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Abstract

Crowdsourcing platforms are often used to
collect datasets for training machine learning
models, despite higher levels of inaccurate la-
beling compared to expert labeling. There are
two common strategies to manage the impact
of such noise: The first involves aggregating
redundant annotations, but comes at the ex-
pense of labeling substantially fewer examples.
Secondly, prior works have also considered us-
ing the entire annotation budget to label as
many examples as possible and subsequently
apply denoising algorithms to implicitly clean
the dataset. We find a middle ground and pro-
pose an approach which reserves a fraction of
annotations to explicitly clean up highly prob-
able error samples to optimize the annotation
process. In particular, we allocate a large por-
tion of the labeling budget to form an initial
dataset used to train a model. This model is
then used to identify specific examples that
appear most likely to be incorrect, which we
spend the remaining budget to relabel. Exper-
iments across three model variations and four
natural language processing tasks show our ap-
proach outperforms or matches both label ag-
gregation and advanced denoising methods de-
signed to handle noisy labels when allocated
the same finite annotation budget.

1 Introduction

Modern machine learning often depends on heavy
data annotation efforts. To keep costs in check
while maintaining speed and scalability, many peo-
ple turn to non-specialist crowd-workers through
platforms like Mechanical Turk. Although crowd-
sourcing reduces costs to a reasonable level, it also
tends to produce substantially higher error rates
compared with expert labeling. The classic ap-
proach for improving reliability in classification
tasks is to perform redundant annotations which
are later aggregated using a majority vote to form
a single gold label (Snow et al., 2008; Sap et al.,
2019a; Potts et al., 2021; Sap et al., 2019b). This
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Figure 1: Data cleaning reserves a small portion of the
annotation budget for targeted relabeling of examples
that are identified as especially likely to be noisy. In
contrast, the default and denoising methods spend the
entire budget upfront, yielding lower quality data.

solution is easy to understand and implement, but
comes at the expense of severely reducing the num-
ber of labeled examples available for training.

As an alternative, researchers have made great
strides in designing automatic label cleaning meth-
ods, noise-insensitive training schemes and other
mechanisms to work with noisy data (Sukhbaatar
et al., 2015; Han et al., 2018; Tanaka et al., 2018).
For example, some methods learn a noise tran-
sition matrix for reweighting the label (Dawid
and Skene, 1979; Goldberger and Ben-Reuven,
2017), while others modify the loss (Ghosh et al.,
2017; Patrini et al., 2017). Another set of options
generate cleaned examples from mislabeled ones
through semi-supervised pseudo-labeling (Jiang
et al., 2018; Li et al., 2020). However, empirically
getting many of these techniques to work well in
practice is often a struggle due to the difficulty of
training extra model components.
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We avoid the complexity of repairing or
reweighting the labels of existing annotations by
instead obtaining wholly new annotations from
crowdworkers for a selected subset of samples. In
doing so, our proposed methods require no extra
model parameters to train, yet still retains the ben-
efits of high label quality. Concretely, we start by
allocating a large portion of the labeling budget
to obtain an initial training dataset. The examples
in this dataset are annotated in a single pass, and
we would expect some percentage of them to be
incorrectly labeled. However, enough of the labels
should be correct to train a reasonable base model.
Next, we take advantage of the recently trained
model to identify incorrectly labeled examples, and
then spend the remaining budget to relabel those
examples. Finally, we train a new model using the
original data combined with the cleaned data.

The key ingredient of our method is a function
for selecting which examples to re-annotate. We
consider multiple approaches for identifying candi-
dates for relabeling, none of which have been ap-
plied before to denoising data within NLP settings.
In all cases, relabeling the target examples relies on
neither training any extra model components nor
on tuning sensitive hyper-parameters. By using the
existing annotation pipeline, the implementation
becomes relatively trivial.

To test the generalizability of our method, we
compare against multiple baselines on four tasks
spanning multiple natural language formats. This
departs from previous studies on human labeling
in NLP, which focus exclusively on text classifica-
tion (Wang et al., 2019; Jindal et al., 2019; Tayal
et al., 2020). The control baseline and denoising
baselines perform a single annotation per example.
The majority vote baseline triples the annotations
per example, but consequently is trained on only
one third the number of examples to meet the anno-
tation budget. We lastly include an oracle baseline
that lifts the restriction on a fixed budget and in-
stead uses all available annotations. We test across
three model types, ranging from small ones taking
minutes to train up to large transformer models
which require a week to reach convergence. We
find that under the same fixed annotation budget,
cleaning methods match or surpass all baselines.

In summary, our contributions include:

1. We examine an alternative direction to learn-
ing with noisy labels that appear when data is
collected under low-resource settings.

2. We build four versions of our approach that
vary in how they target examples to relabel.

3. We compare against a number of baselines,
many of which have never been implemented
before in the natural language setting.

Overall, our Large Loss method, which selects ex-
amples for relabeling by the size of their training
loss, performs the best out of all variations we con-
sider despite requiring no extra parameters to train.

