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Introduction

Welcome to the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)! The
workshop was co-located with the 60th Annual Meeting of the Association for Computational Linguistics
and was held on May 27, 2022 as a hybrid workshop. The workshop was organised by Antoine Bosselut,
Xiang Li, Bill Yuchen Lin, Vered Schwartz, Bodhisattwa Prasad Majumdar, Yash Kumar Lal, Rachel
Rudinger, Xiang Ren, Niket Tandon and Vilém Zouhar. We take this opportunity to thank the CSRR
2022 program committee for their help and thorough reviews. We also thank the authors who presented
their work at the workshop, and the workshop participants for the valuable feedback and discussions.
Finally, we are deeply honored to have excellent talks from our invited speakers.
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Identifying relevant common sense information in knowledge graphs
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United Kingdom
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Abstract

Knowledge graphs are often used to store com-
mon sense information that is useful for various
tasks. However, the extraction of contextually-
relevant knowledge is an unsolved problem,
and current approaches are relatively simple.
Here we introduce a triple selection method
based on a ranking model and find that it im-
proves question answering accuracy over ex-
isting methods. We additionally investigate
methods to ensure that extracted triples form
a connected graph. Graph connectivity is im-
portant for model interpretability, as paths are
frequently used as explanations for the reason-
ing that connects question and answer.

1 Introduction

For models to be able to reason about situations that
arise in everyday life, they must have access to con-
textually appropriate common sense information.
This information is commonly stored as a large
set of facts from which the model must identify a
relevant subset. One approach to structuring these
facts is as a knowledge graph. Here, nodes repre-
sent high-level concepts, and typed edges represent
different kinds of relationship between concepts.
In practice, a subset of facts that are thought to be
contextually relevant are extracted from the graph,
as using all facts in each instance is unnecessary,
noisy, and computationally expensive.

Prior work has focused on different ways to en-
code these facts, including by inputting them into a
graph neural network (GNN) or into a transformer
(Feng et al., 2020; Yasunaga et al., 2021). However,
the question of how to identify useful information
has been under-explored, particularly in work that
uses GNN encoders. If contextually important in-
formation is not retrieved then performance could
be dramatically reduced, a potential result of the
use of overly simplistic retrieval methods.

In this paper we explore methods to extract high-
quality subgraphs containing contextually relevant

Minimum spanning tree
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3. 
…

1.
2.

Weighted pathfinding
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dist(   ,  )
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Figure 1: The triple scoring process for a question an-
swering task, and two methods that use the scores to
extract relevant subgraphs for a question and candidate
answer.

information.1 We approach this as a ranking task
across triples in a knowledge graph, and propose
two methods that use the scores to extract a sub-
graph. The first is a weighted pathfinding approach
which extends prior work (Lin et al., 2019), while
the second builds a minimum spanning tree that
includes the highest-ranked triples (figure 1). Both
approaches ensure that all or most nodes in the
subgraph are reachable from each other, which is
important for two reasons. First, it means that the
GNN can update node embeddings with informa-
tion from most other nodes, which would not be
possible if the graph were disconnected. Second, it
allows paths of reasoning to be extracted from the
subgraph, which are often used as explanations for
model behaviour (Feng et al., 2020; Wang et al.,
2020; Yasunaga et al., 2021).

There are also situations when specific concepts
need to be included in order for a subgraph to be
of high enough quality. For example, in question
answering, a full explanation must include one

1We call these “relevant subgraphs” or “extracted sub-
graphs”, noting that others use “schema graphs” (Lin et al.,
2019).
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or more concepts mentioned both in the question
and in a candidate answer. This requires robust-
ness towards how concepts identified because the
knowledge repository might express the concept
in a slightly different lexical form from the ques-
tion and/or answer. We therefore experiment with
a embedding-based method to identify these con-
cepts, and compare it with existing lexical methods.

Our contributions are as follows2:
• Apply a ranking model to identify common

sense triples that are relevant to some context.
• Identify and thoroughly investigate meth-

ods to ensure that the extracted contextually-
relevant subgraphs are (almost) connected.

• Compare existing lexical approaches to entity
linking to a simple embedding-based method.

