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Abstract
This paper presents our study in exploring the
task of named entity recognition (NER) in a low
resource setting, focusing on few-shot learning
on the Sumerian NER task. The Sumerian lan-
guage is deemed as an extremely low-resource
language due to that (1) it is a long dead lan-
guage, (2) highly skilled language experts are
extremely scarce. NER on Sumerian text is
important in that it helps identify the actors
and entities active in a given period of time
from the collections of tens of thousands of
texts in building socio-economic networks of
the archives of interest. As a text classification
task, NER tends to become challenging when
the amount of annotated data is limited or the
model is required to handle new classes. The
Sumerian NER is no exception. In this work,
we propose to use two few-shot learning sys-
tems, ProtoBERT and NNShot, to the Sumerian
NER task. Our experiments show that the Pro-
toBERT NER generally outperforms both the
NNShot NER and the fully supervised BERT
NER in low resource settings on the predictions
of rare classes. In particular, F1-score of Pro-
toBERT on unseen entity types on our test set
has achieved 89.6% that is significantly better
than the F1-score of 84.3% of the BERT NER.

1 Introduction

Named Entity Recognition (NER), as a fundamen-
tal task in Natural Language Processing, aims to
locate and classify named entities such as peo-
ple, organizations, and locations, etc. The Ur
III period (ca. 2112-2004 BC), spanning about
100 years, has a particularly rich source of texts,
comprising at least 100,000 documents. These
are primarily financial records and potentially sup-
port investigations of economic activity in Ancient
Mesopotamian society. To give but one example,
Liu (2021) aims to do a prosopographical study of
individuals delivering animals to the Puzriš-Dagan
organization during the Ur III period and identi-
fies the individuals, their family relations and royal

status of the historical actors delivering animals,
as well as the variety of animals involved. NER
applied to this domain can efficiently help Assyri-
ologists recover and analyze the social-economical
activities and thus provide a better understanding
of the social organization and dynamics of ancient
Mesopotamian history.

There is a broad effort in the community of
Assyriologists, in collaboration of Computer Sci-
entists, to build reproducible socio-economic net-
works from the Ur III archives (Journal et al., 2021).
This effort shows that the application of NER to
these texts is of great use in the quantitative study
of Assyriology.

In this work, we conduct experiments to ap-
ply models that are based on prototypical net-
works (Snell et al., 2017) and nearest neighbour
classification to the Sumerian NER task. Specif-
ically, we adapt two few-shot learning systems,
ProtoBERT (Ding et al., 2021) and NNShot (Yang
and Katiyar, 2020), to the Sumerian NER task and
have achieved good performance in prediction of
rare classes. In summary, our contributions are
as follows: (1) We construct two few-shot learn-
ing systems, ProtoBERT and NNShot, and apply
them on the Sumerian NER task. To the best of our
knowledge, this is the first work exploring Sume-
rian NER task using the few-shot learning approach.
(2) We demonstrate that the ProtoBERT approach
considerably and consistently outperforms the fully
supervised BERT-based model and has shown to
be well-suited for prediction of rare class with few
labelled examples.

2 Previous Work

Previous studies on Sumerian NER are few, par-
tially due to the lack of language resources and
meaningful collaborations between researchers in
Computer Science and Assyriology. The few stud-
ies include Luo et al. (2015) and Liu et al. (2016).
Luo et al. (2015) uses the DL-CoTrain algorithm
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for personal name identification to minimize the
use of the annotated data. The system achieves a
high recall (92.5%) and a low precision (56.0%).
Liu et al. (2016) chooses to fully utilize the an-
notated data by applying a wide range of super-
vised algorithms, including Decision Tree, Gradi-
ent Boosting, Logistic Regression, Naive Bayes,
SVM and Random Forest, to predict personal
names. The supervised approach shows an op-
posite behavior with a low recall (around 65%)
and a high precision (around 86%). A more recent
work (Bansal et al., 2021) investigates the Sumerian
Machine Translation task in low-resource settings.
They also built a variety of algorithms, including
HMM, Rules+CRF, Bi-LSTM+CRF, FLAIR and
RoBERTa, on the POS and NER tasks on the Sume-
rian dataset. For the NER task, RoBERTa achieves
the best F1-score (95.3%) on a set of 12 entity types
and the simple CRF model with well-defined rules
significantly outperforms the rest of the models
and is the second best with F1-score of 91.3%. We
adapt their labelled Sumerian dataset in this work.
As they only reported the overall F-scores of those
NER systems on the 12 entity types without de-
scribing how the dataset is split, their result is not
directly comparable with ours. More details about
the dataset will be given in Section 3.