2 Related Work

The standard method for learning in the presence
of unreliable annotation is to perform redundant
annotation, where each example is annotated mul-
tiple times and a simple majority vote determines
the final label (Snow et al., 2004; Russakovsky
et al., 2015; Bowman et al., 2015). While effec-
tive, this can be costly since it severely reduces
the amount of data collected. To tackle this prob-
lem, researchers have developed several alternative
methods for dealing with noisy data that can be
broken down into three categories.

Denoising Techniques Noisy training examples
can be thought of as the result of perturbing the
true, underlying labels by some source of noise.
One group of methods assume the source of noise
is from confusing one label class for another, and
is resolved by reverting the errors through a noise
transition matrix (Sukhbaatar et al., 2015; Gold-
berger and Ben-Reuven, 2017). Other methods
work under the assumption that labeling errors oc-
cur due to annotator biases (Raykar et al., 2009;
Rodrigues and Pereira, 2018), such as non-expert
labelers (Welinder et al., 2010; Guan et al., 2018) or
spammers (Hovy et al., 2013; Khetan et al., 2018).
Finally, some methods model the noise of each
individual example, either through expectation-
maximization (Dawid and Skene, 1979; Whitehill
et al., 2009; Mnih and Hinton, 2012), or neural
networks (Felt et al., 2016; Jindal et al., 2019).

Another set of methods modify the loss function
to make the model more robust to noise (Patrini
etal., 2017). For example, some methods add a reg-
ularization term (Tanno et al., 2019), while others
bound the amount of loss contributed by individ-
ual training examples (Ghosh et al., 2017; Zhang
and Sabuncu, 2018). The learning procedure can
also be modified such that the importance of train-
ing examples is dynamically reweighted to prevent
overfitting to noise (Jiang et al., 2018).
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Pseudo-labeling represents a final set of methods
that either devise new labels for noisy data (Reed
etal., 2015; Tanaka et al., 2018) or generate wholly
new training examples (Arazo et al., 2019; Li et al.,
2020). Other approaches from this family use two
distinct networks to produce examples for each
other to learn from (Han et al., 2018; Yu et al.,
2019).

Budget Constrained Data Collection Our work
also falls under research studying how to maxi-
mize the benefit of labeled data given a fixed an-
notation budget. Khetan and Oh (2016) apply
model-based EM to model annotator noise, al-
lowing singly-labeled data to outperform multiply-
labeled data when annotation quality goes above
a certain threshold. Bai et al. (2021) show that
similar trade-offs exist when performing domain
adaptation on a constrained budget. Zhang et al.
(2021) observe that difficult examples benefit from
additional annotations, so optimal spending actu-
ally varies the amount of labels given to each ex-
ample. Our approach actively targets examples for
relabeling based on its likelihood of noise, whereas
they randomly select examples for multi-labeling
without considering its characteristics.

Human in the Loop Finally, our work is also re-
lated to data labeling with humans. Annotators can
be assisted through iterative labeling where models
suggest labels for each training example (Settles,
2011; Schulz et al., 2019), or through active learn-
ing where models suggest which examples to label
(Settles and Craven, 2008; Ash et al., 2020). In
both cases, forward facing decisions are made on
incoming batches of unlabeled data. In contrast,
our methods look back to previously collected data
to select examples for relabeling. These activities
are orthogonal to each other and can both be in-
cluded when training a model. (See Appendix C)

Lastly, re-active learning from (Sheng et al.,
2008; Lin et al., 2016) proposes to relabel exam-
ples based on their predicted impact by retraining
a classifier from scratch for every iteration of an-
notation. Accordingly, their method is impractical
when adapted to the large Transformer models stud-
ied in this paper!. Instead, we identify examples
to relabel through much less computationally ex-
pensive means, making the process tractable for
real-life deployment.

1Training a large language model (such as RoBERTa-

Large) until convergence can easily take a day or longer. Do-
ing so each time for 12k annotations would take 30+ years.

3 Methods Under Study

We study how to maximize model performance
given a static data annotation budget. Concretely,
we are given some model M for a target task,
along with a budget as measured by B number
of annotations, where each annotation allows us
to apply a possibly noisy labeling function f,(x),
where 7 is the number of redundant annotations
applied to a single example. Annotating some set
of unlabeled instances produces noisy examples
(X, fr(X)) = (X,Y). Our goal is to achieve
the best score possible for some primary evalu-

ation metric S on a given task by cleaning the

noisy labels ¥ dean, - Afterwards, we train

a model with the cleaned data and then test it on
a separate test set. For all our experiments, we set
B = 12,000 as the total annotation budget.

As a default setting, we start with a Control base-
line which uses the entire budget to annotate 12k
examples, once each (n = 12,000;r = 1). To
simulate a single annotation, we randomly sam-
ple a label from the set of labels offered for each
example by the dataset. To obtain more accurate
labels, people often perform multiple annotations
on each example and use Majority Vote to aggre-
gate the annotations. Accordingly, as a second
baseline we annotate 4k examples three times each
(n = 4,000;r = 3), matching the same total bud-
get as before. In the event of a tie, we randomly
select one of the candidate labels. Finally, we also
include an Oracle baseline which uses the gold la-
bel for 12k examples (n = 12,000; 7 = 3|5). The
gold label is either given by the dataset or gener-
ated by majority vote, where the label might result
from aggregating five annotations rather than just
three annotations.