2 Background

Many prior approaches to retrieving relevant com-
mon sense triples from a knowledge graph start by
identifying relevant nodes. Simple lexical overlap
between a concept and the context (e.g. question
text) is often used for this (Kundu et al., 2019;
Khot et al., 2019). However, this entity linking
approach is likely to only retrieve simple concepts,
as the idiosyncratic phrasing of some node names
in knowledge graphs like ConceptNet (Speer et al.,
2017) are unlikely to show up in text. Becker et al.
(2021) investigate this in detail and propose a series
of pre-processing steps that allow lexically-based
linking without exact phrase matches. For the same
reason, the heuristics used by Lin et al. (2019) for
lexical matching are employed by a series of later
works (Feng et al., 2020; Yasunaga et al., 2021;
Wang et al., 2020). Although lexical matching is
a frequent approach with common sense knowl-
edge graphs, in other domains embedding-based
approaches are more popular (Gillick et al., 2019).
These work by embedding the candidate text and
finding the nearest neighbour in the space of entity
embeddings.

In question answering, Lin et al. (2019) split
these concepts into those identified in the question
and in the answer, and find additional concepts for
the relevant subgraph by iteratively finding shortest
paths between the two sets. This process continues
until a maximum number is collected, or the path
lengths exceed a threshold. The final subgraph used

2We make our code and data available at
https://github.com/GuyAglionby/
kg-common-sense-extraction.

as input to models is constructed from this set with
all valid edges added.

Some approaches score nodes and triples that
have been identified. Kundu et al. (2019) score
multiple paths for each question and answer and
choose the answer with the highest mean path score.
Yasunaga et al. (2021) extract a subgraph follow-
ing Lin et al. (2019), and additionally score each
node for relevance to a question using RoBERTa
(Liu et al., 2019). Ranking is also common with
prose facts, particularly when they are input into
transformer-based models that have limits on input
size (Wang et al., 2021).

3 Methodology

In this section we introduce our methods for ex-
tracting a contextually-relevant subgraph G for a
question answering task. The graph should contain
triples that are useful in distinguishing the correct
answer from a set of distractors. For each instance,
we represent the question text as q and the ith candi-
date answer as ai, and the set of concepts extracted
from each as Cq and Cai respectively.

3.1 Triple scoring

We cast the task of identifying relevant triples in
the knowledge graph as a ranking problem, where
the highest-ranked triples are those most relevant
to q; ai. We use an existing model that is trained
to rank facts highly if they constitute part of an
explanation for why ai is the correct answer to
q (Pan et al., 2021). This was developed for the
TextGraphs 2021 shared task on explanation regen-
eration for science questions (Thayaparan et al.,
2021) and achieved the highest performance. Facts
that are used in an explanation are likely to be
useful when choosing between answers, making
the model a natural choice for identifying relevant
triples.

The model consists of two parts: a fact retriever
and a re-ranker. We follow the training proce-
dure in Pan et al. (2021) and use one model based
on RoBERTa-Large (Liu et al., 2019) for each
stage. At inference time we use only the re-ranker
to score each triple3 in relation to q; ai. To speed
this up we pre-compute embeddings for each q; ai
and each triple.

3We linearize triples using the templates from https:
//github.com/commonsense/conceptnet5/
wiki/Relations.
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3.2 Constructing G
The most straightforward way to construct G is to
use the most relevant triples identified in §3.1 and
the grounded nodes Cq ∪ Cai . To do this, we select
a subset of the top e ranked triples according to
limits on the total number of edges and nodes that
would be added to G. Iterating in rank order, we
add the triple (s, r, o) to G only if adding s and
o does not increase the total number of nodes to
above n. If n < 2e then some of the top edges
will be excluded; this limits the number of nodes in
the graph while allowing highly-ranked edges to be
present if they share nodes with other edges. We set
n = 50 and e = 40 following initial experiments.

A shortcoming of this method is that the selected
triples are not likely to connect with Cq or Cai . In-
deed, there is no guarantee that the triples are con-
nected to each other. This is problematic in cases
where paths in the extracted subgraph are to be
used in an explanation (Feng et al., 2020; Yasunaga
et al., 2021).

To rectify this we find the minimum spanning
tree (MST) that spans all nodes in G, taking into
account the edges added in the previous step. This
is the Steiner tree problem, which is NP-hard; we
apply an approximation algorithm (Wu et al., 1986)
to find solutions in a reasonable amount of time.
We experiment with two variants: one where edges
are uniformly weighted, and another where the
triple scores are used as weights.