One of the key problems for low-resource NER
is the lack of annotated data. As one of the common
strategies, cross-lingual NER attempts to address
this challenge by transferring knowledge from one
or more high-resource source languages with abun-
dant annotated data to a low-resource target lan-
guage with few or no labels. The knowledge trans-
fer is either through annotation projection from the
source language to the target language (Bharadwaj
et al., 2016; Xie et al., 2018; Feng et al., 2018;
Rahimi et al., 2019) or through using a shared
encoder in a multi-task architecture (Lin et al.,
2018; Kruengkrai et al., 2020). Along the research
line of enabling parameter reuse across a variety
of tasks, Pfeiffer et al. (2020) proposes MAD-
X, an adapter-based framework which includes
language adapters, task adapters and invertible
adapters, in a multilingual context. MAD-X outper-
forms the state of the art in cross-lingual transfer
on NER across diverse languages. However, the
highest F1-score is achieved on Arabic which is
59.41%. For other low-resource languages, such
as Icelandic, Quechua and so on, the F1-scores
are mostly around 30-50%. Cross-lingual meth-

ods have achieved notable success, but in certain
circumstances, such as insufficient pre-training cor-
pora or when the target language is far from the
source language, their performance suffers. Sume-
rian language, as a long dead language, suffers both
which makes the cross-lingual methods not readily
apply.

Few-shot classification (Vinyals et al., 2016; Bao
et al., 2019) can effectively recognize new classes
from very few labelled examples and thus has re-
cently drawn a lot of attention. Snell et al. (2017)
proposed Prototypical Networks based on the idea
that there exists an embedding space in which im-
ages of the same class cluster around a single proto-
type representation for each class. In other words,
two images of the same class should be close to
each other, and two images of the different class
will be far away. Adapting this idea from image
classification, Fritzler et al. (2019); Hou et al.
(2020); Ding et al. (2021) address the few-shot
NER problem and have achieved considerable suc-
cess. Yang and Katiyar (2020) proposed token-level
nearest neighbor classification based methods for
the few-shot NER problem to address some poten-
tial issues of prototypical NER in learning class
prototypes, such as learning a noisy prototype of
the ‘O’ class.

Usually the overall F1-scores are high if BERT is
chosen as backbone encoder in deep learning NER
systems (Devlin et al., 2019). However, Tänzer
et al. (2022) demonstrates that BERT fails to pre-
dict minority classes when the number of examples
is limited. They observe that BERT needs at least
25 examples of a minority label to start learning
on the CoNNL-03 dataset (Sang and De Meulder,
2003). If the examples are fewer than 25, the F1-
score will be 0. When the examples exceed 100, the
performance improves rapidly. They also observe
similar phenomena on other datasets. For example,
learning on the JNLPBA dataset (Collier and Kim,
2004) requires at least 50 examples. They also
construct a prototypical few-shot learning model
to overcome BERT’s limitation. The results show
the few-shot learning model consistently surpasses
the performance of BERT on minority classes. For
instance, it is outperforming BERT by 40 F1 points
on LOC class when the dataset has 15 sentences
containing that class. All this has shown that few-
shot learning is well suited for the setting when the
number of labelled examples is very constrained,
which further justifies our choice of exploring this
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approach in the Sumerian NER task. And our ex-
perimental results have also echoed their findings.

The paper is organized as follows. In Section 3
we give a more detailed description of the Sumerian
NER task and the dataset. In Section 4 we describe
our models. Section 5 contains the description of
our experimental setup and the report and analysis
of the results. We conclude our work with some
discussion of the future work in Section 6.