3.1 Noise Correction Baselines

We consider four advanced baselines, all of which
perform a single annotation per example (n =
12,000, = 1) as seen in Figure 1. (1) (Gold-
berger and Ben-Reuven, 2017) propose applying
a noise Adaptation layer which models the error
probability of label classes. This layer is initial-
ized as an identity matrix, which biases the layer
to act as if there is no confusion in the labels. This
noise transition matrix is then learned as a non-
linear layer on top of the baseline model M to
denoise predictions. The layer is discarded during
final inference since gold labels are used during
test time and are assumed to no longer be noisy.
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(2) The Crowdlayer also operates by modeling the
error probability, but assumes the noise arises due
to annotator error, SO a noise transition matrix is
created for each worker (Rodrigues and Pereira,
2018). Once again, this matrix is learned with gra-
dient descent and removed for final inference. (3)
The Forward correction method from (Patrini et al.,
2017) adopts a loss correction approach which mod-
ifies the training objective. Given — log p(§ = g|z)
as the original loss, Forward modifies this to be-
come —log > %, Tjip(§ = y|x) where c is the
number of classes being predicted, and both 7 and
J are used to index the number of classes. Ma-
trix 7' is represented as a neural network that is
learned jointly during pre-training. (4) Lastly, the
Bootstrap method proposed by (Reed et al., 2015)
generates pseudo-labels by gradually interpolating
the predicted label ¢ with the given noisy label
y. We apply their recommended hard bootstrap
variant which uses the one-hot prediction for in-
terpolation since this was shown to work better in
their experiments.

3.2 Cleaning through Targeted Relabeling

Rather than maximizing the number of examples
annotated given our budget, we propose reserv-
ing a portion of the budget for reannotating the
labels most likely to be incorrect. Specifically, we
start by annotating a large number of examples
one time each using the majority of the budget
(ng, = 10,000; 7 = 1). We then pretrain a model
M, using this noisy data, and observe either the
model’s training dynamics or output predictions
to target examples for relabeling. Next, we use
the remaining budget to annotate those examples
two more times (n, = 1,000; r = 2), allowing us
to obtain a majority vote on those examples. The
final training set is formed by combining the 1k
multiply-annotated examples with the remaining
Ok singly-annotated examples. We wrap up by ini-
tializing a new model My with the weights from
M and fine-tune it with the clean data until con-
vergence. We experiment with four approaches for
discovering the most probable noisy labels:

Area Under the Margin AUM identifies prob-
lematic labels by tracking the margin between the
likelihood assigned to the target label class and
the likelihood of the next highest class as training
progresses (Pleiss et al., 2020). Intuitively, if the
gap between these two likelihoods is large, then the
model is confident of its argmax prediction, pre-

sumably because the training label is correct. On
the other hand, if the gap between them is small,
or even negative, then the model is uncertain of its
prediction, presumably because the label is noisy.
AUM averages the margins over all training epochs
and targets the examples with the smallest margins
for relabeling.

Cartography Dataset Cartography is a tech-
nique for mapping the training dynamics of a
dataset to diagnose its issues (Swayamdipta et al.,
2020). The intuition is largely the same as AUM,
such that Cartography also chooses consistently
low-confidence (ie. low probability) examples for
relabeling. We take the suggestion from Section
5 of their paper to detect mislabeled examples by
tracking the mean model probability of the true
label across epochs. Note that unlike AUM, Car-
tography tracks the final model outputs after the
softmax, rather than the logits before the softmax.
These can lead to different rankings since Cartog-
raphy does not take the other probabilities in the
distribution into account.

Large Loss (Arpit et al., 2017) found that cor-
rectly labeled examples are easier for a model to
learn, and thus incur a small loss during training,
whereas incorrectly labeled examples produce a
large loss. Inspired by this observation and other
similar works (Jiang et al., 2018), the Large Loss
method selects examples for cleaning by ranking
the top n, examples where the model achieves the
largest loss during the optimal stopping point. The
ideal stopping point is the moment after the model
has learned to fit the clean data, but before it has
started to memorize the noisy data (Zhang et al.,
2017). We approximate this stopping point by per-
forming early stopping during training when the
progression of the development set fails to improve
for three epochs in a row. We then use the earlier
checkpoint for identifying errors.

Prototype We lastly consider identifying noisy
labels as those which are farthest away compared
to the other training data (Lee et al., 2018). More
specifically, we use a pretrained model to map all
training examples into the same embedding space.
Then, we select the vectors for each label class to
form clusters where the centroid of each cluster is
the “prototype” (Snell et al., 2017). Finally, we
define outliers as those far away from the centroid
for their given class, as measured by Euclidean
distance, which are then selected for cleaning.
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4 Experiments

4.1 Datasets and Tasks

To test our proposal, we select datasets that span
across four natural language processing tasks. We
choose these datasets because they provide multiple
labels per example, allowing us to simulate single-
and multiple-annotation scenarios.