We further use the triple scores with the pathfind-
ing method used in previous work (Lin et al., 2019),
transforming this into a weighted shortest path
search. We iteratively find the shortest path be-
tween any pair of concepts in Cq and Cai , adding
nodes on the paths to a set until a maximum size
is reached. G is then formed from these nodes, as
well as all valid edges between pairs from this set.
We set the maximum number of nodes to be 50.

3.3 Identifying relevant concepts

It is important that Cq and Cai accurately reflect
concepts mentioned in q and a, primarily to aid
with explanations. A full explanation for a ques-
tion must include at least one concept from Cq and
from Cai ; if these concepts are nonsensical then the
explanation is invalid. Additionally, the pathfind-
ing method for relevant subgraph extraction relies
on the quality of this grounding.

We use two methods for entity linking. The first
is from prior work, and is based on lexical match-

ing with heuristics (Lin et al., 2019). These include
lemmatising words if an exact match is not found,
and a method to avoid selecting nodes with lexi-
cal overlap. Despite this, lexical methods are not
able to identify relevant concepts that have a lexical
form that is not likely to be seen in any context;
this occurs often with more specific concepts.To
account for this, our second method is based on
embeddings from RoBERTa. We embed each con-
cept, and for each q and ai find the 10 most similar
concepts via Euclidean distance. Embeddings are
constructed in each case by mean-pooling across
all tokens.

3.4 Evaluation

We evaluate the quality of the extracted subgraphs
by comparing accuracy on a question answering
task when using them versus using a baseline.
These graphs are used as input to two models, MH-
GRN (Feng et al., 2020) and QA-GNN (Yasunaga
et al., 2021), which are both designed for ques-
tion answering with knowledge graphs. The base-
line subgraph is extracted using the unweighted
pathfinding method from prior work (Lin et al.,
2019); for the fairest comparison we run five base-
lines which extract subgraphs of different sizes and
report the best result from these (see appendix C
for full details). We also compare to baseline that
uses only RoBERTa-large with no additional
facts.

We report accuracy on two datasets, Open-
bookQA (Mihaylov et al., 2018) and Common-
senseQA (Talmor et al., 2019). OpenbookQA is a
collection of science questions, and so is in-domain
with respect to the data used to train the fact scorer.
CommonsenseQA targets more general common
sense; performance here is a reflection on how
transferable the fact scorer is to other domains.
This dataset has no public test set labels, so we
report results on the ‘in house’ test split defined by
Lin et al. (2019). Each model is run three times
with different random seeds and the mean accuracy
reported. Model hyperparameters are reported in
appendix A.

Our base knowledge graph is ConceptNet (Speer
et al., 2017). Following previous work (Lin et al.,
2019), we merge similar relations and add reverse
relations to the extracted graph.

3



Grounding Subgraph type MHGRN QA-GNN

LM Only 62.07

Lexical Baseline 67.73 67.07
Only top rated 62.73 64.47

Lexical
MST 63.07 64.27
Weighted MST 64.87 60.73
Weighted path 64.20 65.27

Embedding
MST 65.47 66.33
Weighted MST 64.73 64.60
Weighted path 64.07 65.73

Table 1: Accuracy on OpenbookQA with different sub-
graph extraction methods.

4 Results

Our results on OpenbookQA are presented in ta-
ble 1 and CommonsenseQA in table 2. On Com-
monsenseQA, our best method significantly4 out-
performs the baseline method. This suggests that,
in this case, the ranker is able to identify facts
which are relevant to the question, and that the
models are subsequently able to successfully use
them.

The tuned baseline for OpenbookQA beats the
proposed methods in all cases, although there is
reasonable variation in accuracy between the base-
lines of different sizes (see table 6). However, in
all but two cases the methods for ensuring graph
connectivity outperform the method that only uses
the highest-ranked triples.

5 Analysis

We observe that, in the majority of cases, using
methods to increase connectivity within the ex-
tracted subgraph improves performance over sim-
ply including the top rated facts. The minimum
spanning tree (MST) approach has the advantage
of including these facts, unlike the weighted path
method which may not. However, to ensure that the
graph is connected the MST approach may have to
include nodes and edges that are less relevant to the
context. One might expect a weighted approach to
counterbalance this, however this also results in a
larger subgraph being constructed which may be
detrimental (see appendix B). Indeed, with lexical
grounding the weighted approach adds an average
of 37 nodes and 83 edges to the extracted subgraph,
compared with 26 nodes and 71 edges in the un-
weighted case.