3 Dataset and task description

The dataset we used in this work is originally from
the CDLI database (Cuneiform Digital Library Ini-
tiative http://cdli.ucla.edu/). CDLI is a
project that curates an electronic documentation of
ancient cuneiform texts, comprised of cuneiform
texts, images, transliterations and sundry informa-
tion concerning the Ur III period and its immediate
aftermath. It is a joint project of the University of
California, Los Angeles, the University of Oxford,
and the Max Planck Institute for the History of
Science, Berlin.

Although the texts we are investigating were
originally written in cuneiform script, CDLI pro-
vides them in transliterated form, using the English
alphabet. Fig. 1 shows a tablet from CDLI reposi-
tory, (id P407107). An image of the original tablet
with its cuneiform inscription is on the left; the
transliteration is in the middle and the modern En-
glish translation appears on the right.

As aforementioned, we adapt the labelled Sume-
rian dataset and the tagset directly from Bansal et al.
(2021). The dataset has 22,728 sentences, 61,478
tokens, and 12 entity types (not including the O
type that indicates a word is not a named entity
of interest). All these entity types, their meaning
and counts in the dataset are shown in Table 1. The
tablet in Fig. 1 demonstrates an example with multi-
ple named entity types in it. According to a domain
expert, den-lil2-la2 in line 2 on the obverse is la-
belled as the named entity tag ‘DN’ (Divine Name),
ki-maszki in line 3 labelled as ‘GN’ (Geographical
Name), a-mur-dsuen and ur-ku3-nun-na in line 2
and 3 on the reverse are labelled as ‘PN’ (Personal
Name), and ses-da-gu7 in line 4 labelled as ‘MN’
(Month Name). The task of a few-shot Sumerian
NER tagger is to identify these named entity types
from the transliterations of tablets based on a few
labelled examples.

The counts in Table 1 show that the dataset is
quite unbalanced. Some entity types have many

Tag Meaning Count
DN Divine Name 900
FN Field Name 1,463
GN Geographical Name 1,351
PN Personal Name 17,729
RN Royal Name 150
SN Settlement Name 521
WN Watercourse Name 304
EN Ethnos Name 60
MN Month Name 79
ON Object Name 18
TN Temple Name 60
O Others 38,822
AN Agricultural Name 1

Table 1: Twelve NER tags and O-tag, their meanings
and counts in the dataset

more labelled examples than others. For example,
entity types ‘EN’, ‘MN’, ‘ON’ and ‘TN’ only have
tens of labelled examples. The least entity type is
‘AN’ which only has 1 example. On the contrary,
‘PN’ has a dominant number of examples in the
dataset, over half of that of the non-named entity
type ‘O’. We decide to discard ‘AN’, ‘ON’ and
‘EN’ entity types from our training and test process.
For tag ‘AN’ and ‘ON’, the number of their labelled
examples is too low to enable an effective episodic-
based few-shot learning process. Even though ‘EN’
tag has the same number of examples as the ‘TN’
tag, because of the data splitting and relabelling is-
sues described in Sec. 5.1 and Sec. 5.3, we choose
to drop it from our tag set as well. However, we
still report the experimental results both without
and with the ‘EN’ tag in Table 6 and Table 7, re-
spectively. More details about data splitting and
relabeling can be found in Section 5.1.

4 Methods

In the following, we will describe three models
applied to the low-resource Sumerian NER task.
They are BERT+LC, ProtoBERT and NNShot.
As Transformer-based pre-trained language mod-
els (Devlin et al., 2019) have shown significant
impact on the NER task, a pre-trained language
model (PLM) on Sumerian will also be used in
our NER models. In our experiment, we adapt a
PLM on Sumerian explored in Bansal et al. (2021).
The PLM is pre-trained using RoBERTa (Liu et al.,
2019) on their Sumerian monolingual dataset.
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Figure 1: Tablet no. P407107 inscribed with the original Sumerian cuneiform script, the digitized transliteration,
and human-translated English text line by line.

4.1 BERT+LC

Although a supervised setting is not the main goal
of this work, it is nevertheless interesting to ex-
plore the standard setup of using the BERT model
with a linear classifier built on top of its encoding
representations, and compare it with the few-shot
learning models. The model is trained to mini-
mize the cross-entropy loss on the given training
data. More details on the hyper-parameters and
data setup can be found in Sec. 4.4 and Sec. 5.1,
respectively.