Offense The Social Bias Frames dataset collects
instances of biases and implied stereotypes found
in text (Sap et al., 2020). We extract just the la-
bel of whether a statement is offensive for binary
classification.

NLI We adopt the MultiNLI dataset for natural
language inference (Williams et al., 2018). The
three possible label classes for each sentence pair
are entailment, contradiction, and neutral.

Sentiment Our third task uses the first round of
the DynaSent corpus for four-way sentiment anal-
ysis (Potts et al., 2021). The possible labels are
positive, negative, neutral, and mixed.

QA Our final task is question answering with
examples coming from the NewsQA dataset
(Trischler et al., 2017). The input includes a
premise taken from a news article, along with a
query related to the topic. The target label consists
of two indexes representing the start and end loca-
tions within the article that extract a span of text
answering the query. Unlike the other tasks, the
format for QA is span selection rather than classi-
fication. Due to this distinction, certain denoising
methods that assume a fixed set of candidate labels
are omitted from comparison.

4.2 Training Configuration

In our experiments, we fine-tune parameters dur-
ing initial training with only six runs, which is
composed of three learning rates and two levels of
dropout at 0.1 and 0.05. Occasionally, when vary-
ing dropout had no effect, we consider doubling
the batch size instead from 16 to 32. We found
an appropriate range of learning rates by initially
conducting some sanity checks on a sub-sample of
development data for each task and model combi-
nation. Learning rates were chosen from the set of
[1e-6, 3e-6, le-5, 3e-5, 1e-4]. When a technique
contained method-specific variables, we defaulted
to the suggestions offered in their respective pa-
pers. We do not expect any of the methods to be
particularly sensitive to specific hyperparameters.

4.3 Model Variations

We select three models for comparison that repre-
sent strong options at their respective model sizes.
We repeat the process of example identification and
simulated re-annotation separately for each model.
We use all models as a pre-trained encoders to em-
bed the text inputs of the different tasks we study.

DeBERTa-XLarge is our large model, which con-
tains 750 million parameters and currently is the
state-of-the-art on many natural language under-
standing tasks (He et al., 2021). DistilRoBERTa
represents a distilled version of RoBERTa-base
(Liu et al., 2019). It contains 82 million param-
eters, compared to the 125 million parameters
found in ROBERTa. Learning follows the distil-
lation process set by DistillBERT where a student
model is trained to match the soft target probabil-
ities produced by the larger teacher model (Sanh
etal., 2019). Fine-tuning DistilIRoBERTa is approx-
imately 60-70 times faster compared to fine-tuning
DeBERTa-XLarge on the same task.

For the final model, we avoid using Transform-
ers altogether and instead use the FastText bag-of-
words encoder (Joulin et al., 2017). The FastText
embeddings are left unchanged during training, so
the only learned parameters are in the 2-layer MLP
we use for producing the model’s final output. The
same output prediction setup is used for all mod-
els, with a 300-dimensional hidden state. Training
the FastText models run roughly 100-120 faster
compared to working with DeBERTa-XLarge.

5 Major Results

Table 1 displays results across all models types
and tasks, with each row representing a different
technique. All rows except the Oracle were trained
using the same label budget of 12,000 annotations.?
In some cases, a method may surpass the Oracle
since we conducted limited hyperparameter tuning,
but as expected, the Oracle model outperforms all
other methods overall. Notably, the Control setting
always beats the Majority setting. In fact, Major-
ity is consistently the lowest-performing method
on all models and tasks, showing that improved
label quality is never quite enough to overcome
the reduction in annotation quantity. Adaptation is
the best among denoising methods, achieving the

2Qur annotation amount is much less than total available
data for a task so our results are not directly comparable to
prior work. For example, DynaSent train set includes 94,459
examples and Social Bias Frames contains 43,448 examples.
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Methods FastT DRoB DeXL Avg Methods FastT DRoB DeXL Avg
Oracle 78.0 81.8 86.2  82.0 Oracle 40.7 49.7 883 596
Control 77.0 81.4 86.0 815 Control 40.1 48.5 874  58.7
Majority 76.2 80.4 84.5 804 Majority 38.5 46.2 86.1 56.9
Adaptation 77.8 81.5 86.1 81.8 Adaptation 40.6 494 87.8  59.2
Crowdlayer 77.1 81.4 85.4 81.3 Crowdlayer 40.2 48.7 874  58.7
Bootstrap 77.1 81.2 85.1 81.2 Bootstrap 40.8 49.3 874  59.1
Forward 77.5 81.2 849 81.2 Forward 40.6 48.6 87.3 58.8
Large Loss 77.7 81.6 85.4 81.6 Large Loss 40.5 48.9 87.8 59.1
AUM 77.5 81.5 85.3 81.4 AUM 40.3 49.0 87.1 58.8
Cartography  77.3 81.2 85.0 81.2 Cartography ~ 40.1 48.1 87.0 584
Prototype 77.7 81.4 85.5 81.5 Prototype 40.4 48.6 88.0 59.0
(a) Offensive Language Detection from SBF (b) Natural Language Inference from MNLI