4We use the Almost Stochastic Dominance test (Dror et al.,
2019) and only claim a significant difference if ϵ ≤ 0.05.

Grounding Subgraph type MHGRN QA-GNN

LM Only 69.53

Lexical Baseline 69.48 70.32
Only top rated 69.76 69.92

Lexical
MST 69.86* 69.35
Weighted MST 69.19 70.64*
Weighted path 69.86* 68.87

Embedding
MST 69.60 70.10
Weighted MST 69.97* 69.86
Weighted path 69.27 70.08

Table 2: Accuracy on CommonsenseQA with different
subgraph extraction methods.5

The weighted pathfinding approach has the ad-
vantage of avoiding edges which are not relevant to
the query. Additionally, the subgraph is extracted
in way that is closer to Cq and Cai than the MST
approach, which considers these nodes only af-
ter selecting the top-ranked triples. As a result,
the question and answer nodes are connected in a
larger variety of ways, which may help increase
performance.

For OpenbookQA, the increase in score between
lexical and embedding-based entity linking with an
unweighted MST suggests that the concepts iden-
tified by the latter method are particularly useful.
The same magnitude of increase is not seen in Com-
monsenseQA. One possible reason for this is that
CommonsenseQA was constructed directly using
ConceptNet, which may increase the relevance of
concepts obtained with lexical methods.

Similarly to with lexical grounding, the weighted
MST with embedding grounding adds more nodes
and edges on average (153 nodes, 217 edges) than
the unweighted one (112 nodes, 172 edges). In
both cases, the resulting subgraph is substantially
larger than the equivalent ones built from lexically-
linked entities. This is likely due to the kinds of
nodes identified by entity linking – we observe
that concepts identified by the embedding-based
method are more specific, and so are less connected
within the overall graph. Conversely, concepts that
are identified lexically are likely to be simpler and
more general, and so better connected within the
graph, meaning fewer additional nodes and edges
are required to build the MST.

5* denotes significantly better than baseline subgraph at
p < 0.001.
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6 Conclusion

We present a method for extracting relevant infor-
mation from a common sense knowledge graph,
casting it as a ranking problem. We show that
scores obtained from a ranking model can be used
to select triples containing useful information for a
question answering task, improving performance
over a commonly-used approach.

As it is undesirable for extracted subgraphs to
have low connectivity, particularly when using
paths within them for model interpretation, we use
an algorithm for calculating minimum spanning
trees over a supplied set of nodes and edges to en-
sure the graph is connected. We find that this helps
performance; in particular, the models with high-
est accuracy on CommonsenseQA use a weighted
version of this. We additionally find that using an
entity linking approach that uses embeddings rather
than lexical matching improves performance in
some cases. We distribute the contextually-relevant
subgraphs to facilitate future work; these drop in
to existing models with no further processing re-
quired.

Future work might investigate the influence
of the fact ranker, as our results suggest that it
can transfer from the science to general common
sense domain successfully. Further training of the
ranker using higher-quality negative samples from
e-QASC (Jhamtani and Clark, 2020) may yield
better performance, as noted by Pan et al. (2021).
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A Hyperparameters

We use the same hyperparameters for MHGRN and
QA-GNN as used in the papers which respectively
introduced them (Feng et al., 2020; Yasunaga et al.,
2021). We optimise both models using RAdam
(Liu et al., 2021) and a learning rate of 1e− 3 for

the text encoder and 1e− 5 for the graph encoder.
A maximum of 128 tokens are input to the text
encoder, which is initialised as RoBERTa-large.
A L2 weight decay of 0.01 is used.

For MHGRN, batch size is 32 and the text en-
coder is frozen for the first 3 epochs. A 1-layer
100-dimensional GNN is used with 3-hop message
passing at each layer.

For QA-GNN, batch size is 128 and the text
encoder is frozen for the first 4 epochs. A 5-layer
200-dimensional GNN is used.

In all cases, the GNN is initialised with node
embeddings derived from BERT, which are made
available by Feng et al. (2020).

B Extracted subgraph size

For each type of extracted subgraph, we report
the mean and standard deviation of the number of
edges in table 3 and number of nodes in table 4.
We report results for the baselines in table 5.