4.2 ProtoBERT

ProtoBERT (Ding et al., 2021) is a few-shot learn-
ing model that combines the few-shot capabilities
of prototypical networks (Snell et al., 2017) with
the BERT’s pre-trained knowledge. The model
aims to build an embedding space through the train-
ing process so all the inputs can be clustered around
its own “prototype” that represents the centroid of
the class each input is associated with. Classifying
a new input can then be done by finding its closest
centroid and being assigned with the correspond-
ing entity type. The training process is organized
into a series of “episodes”. Each episode consists
of a support set and a query set that are randomly
sampled from the training set. As a support set con-
tains a limited number of “training” examples and a
query set “test” examples, each episode essentially
mimics the test-time scenario in a few-shot learn-
ing setting. In an N -way K-shot learning setup,
each support set has N classes and K samples per
class and the query set has N classes as well.

In our implementation, we follow the algorithm

in (Ding et al., 2021) and run 500 episodes for train-
ing. In this model, for each class c, its prototype
pc is calculated by averaging the embeddings of
examples that belong to class c in the support set
S:

pc =
1

|Sc|
∑

x∈Sc

f(x) (1)

where Sc denotes the set of all elements in S that
belong to class c and function f denotes the BERT
architecture augmented with a linear classifier. The
model parameter of f is updated after each episode
in the training process by minimizing the cross-
entropy loss between the probability calculated
through softmax and the one-hot ground-truth label
of x.

After computing all prototypes in a support set S,
we compute the distance from each input x in the
query set Q to each prototype. As used in Ding et al.
(2021), we also use the squared Euclidean distance
as the metric function d(f(x), p) = ∥f(x) − p∥22.
Once we get the distances between x and all the
prototypes, a softmax function is used to compute
the prediction distribution of x over all prototypes.
The entity type of the nearest prototype is the pre-
diction of x.

4.3 NNShot

NNShot (Yang and Katiyar, 2020) is a few-shot
learning method based on token-level nearest neigh-
bor classification. Unlike ProtoBERT where the
training classes are clustered based on the token
representations, NNShot does the inference on a
query example directly based on the nearest neigh-
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bor metric. That is, NNShot simply computes the
distance score between example x in the query set
and all examples in the support set. It then assigns
x the label of the example in the support set that is
closest to x. In this work, we use the same distance
metric as we use in ProtoBERT.

4.4 Hyper-parameters

We experimentally set a fixed collection of hyper-
parameters across all the datasets. The Adam opti-
mizer (Kingma and Ba, 2015) is used in the training
stage. The learning rate is 1e−3. For BERT+LC,
we set the batch size as 16. For few-shot learning
systems, we use 2-way 5 ∼ 10 shot setting as sug-
gested in Ding et al. (2021) for building a support
set. This strategy allows each class in a support
set to have a variable number of examples between
5 to 10, which effectively alleviates the sampling
constraint between the two classes. All the models
are implemented using the Hugging Face library1.

5 Experiments

5.1 Data and tag processing

In the following, we describe how we split the tag
set and generate our training, dev and test datasets
accordingly for each model.

5.1.1 Tagset and dataset splitting
We largely follow the work of (Ding et al., 2021)
for our tag set and data set splitting. We first di-
vide the 12 entity types into three mutually disjoint
subsets so the entity types in the test set are “new”
classes or “unseen” in the training set, and vice
versa. In practice, new entity types may appear in
an existing or new data set or a new domain where
no insufficient number of annotated examples has
become available. To be aligned with a realistic
setting, we reserve the entity types that have fewer
examples for the test set, and those that have more
examples for the training set. Based on the char-
acteristics of our dataset, and common practice,
for each specific entity type, we placed 5 to 10 ex-
amples. However, it turns out that the numbers of
examples of entity types ‘AN’ and ‘ON’ are too low
(1 and 18, respectively) for our few-shot learning
models to get stable results. Thus we drop these
two entity types from our tag set and filter out those
sentences that have ‘AN’ or ‘ON’ entity type when
we construct training, dev and test sets.