Methods FastT DRoB DeXL Avg Methods FastT DRoB DeXL Avg
Oracle 55.5 57.3 732 62.0 Oracle — 7.94 523  30.1
Control 54.0 57.2 7277 613 Control — 6.90 503  28.6
Majority 52.4 55.8 712 59.8 Majority — 5.89 479 269
Adaptation 53.8 56.8 72.6 61.1 Adaptation — — — —

Crowdlayer 53.9 57.2 7277 61.2 Crowdlayer — — — —

Bootstrap 54.1 57.4 7277 614 Bootstrap — 6.72 505  28.6
Forward 53.5 57.3 73.0 61.4 Forward — — — —

Large Loss 55.6 574 731  62.0 Large Loss — 6.95 515 292
AUM 55.4 56.5 72.6 615 AUM — 6.69 515  29.1
Cartography  55.0 56.6 72.0 61.2 Cartography — 6.24 51.0 28.6
Prototype 55.1 57.1 73.1 61.7 Prototype — — — —

(c) Sentiment Analysis from DynaSent

(d) Question Answering from NewsQA

Table 1: Aggregated results for all method and model combinations, averaged over three seeds. Model names are
abbreviated for space: FastT is FastText, DRoB is DistilRoBERTa, and DeXL is DeBERTa-XLarge. Avg is the
average across models for that method. FastText doesn’t produce context-dependent representations, and so is not

usable on the QA task.

strongest results in two out of four settings. Large
Loss is the best among cleaning methods, with the
highest scores in the remaining two tasks. Proto-
typical is also a strong runner-up. Large Loss is the
best overall method due to its consistency since it
never drops below second on all tasks.

Variance among the three seeds is fairly consis-
tent for all models and methods within the same
task. Specifically, the standard deviation for of-
fense detection and NLI are both around 0.5, with
sentiment analysis and QA around 1.5 and 4.5, re-
spectively. We do not see any strong trends across
tasks, nor any outliers for a specific method.

Breakdown by Task Table la contains the re-
sults for offense language detection, where we see
that Large Loss and Adaptation are the only meth-
ods to overtake the Control. These two are also
the best overall performers on natural language

inference as seen in Table 1b. The cleaning meth-
ods really shine on sentiment analysis and question
answering where even the worst cleaning method
often tops the best denoising method. We hypoth-
esize this happens because the denoising methods
work best in simple classification tasks, which we
further explore in the next section. A handful of
results are not reported in Table 1d since they refer
to methods that are designed exclusively for classi-
fication tasks, and cannot be directly transferred to
span selection.

Breakdown by Model The larger models per-
form better than the smaller models in terms of
downstream accuracy, but somewhat surprisingly,
there does not seem to be any clear patterns in
relation to the method. In other words, if a par-
ticular method performs well (poorly) with one
model size, it tends to also do well (poorly) when

157



Large AUM Cart Proto

Large Loss 0.000 ~ 0.316
AUM 0.001 = 0.212
Cartography| --- - 1.000 ~ 0.025
Prototype| --- --- - 1.000

Table 2: Jaccard similarity for all pairs of targeted rela-
beling methods on the sentiment analysis task. Large,
Cart and Proto are short for Large Loss, Cartography
and Prototype, respectively. Results for other tasks
available in Appendix A.

Methods Offense NLI Sentiment QA

Default 81.6 48.9 574 6.95
Random 80.9 48.0 55.8 6.41
Cross 81.7 48.4 57.3 6.56

Table 3: Ablation results that vary the method of iden-
tifying errors for relabeling. Default uses the same
model for error selection and training.

applied to the other model sizes too. One possible
exception to this is the Prototype method show-
ing strong performance with DeBERTA-XLarge.
This is possibly because a stronger model produces
more valuable hidden state representations for de-
termining outliers. Since method performance is
largely independent of the model size, we use Dis-
tillRoBERTa as the encoder for simplicity in the
upcoming analyses.

Ablation How can we be sure that the cleaning
methods are actually exhibiting a small, but consis-
tent gain over the baselines rather than just natural
variation? Perhaps the scores are close simply be-
cause all the methods use the same amount of train-
ing data. If the cleaning methods are indeed adding
value, then they should perform much better than
random selection. To measure this, we replace the
pre-trained DistilRoBERTa model with a uniform
sampler to identify examples for cleaning.

Active learning has been shown to exhibit sig-
nificant decrease when transferring across model
types (Lowell et al., 2019). In contrast, we argue
that our method is not active learning since it is not
directly dependent on the specific abilities of the
target model. To test this claim, we also conduct an
additional ablation whereby we replace one model
type for another. Namely, we use the DeBERTa-
XLarge model to select examples for cleaning, then
train on the DistilRoBERTa model.

The results in Table 3 show that randomly select-

ing data points to relabel indeed lowers the final
performance by a noticeable amount. By compar-
ison, cross training models leads to a negligible
drop in performance. We believe this occurs be-
cause targeted relabeling produces clean data, and
clean data is useful regardless of the situation.

