamil.
There is a significant class imbalance in the dataset,
representing social media comments in real life.

4 Methodology

To classify social media comments into different
emotions, we used three different approaches: en-
semble models, Recurrent Neural Networks, and
transformers. Figure 1. shows the architecture of
all the three approaches1.

4.1 Data Processing

4.1.1 Data cleaning
We removed punctuations, URL patterns, and stop
words. For better contextual understanding, we
replaced emojis with their textual equivalents. For
example, the laughing emoji was replaced by the
Tamil equivalent of the word laughter.

Data cleaning boosted the performance of all
RNN models and all transformer models except for
MuRIL. MuRIL and all ensemble models worked
best without data cleaning.

4.1.2 Handling data imbalance
There is a significant class imbalance in the data.
To reduce the imbalance, we used the follow-
ing techniques: over-sampling, over-under sam-
pling, Synthetic Minority Over-sampling (SMOTE)
(Chawla et al., 2002), and assigning class weights.
In over-under sampling, we under-sample the
classes having more instances than expected and
over-sample those having lesser instances than ex-
pected while keeping the length of the dataset con-
stant. Over-under sampling worked best for all
transformer and ensemble models, but it reduced
the performance of RNN models. Assigning class
weights to the input boosted the performance of the
M-BERT - Logistic Regression ensemble model.

4.2 Ensemble model

As shown in the figure, we concatenate differ-
ent machine learning models with multilingual
BERT(M-BERT) (Devlin et al., 2018). Multilin-
gual BERT is a BERT-based transformer trained in
104 languages. It simultaneously encodes knowl-
edge of all these languages. M-BERT generates
a sentence embeddings vector of length 768, with

1https://github.com/PICT-NLP/Optimize_Prime-
DravidianLangTech2022-Emotion_Analysis
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Figure 1: Model architecture (green box represents the classifier with highest f1 score in the group)

context. We then pass these embeddings to differ-
ent machine learning models like logistic regres-
sion, decision trees, and XGBoost. We used grid
search with macro-averaged f1 score as the scoring
parameter for 3-5 cross-validation folds to fine-tune
the hyperparameters.

4.3 RNN Models

We have used two RNN models, Long Short-Term
Memory(LSTM) networks and ULM-Fit.

4.3.1 Vanilla LSTM
For setting a baseline for an RNN approach, we
built word embeddings from scratch by choosing
the top 64,000 most frequently occurring words in
the dataset. This is passed through an embedding
layer to get 100 dimension word vectors. The rest
of the model includes a spatial drop out of 0.2,
followed by the classification model consisting of
two linear layers followed by a softmax.

4.3.2 ULM-Fit
In transfer learning approaches, models are trained
on large corpora, and their word embeddings are
fine-tuned for specific tasks. In many state-of-the-
art models, this approach is successful (Mikolov
et al., 2013). Although Howard and Ruder (2018)
argue that we should use a better approach instead
of randomly initializing the remaining parameter.
They have proposed ULMFiT: Universal Language
Model Fine-tuning for Text Classification.

We use team gauravarora’s (Arora, 2020) open-
sourced models from the shared task at HASOC-
Dravidian-CodeMix FIRE-2020. They build cor-
pora for language modeling from a large set of

Wikipedia articles. These models are based on the
Fastai (Howard and Gugger, 2020) implementation
of ULMFiT. We fine-tuned the models on Tamil,
codemix datasets individually and on the Tamil-
codemix combined dataset.

For tokenization, we used the Senterpiece mod-
ule. The language model is based on AWD-LSTM
(Merity et al., 2018). The model consists of a regu-
lar LSTM cell with spatial dropout, followed by the
classification model consisting of two linear layers
followed by a softmax.