1https://huggingface.co

With this setup, we generate the train, dev and
test sets where each set only contains instances of
its own pre-assigned entity types. As the average
sentence length in our dataset is quite small which
is around three, all the entity types except for ‘EN’
do not co-occur with other entity types in a same
sentence. However, almost all of the sentences
containing ‘EN’ also contain other entity types, in-
cluding ‘PN’, ‘GN’, etc. Relabelling (Yang and
Katiyar, 2020) as a common strategy in few-shot
learning systems to get mutually disjoint subsets is
when a sentence has more than one entity type, any
entity type that does not belong to the pre-assigned
set is relabelled as ‘O’ type. We follow this process
for the ‘EN’ tag and conduct the experiment. As
the number of ‘EN’ tokens is only 60 out of 61,478
in the entire dataset, and ‘EN’ is the only tag that in-
volves relabelling, we also experimentally exclude
‘EN’ and conduct the experiment. Experiments
show a significant improvement in system perfor-
mance (24 point increase in F-1) without ‘EN’ and
relabelling. In the setup without relabelling, we
drop ‘EN’ along with ‘AN’ and ‘ON’ from the 12
entity types which leaves us 9 types among which
the top-4 are ‘DN’, ‘FN’, ‘GN’ and ‘PN’ and are as-
signed to the training set, ‘MN’ and ‘TN’ to the test
set, and ‘RN’, ‘SN’ and ‘WN’ to the dev set. Type
‘O’ is present across all the three subsets. In total,
73 sentences are removed from the dataset owing
to this process, accounting for around 0.3% of the
total number of the sentences in the dataset. We
first report the experimental results of all the mod-
els in the setting of not including ‘EN’ in Sec. 5.2.
The results with ‘EN’ are presented and discussed
in Sec 5.3 where the influence of relabelling is
discussed in detail.

5.1.2 Data and tags for BERT+LC
The remaining data is split into training and test
sets based on their pre-assigned entity types. Since
BERT+LC is fully supervised, it cannot handle un-
seen classes in the test phase. For that reason, a
few examples of ‘MN’ and ‘TN’ need to be rein-
serted into the training set. Because our dataset
is very small compared to other widely studied
languages and BERT+LC requires more data than
the few-shot learning setting, we omit the dev set
at this step. That means BERT+LC’s training set
contains all 9 entity types. However, we only in-
clude 8 examples of ‘MN’ and ‘TN’ in this training
set to make it comparable with the few-shot learn-
ing models that only use 5 ∼ 10 examples in each
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Model Dev Test
BERT+LC —— 0.843
NNShot 0.714 0.857
ProtoBERT 0.823 0.896

Table 2: F1-scores for all models on test set and few-
shot models on dev set.

support set for each entity type.

5.1.3 Data and tags for few-shot learning
systems

Section 5.1.2 describes the augmentation of the
training set for the BERT+LC model but the test set
remains the same across the 3 models. To construct
the training and dev sets for the few-shot learning
models, we select sentences containing ‘DN’, ‘FN’,
‘GN’ and ‘PN’ for the training set and sentences
having ‘RN’, ‘SN’ and ‘WN’ for the dev set.

Fig. 2 summarizes our process of splitting the set
of entity tags and data for the three models. With-
out including ‘EN’ and relabelling, the training
sets for the BERT+LC model and the two few-shot
learning systems have 22,530 sentences and 21,642
sentences, respectively. The dev set has 498 sen-
tences, and test set 107 sentences.

5.2 Results
Table 2 summarizes the overall results of the three
models on the test dataset, and the results of the
two few-shot learning models on the dev set, when
not including ‘EN’. As shown in Fig. 2 and de-
scribed in Sec. 5.1, the training dataset that used
by BERT+LC model is the combination of train-
ing set used by ProtoBERT and NNShot, dev set,
8 instances of entity type ‘MN’ and 8 instances
of entity type ‘TN’ but the test data remains the
same across the three models. In our few-shot sys-
tems, we use a 2-way 5 ∼ 10 shot setting. All the
F1-scores we report are micro averaged F1-score.