6 Discussion and Analysis

To better understand how the proposed clean meth-
ods operate, we conduct additional analysis with
the sentiment analysis task.

Methods Precision GoEmotions Synthetic
Oracle — 55.8 57.9
Control — 54.8 56.6
Majority — 53.0 55.2
Adaptation — 54.8 56.5
Crowdlayer — 54.9 56.4
Bootstrap — 55.0 57.0
Forward — 53.9 56.2
Large Loss 56.8 55.2 56.5
AUM 60.4 54.6 56.1
Cartography 19.0 543 56.4
Prototype 46.6 55.1 56.7

Table 4: This table contains results for the three dif-
ferent post-hoc analyses. Left column is precision of
the model in identifying mislabeled examples. Right
columns are results training on extended datasets. All
scores are average of three seeds on DistillRoBERTa.

How well do clean methods select items? We
compare the four proposed methods by first looking
at the amount of overlap in the examples selected
for relabeling. To calculate this, we gather all ex-
amples chosen for relabeling by their likelihood of
annotation error. For a given pair of methods, we
then find the size of their intersection and divide
by the size of their union, which yields the Jaccard
similarity. As shown in Table 2, AUM and Large
Loss have high overlap meaning that they select
similar examples for cleaning. We additionally cal-
culate the precision of each method by counting
the number of times a label targeted for relabel-
ing did not match the oracle label, and therefore
legitimately requires cleaning. Based on Table 4,
we once again see reasonable performance for the
Large Loss cleaning method.

Qualitative examples for sentiment analysis are
displayed in Table 5, which were chosen as the
most likely examples of label errors according to
their respective methods. Large Loss consistently
discovers ‘neutral’ labels that were mis-labeled as
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Method Input Text Label
That’s usually how it go goes. MIXED
I always order “to-go” MIXED
Large Loss It’s $15 bucks for a beer since I used a drink ticket MIXED
We usually frequent the settlers ridge location. MIXED
I went on June 4th around 10:30. MIXED
So fine, no problem. POSITIVE
A sirloin hotdog wrapped in bacon. NEUTRAL
AUM For many years, I have gone to the Pet Smart down the street. NEUTRAL
I was always so happy here when it was managed by Johnny. NEUTRAL
I ordered the pad Thai noodles, chicken chow mien and egg rolls. POSITIVE
The food and customer service was fantastic when you first opened POSITIVE
The servers were pleasant. POSITIVE
Cartography Our waiter was overly friendly and informational. MIXED
Family owned and operated these folks are killing it POSITIVE
I really thought the young folks behind the counter were outgoing and seemed to enjoy their jobs ~ POSITIVE
This should be a fun family place! NEGATIVE
Hotel was awesome. NEGATIVE
Prototype Great service for many years on our cars, but always at an additional price. NEUTRAL
Salad was great but a bit small. NEUTRAL
We had to specify the order multiple times, but eventually when the food came it was actually =~ NEUTRAL

pretty good.

Table 5: Sentiment Analysis examples each method identified as being most likely to be label errors.

‘mixed’, while Prototype also does a good job un-
covering label errors, finding ‘positive’ examples
mislabeled as ‘negative’. Overall, we see that the
best performing cleaning methods do seem to pick
up on meaningful patterns.

How many examples should be cleaned? All
cleaning experiments so far have been run with n,
= 10,000 examples with n; = 1,000 samples chosen
for relabeling. This is equivalent to using up A = %
of the labeling budget upfront, with the remaining
annotations saved for later. This A ratio was chosen
as a reasonable default, but can also be tuned to
be higher or lower. Figure 2 shows the results of
varying the A parameter from a range of % to %
Based on the results, choosing A = % would have
actually been the best option. This translates to n,
= 8,000 examples with n; = 2,000 of those exam-
ples selected for re-labeling. As a sanity check, we
also try dropping the n; cleaned examples when
retraining, keeping only the noisy data. As seen in
Figure 2, the performance decreases as expected.

What if we increase the number of classes?
Based on the trends in the task breakdown of sec-
tion 5, denoising methods seem to perform worse
than explicit relabeling methods as the task gets
harder. Most denoising methods may even be-
come intractable for complex settings, such as
those which require span selection. To test this hy-
pothesis, we extend our setup to the GoEmotions

- Sentiment = NLI - Offense

1.00%

0.00% A¢
-1.00% /

Training without /{ °

the cleaned data L

-2.00%

-3.00%

) B B o ) AD
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o A o o o o ot

Num Training Examples (A)

Figure 2: Varying the number of training examples
changes the amount of budget remaining for cleaning.
10,000 examples is set as the default and the percent
change is measured in comparison to this point.