4.4 Transformer Models
Our data sets consist of Tamil and Tamil-English
codemixed data; we use four transformers MuRIL,
XLM-RoBERTa, M-BERT, and Indic BERT.
MuRIL (Khanuja et al., 2021) is a language model
built explicitly for Indian languages and trained
on large amounts of Indic text corpora. XLM-
RoBERTa (Conneau et al., 2019) is a multilingual
version of RoBERTa (Liu et al., 2019). Moreover, it
is pre-trained on 2.5 TB of filtered CommonCrawl
data containing 100 languages. M-BERT (Devlin
et al., 2018) or multilingual BERT is pre-trained
on 104 languages using masked language model-
ing (MLM) objective. Indic BERT (Kakwani et al.,
2020) is a multilingual ALBERT (Lan et al., 2019)
model developed by AI4Bharat, and it is trained on
large-scale corpora of major 12 Indian languages,
including Tamil. We use HuggingFace (Wolf et al.,
2019) for training with SimpleTransformers. The
training was stopped early if the f1 score did not im-
prove for three consecutive epochs. A warning was
given while training XLM-RoBERTa on the task B
dataset using SimpleTransformers, which caused a
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Task A
Classifier mf1 wf1

Ensemble
Models

LR 0.23 0.32
SVC 0.18 0.33
XGBoost 0.16 0.33
MLP 0.19 0.32

RNN
Models

ULMFIT 0.27 0.41
LSTM 0.21 0.33

Transformer
Models

MuRIL 0.31 0.37
XLM-R 0.32 0.37
M-BERT 0.27 0.36
IndicBERT 0.29 035

Table 2: Results of task A
(mf1: macro avg f1, wf1: weighted avg f1)

Task B
Classifier mf1 wf1

Ensemble
Models

LR 0.10 0.17
SVC 0.09 0.20
XGBoost 0.07 0.17
MLP 0.08 0.17

RNN
Models

LSTM 0.11 0.21

Transformer
Models

MuRIL 0.13 0.16
IndicBERT 0.09 0.11

Table 3: Results of Task B
(mf1: macro avg f1, wf1: weighted avg f1)

considerable dip in the score obtained. The solution
to this is to make the argument use_multiprocessing
equal to False.

5 Results

The results obtained for Task A and Task B are
given in Table 2 and Table 3, respectively.

5.1 Ensemble models

In task A, logistic regression achieved the best re-
sults with macro-averaged f1 scores of 0.23. MLP
achieved a macro averaged f1 score of 0.19. Sup-
port Vector Machine also produced decent results
with a macro-averaged f1 score of 0.18 and a
weighted-average f1 score of 0.33.
For task B, logistic regression got a macro aver-
age f1 score of 0.1 and outperformed all the other
ensemble models.

5.2 RNNs

For task A, ULMFit performed well with a macro-
averaged f1 score of 0.27. For task B, LSTM gen-
erated a macro-averaged f1 score of 0.11 and a
weighted-average f1 score of 0.21.

5.3 Transformers

For task A, XLM-RoBERTa outperformed all other
models with a macro averaged f1 score of 0.32 and
a weighted-average score of 0.37. Performance
of MuRIL was similar to XLM-Roberta. For task
B, MuRIL outperformed all other models with a
macro-averaged f1 score of 0.125.

Overall, XLM-RoBERTa performed the best on
Task A(11 classes) while MuRIL performed the
best on Task B(31 labels)

6 Conclusion

The aim of this paper was to classify social media
comments. We used three approaches: Ensem-
ble models, Recurrent Neural Networks (RNNs),
and transformers. Out of these models, for task
A, XLM-RoBERTa outperformed all other models
with a macro-averaged f1 score of 0.27. However,
in Task B, MuRIL outperformed all other models
with a macro averaged f1 score of 0.125. Overall, it
is observed that the models classify emotions like
Joy, Sadness, Neutral, and sentences having am-
biguity well. However, the models classify more
complex emotions like anger, fear, and sadness
with much less accuracy. In the future, various tech-
niques like genetic algorithm-based ensembling
can be tried to improve the performance of the
models.
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