As shown, both ProtoBERT and NNShot per-
form better than BERT+LC on the test set. NNShot
outperforms BERT+LC by 1.4% F1-score and Pro-
toBERT outperforms BERT+LC by 5.3% F1-score.
The gap between NNShot and ProtoBERT becomes
more evident on the dev set with ProtoBERT out-
performing NNShot by over 10% F1-score. This
suggests that ProtoBERT can outperform NNShot
by a larger margin when they run on a larger
dataset.

We further analyze the performance of the three
models on the individual entity types on the dev

Model Entity P R F1

BERT+LC
MN 1.0 0.914 0.955
TN 1.0 0.378 0.549

NNShot
MN 0.869 0.883 0.876
TN 0.735 0.926 0.820

ProtoBERT
MN 0.949 0.933 0.941
TN 0.703 0.963 0.813

Table 3: Precision (P), Recall (R) and F1-score of indi-
vidual entity types on test set.

Model Entity P R F1

NNShot
SN 0.595 0.581 0.588
WN 0.789 0.818 0.803
RN 0.636 0.840 0.724

ProtoBERT
SN 0.714 0.789 0.750
WN 0.765 0.912 0.832
RN 0.857 0.960 0.906

Table 4: Precision (P), Recall (R) and F1-score of indi-
vidual entity types on dev set.

and test sets. The results are summarized in Table 3
and Table 4, respectively. Table 3 shows that pre-
dictions on ‘MN’ are overwhelmingly better than
that on ‘TN’. We believe this is mainly because
‘MN’ as month name is a much easier entity type
to identify than ‘TN’ (a temple name). Among
the three models, BERT+LC system produces the
best F1-score on ‘MN’ that is 1.4% higher than
that of ProtoBERT. However, BERT+LC produces
the worst performance on ‘TN’ with an F1-score
of 54.9%, around 27% lower than that of NNShot
and ProtoBERT. This is mainly due to its low re-
call on ‘TN’ even though its precision is 100%. A
further post-processing step often takes place when
conducting NER using Sumerian data: we allow a
domain expert to go over the automatically identi-
fied name list (or a sample of the list) for further
verification. We believe a system that has a higher
recall is more useful in practice than a system that
has a 100% precision but low recall. That said, we
think ProtoBERT has its own advantages in prac-
tice than the other two systems in low-shot settings.
This is consistently suggested by Table 3 and Ta-
ble 4 with the high recall scores of ProtoBERT in
all the individual entity types across dev and test
set. Table 4 shows that ProtoBERT dominantly out-
performs NNShot on all the individual entity types
on dev set in F1-score and recall. The only place
where ProtoBERT falls behind NNShot is on ‘WN’
by 2.4% in precision.
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Figure 2: The process of tag and data splitting for three models

Model Dev Test
BERT+LC —— 0.822
NNShot 0.714 0.821
ProtoBERT 0.823 0.659

Table 5: F1-score of few-shot learning models on test
set with EN.

5.3 Discussion on the influence of relabeling

NER is a sequence labeling problem and it is very
common that a sentence contains several different
entity types. For few-shot learning systems, we
keep entity types in training, dev and test sets mutu-
ally disjoint because we want to test the systems on
unseen entity types. A common strategy for avoid-
ing the same entity types from occurring in differ-
ent subsets is relabeling. Tokens in the training set
whose labels belong to the test set are relabelled to
‘O’ type. Same operation is performed on test set
and dev set to keep these subsets mutually disjoint.
Fortunately, in our Sumerian dataset, the sentences
are normally short and the majority of them only
contain one of the twelve types. For most of the
entity types, we can easily select sentences that
only contain one entity type and no need to rela-
bel any tokens in those sentences. However, ‘EN’
is an exception. Almost every sentence that has

‘EN’ entity type has the existence of multiple other
entity types, which means all those entity types
should be relabelled to ‘O’ when we include ‘EN’
in our target tag set. As ‘EN’ was initially assigned
as an entity type for the test set, we did our first
experiment with ‘EN’ included in the test set and
ran all the three models on this set. Table 5 shows
that the performance of ProtoBERT drops dramat-
ically. F1-score drops to 65.6% (with ‘EN’) from
89.6% (without ‘EN’). In this setting, the result
of BERT+LC is produced by adding 8 randomly
sampled ‘EN’ examples to the model’s training set,
and the rest of ‘EN’ examples goes to the test set.