dataset, where the goal of the task is to predict the
emotion associated with a given utterance (Dem-
szky et al., 2020). Whereas previous tasks dealt
with 2-4 classes, the GoEmotions dataset requires
a model to select from 27 granular emotions and
a neutral option, for a total of 28 classes. Intu-
itively, we would expect the denoising methods
to struggle since the pairwise interactions among
classes has grown exponentially larger. The results
in Table 4 reveal that Large Loss again outperforms
all other methods in prediction accuracy. Notably,
Adaptation in particular continues to exhibit lower
than average scores compared to other methods.
This supports our claim that relabeling methods are
more robust as the number of classes grows.
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What happens if noise is synthetically created?
Many of the advanced denoising methods were
originally tested on synthetically generated noise,
whereas the noise in our datasets originates from
noisy annotations, caused by the inherent am-
biguity of natural language text (Pavlick and
Kwiatkowski, 2019; Chen et al., 2020). Perhaps
this partially explains how our proposed relabeling
methods are able to outperform prior work. To
study this further, we create a perturbed dataset
starting from the gold DynaSent examples. Specif-
ically, we randomly sample replacement labels
according to a fabricated noise transition matrix,
rather than sampling from the label distribution
provided by annotators. (More details in Appendix
D.) With noise coming from an explicit transition
matrix, it might be easier for all models to pick up
on this pattern.

The middle column of Table 4 shows that all
eight cleaning methods perform on par with each
other. When comparing the variance on this dataset
with synthetic noise against the original DynaSent
dataset with natural noise, the standard deviation
drops from 0.34 down to 0.28, highlighting the uni-
formity in performance among the eight methods.
The denoising methods work as intended on syn-
thetic noise, but such assumptions may not hold on
real data with more nuanced errors.

7 Conclusion

Noisy data is a common problem when annotat-
ing data under low resource settings. Perform-
ing redundant annotation on the same examples
to mitigate noise leads to having even less data to
work with, so we propose data cleaning instead
through targeted relabeling. We apply our methods
on multiple model sizes and NLP tasks of varying
difficulty, which show that saving a portion of a
labeling budget for re-annotation matches or out-
performs other baselines despite requiring no extra
parameters to train or hyper-parameters to tune.
Intuitively, our best method can be summarized
as double-checking the examples that the model
gets wrong to see if it is actually an incorrect label
causing problems.

Thus, to make the most out of the scarce labeled
data available, we believe a best practice should
include targeting examples for cleaning rather than
spending the entire annotation budget upfront. Fu-
ture work includes exploring more sophisticated
techniques for identifying examples to relabel and

understanding how such cleaning models perform
on additional NLP tasks such as machine transla-
tion or dialogue state tracking, which have distinct
output formats.
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A Additional Quantitative Results

Looking at Figure 3, the similarity scores for of-
fensive language detection and natural language
inference largely match up with the scores found
in sentiment analysis. In particular, Large Loss
and AUM exhibit higher overlap with each other.
Additionally, Prototype shows a medium overlap
and Cartography shows no overlap at all with the
other methods. We reach a similar conclusion that
the Large Loss method is a reasonable technique.

B Additional Qualitative Examples

More examples can be found in Table 6 on the next
page. We see that Large Loss is once again quite
accurate in picking up labeling errors. Prototype for
NLI does a great job at finding examples labeled as
‘entailment’ which should be something else. The
hypotheses for all the selected examples contain
negative sentiment, which may be located far away
from the entailment examples in the embedding
space. Cartography exhibits a pattern of always
choosing examples labeled as ‘contradiction’.

C Comparison to Learning Schemes

On the surface, targeting examples for relabeling
contains may seem similar to active learning or
curriculum learning. Although there are certainly
some parallels between these techniques, these are
fundamentally different learning paradigms.
Active learning methods typically choose new
examples to label based on the uncertainty of the
model (Tong and Koller, 2001; Hanneke, 2014) or
on the diversity they can add to the existing dis-
tribution (Sener and Savarese, 2018; Ash et al.,
2020). Although sample noise can also be mea-
sured through model uncertainty, denoising and
active learning do not have the same goal. More
specifically, the noise of a training example is re-
lated to how its label is somehow incorrect. Perhaps
the start of a span was not properly selected or an
example that should not be tagged was accidentally
included. More simply, an example is mislabeled
as class A, when in fact it belongs to class B. This
situation is not possible with active learning be-
cause the examples in active learning do not have
labels yet! The entire point of active learning is to
choose which examples should be labeled next (Set-
tles and Craven, 2008; Settles, 2011). Thus, when
we try to identify examples for cleaning, we are
re-labeling rather than labeling for the first time.

Curriculum learning also selects examples for
training based on model uncertainty (Bengio et al.,
2009) and diversity maximization (Jiang et al.,
2014). It could be interpreted that easier exam-
ples are those that contain less noise, which would
connect to our proposed process. However, tra-
ditional curriculum learning chooses these exam-
ples upfront rather than based on modeling dynam-
ics (Jiang et al., 2015). Extensions have been made
under the umbrella of self-paced curriculum learn-
ing whereby examples are chosen for a curriculum
based on how they react to a model’s behavior (Ku-
mar et al., 2010). This is indeed similar to how we
can choose to relabel examples based on the model
loss. This aspect of relabeling though is the key dis-
tinction — we act on these examples in an attempt to
denoise the dataset. On the other hand, self-paced
learning simply feeds those same examples back
into the model without any modification.

D Data Preprocessing

D.1 Synthetic Data Generation

The synthetic dataset is created by applying an ex-
plicit noise transition matrix with 20% noise. Since
the original dataset contains four classes, we start
with an empty 4x4 matrix. The labels should not
be confused most of the time so we assign a likeli-
hood of 0.8 across the diagonal of the matrix. Next,
we randomly select another class for each row to
receive 0.1 likelihood of confusion. This leaves
0.1 for each row to be divided between the two re-
maining classes, which receive 0.05 each. For each
example in the oracle dataset, we use the original
label to select a single row from the constructed
noise transition matrix. Lastly, we are able to sam-
ple a new label according to the weights provided
by this 4-D vector. In contrast, the original sam-
pling procedure obtained its weights according to
the normalized label distribution provided by the
annotations.

D.2 GoEmotions Preprocessing

To prepare the GoEmotions dataset, we filter the
raw data to include only examples that have at
least three annotators and a clear majority vote
(used for determining the gold label). We then
cross-reference this against the proposed data splits
offered by the authors which have high inter-
annotator agreement. From this joint pool of exam-
ples, we sample 12k training examples to match the
setting of all our other experiments. This results in
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Large AUM Cart Proto Large AUM Cart Proto

Large Loss| 1.000 0637 0.000 = 0.190 Large Loss| 1.000 | 0545 0.000  0.191
Area Margin| --- 1.000  0.000 = 0.125 Area Margin| --- 1.000  0.000 = 0.202
Cartography| --- - 1.000 = 0.166 Cartography| --- - 1.000 = 0.152

Prototype| --- - -—-- 1.000 Prototype| --- - --- 1.000
(a) Jaccard similarity on Social Bias Frames (b) Jaccard similarity on MNLI dataset

Figure 3: Jaccard similarity overlap for all pairs of targeted relabeling methods on the offensive language detection
task and the natural language inference task.

12000/2954/2946 examples for train, development
and test splits respectively.

E Limitations

Our proposed methods are limited to studying noise
which comes from human annotators acting in good
faith. Other sources of label noise include errors
which occur due to spammers, distant supervision
(as commonly seen in Named Entity Recognition),
and/or pseudo-labels from bootstrapping. Within
interactive settings, such as for dialogue systems,
models may also encounter noisy user inputs such
as out-of-domain requests or ambiguous queries.
Our methods would not work well in those regimes
either.
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Method Premise Hypothesis Label
‘Why shouldn’t he be? He doesn’t actually want to be that way. ENTAILMENT
How do they feel about your being a Theater major? They don’t know you’re a theater major, do they? ENTAILMENT
Defication of humankind as supreme. Humankind is not supreme. ENTAILMENT
Large Loss These are artists who are either emerging as leaders in their These artists are becoming well known in CONTRADICTION
fields or who have already become well known. their fields.
As he stepped across the threshold, Tommy brought Tommy stepped across a threshold and put CONTRADICTION
the picture down with terrific force on his head. a picture down on his head.
And if, as ultimately happened, no settlement resulted, Even if an agreement could not be reach ENTAILMENT
we could shrug our shoulders, say, "Hey, we tried.” we could say we tried.
Companies that were foreign had to accept Indian Foreign companies had to take Italian money CONTRADICTION
financial participation and management.
AUM ... he’s been tireless about pursuing both celebrity He never wanted any attention and kept to CONTRADICTION
and the cause of popular history ever since. himself all the time.
Two more weeks with my cute TV satellite dish My appreciation of my satellite dish has ENTAILMENT
have increased my appreciation of it. increased.
Each working group met several times to develop Each working met more than once to discuss ENTAILMENT
recommendations for ... legal services delivery system changes to the legal services delivery system.
A detailed English explanation of the plot is always You’ll have to figure the plot out on your own. CONTRADICTION
provided, and wireless recorded commentary units ...
I just loved Cinderella . I also saw my sisters as the I really disliked Cinderella and could never CONTRADICTION
wicked stepsisters sometimes, and I was Cinderella ... relate to her.
Cartography The judge gave vent to a faint murmur of disapprobation The prisoner in the dock remained still and CONTRADICTION
and the prisoner in the dock leant forward angrily. and expressionless
Jon was about to require a lot from her. Jon needed nothing to do with her. CONTRADICTION
I know you’ll enjoy being a part of the Herron School You will detest the Herron School of Art and CONTRADICTION
of Art and Gallery. Gallery and have nothing to do with it
‘Why shouldn’t he be? He doesn’t actually want to be that way. ENTAILMENT
I like this area a whole lot and it’s, it’s growing so much I really despise living in this location and would ENTAILMENT
and I just want to be near my family ... prefer to be farther away from my relatives.
Prototype The air is warm. The arid air permeates the surrounding land. ENTAILMENT
Inside the Oval: White House Tapes From FDR to Clinton ~ No tapes were recorded in the white house ENTAILMENT
He became even more concerned as its route changed He wasn’t worried at all for the plane ENTAILMENT

moving into another sector’s airspace.

Table 6: Natural language inference examples that each method identified as being most likely to be label errors.
Sentences were truncated in some cases for brevity.
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