Table 6 shows the confusion matrix calculated
on the test set both without and with the ‘EN’ type
to see how the results of ProtoBERT are allocated.
The first column of the table with entity types is
the gold labels in test set. The first row shows what
label each gold label was predicted to be by the
system. As shown in the table, with ‘EN’ included
in the test set, 54 ‘O’ are labeled to ‘TN’ and 52 ‘O’
are labeled to ‘EN’. That means with the inclusion
of ‘EN’ many more false positive for ‘TN’ and ‘EN’
are produced. We believe this is mainly caused by
the fact that almost all the sentences that have ‘EN’
also have many other entity types and these entity
types are relabelled to ‘O’. In ProtoBERT, when

142



Test set without EN
O MN TN

O (118) 108 3 7
MN (60) 0 56 4
TN (27) 1 0 26

Test set with EN
O MN TN EN

O (225) 157 2 54 52
MN (60) 1 58 1 0
TN (27) 2 0 25 0
EN (50) 12 0 0 38

Table 6: Prediction of ProtoBERT on test set without
and with EN.

we calculate prototypes for each class, we average
all the tokens in support set with the same entity
type. After we relabel some tokens to ‘O’, the
prototype of ‘O’ becomes noisy. That’s why the
model often gets confused between ‘O’ type and
other types such as ‘EN’ or ‘TN’, which leads to
poor performance of a model. Again, ‘MN’ as
an easy entity type shows to be stable and is not
affected by this relabelling as much.

Table 7 shows that the influence of relabeling for
NNShot is not as obvious as that for ProtoBERT.
The main reason is that the model is based on token-
level nearest neighbor classification. When we
query a token, it goes to find its closest example
and uses its type which can counteract to a certain
extent the effect of ‘O’ type relabeling issue.

Previous work of few-shot learning systems on
English also shows the performance is not as good
as expected (Fritzler et al., 2019; Huang et al.,
2020; Ding et al., 2021). As the prototypes in their
work are also learnt from a similar relabelling pro-
cess, it could be one of the reasons that affects the
system performance. Yang and Katiyar (2020) pro-
poses STRUCTSHOT for few-shot NER to better
model the label dependencies in a sentence. Al-
though the label dependency issue in Sumerian
NER is not as outstanding, it still exists. We are
planning to leave it as future work to further inves-
tigate effective ways to deal with the relabelling
issues caused by the ‘O’ type.

6 Conclusions and Future Work

We have applied three models, BERT+LC, NNShot
and ProtoBERT, to explore the Sumerian NER in
low resource settings, and have presented our pre-
liminary results. This is the first work of exploring

Test set without EN
O MN TN

O (118) 109 7 2
MN (60) 0 53 7
TN (27) 1 1 25

Test set with EN
O MN TN EN

O (225) 251 1 6 7
MN (60) 6 50 0 4
TN (27) 7 0 20 0
EN (50) 12 0 0 38

Table 7: Prediction of NNShot on test set without and
with EN.

few-shot NER on the Sumerian language dataset.
Our experiments show that ProtoBERT as a few-
shot learning model has consistently outperformed
the fully supervised model BERT+LC model in
few-shot settings and has generally achieved better
performance than NNShot. Though as a token-level
nearest neighbour classification method, NNShot
is less sensitive to the noisy ‘O’ type that is intro-
duced by the relabeling step, it may not be as stable
as ProtoBERT owing to the nearest neighbor mech-
anism in the training stage. We show that BERT-LC
fails to do a good job in learning more examples
in few-shot settings. While we investigate the ef-
ficacy of prototypical networks-based ProtoBERT
and nearest neighbour metric-based NNShot learn-
ing models in the few-shot Sumerian NER task,
it will be particularly interesting to 1) extend our
work to a larger test set; 2) explore new methods
such as STRUCTSHOT (Yang and Katiyar, 2020)
to solve the noisy ‘O’ type issue introduced by rela-
belling; 3) experiment on using more sophisticated
cross-lingual approaches including adapter-based
models on Sumerian NER.
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