Grounding Subgraph type OBQA CSQA

Lexical

Only top rated 33±6 28±5
MST 104±28 110±29
Weighted MST 117±30 123±32
Weighted path 216±50 232±54

Embedding
MST 202±50 201±46
Weighted MST 245±64 250±56
Weighted path 168±43 177±47

Table 3: Average number of edges in extracted sub-
graphs for OpenbookQA and CommonsenseQA.

Grounding Subgraph type OBQA CSQA

Lexical

Only top rated 49±2 50
MST 78±22 77±21
Weighted MST 89±23 89±23
Weighted path 53±5 54±4

Embedding
MST 167±41 162±35
Weighted MST 207±53 206±45
Weighted path 59±3 58±2

Table 4: Average number of nodes in extracted sub-
graphs for OpenbookQA and CommonsenseQA.

Nodes/edges Model OBQA CSQA

Nodes MHGRN 50±10 36±7
QA-GNN 63±12 63±12

Edges MHGRN 128±23 64±13
QA-GNN 190±33 188±36

Table 5: Average number of nodes and edges in baseline
subgraphs for OpenbookQA and CommonsenseQA.
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Target edge count MHGRN QA-GNN

50 65.27 65.20
100 67.73 65.87
150 63.53 67.07
200 65.27 66.53
250 64.40 64.20

Table 6: Accuracy on OpenbookQA when using the
baseline subgraph extraction method with five different
target edge counts.

Target edge count MHGRN QA-GNN

50 69.48 70.08
100 68.60 69.83
150 69.11 70.32
200 68.95 69.54
250 69.46 69.33

Table 7: Accuracy on CommonsenseQA when using
the baseline subgraph extraction method with five dif-
ferent target edge counts.

C Baseline models

Subgraph size is a confounding factor when com-
paring performance between our extraction meth-
ods and the baseline (Lin et al., 2019). To control
for this, we extract baseline subgraphs of five dif-
ferent sizes by expanding them until they reach a
certain number of edges. In tables 1 and 2 we re-
port the only highest scoring baseline; full baseline
results are presented in tables 6 and 7.
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Abstract
Story comprehension that involves complex
causal and temporal relations is a critical task
in NLP, but previous studies have focused pre-
dominantly on English, leaving open the ques-
tion of how the findings generalize to other
languages, such as Indonesian. In this paper,
we follow the Story Cloze Test framework of
Mostafazadeh et al. (2016) in evaluating story
understanding in Indonesian, by constructing
a four-sentence story with one correct ending
and one incorrect ending. To investigate com-
monsense knowledge acquisition in language
models, we experimented with: (1) a classifi-
cation task to predict the correct ending; and
(2) a generation task to complete the story with
a single sentence. We investigate these tasks
in two settings: (i) monolingual training and
(ii) zero-shot cross-lingual transfer between In-
donesian and English.

1 Introduction

Commonsense reasoning is a key component of
natural language understanding (NLU), which
previous work (Charniak, 1972; Mueller, 2004;
Mostafazadeh et al., 2016; Chen et al., 2019) has
attempted to model through tasks such as story
comprehension. While humans can easily compre-
hend temporal and causal relations to understand a
story narrative, machines tend to struggle due to im-
plicit information and story premises. Often, world
knowledge such as social conventions, the laws of
nature, and common logic are required to connect
the premises to draw appropriate conclusions or
closure (Shoham, 1990; Ponti et al., 2020).

Mostafazadeh et al. (2016) and Sharma et al.
(2018) introduced the Story Cloze Test framework
to empirically evaluate commonsense reasoning,
based on English short stories about daily-life
events. The task is to choose the correct ending of
a four-sentence story based on a two-way multiple
choice. Mostafazadeh et al. (2016) published 3,700
data pairs, and the dataset has been used to model

commonsense reasoning (Schwartz et al., 2017;
Liu et al., 2018; Sap et al., 2019; Chen et al., 2019;
Li et al., 2019) and perform discourse probing of
pretrained language models (Koto et al., 2021).

There is a lack of research modeling story com-
prehension in languages beyond English. Ponti
et al. (2020) argued that current progress over En-
glish may not generalize to other languages be-
cause of its Anglocentric bias both linguistically,
and also in terms of cultural and social conven-
tions (Thomas, 1983). Motivated by this, we ex-
plore commonsense reasoning in Indonesian by
constructing a dataset based on the framework of
Mostafazadeh et al. (2016).

XCOPA (Ponti et al., 2020) is perhaps the most
closely-related work to ours, wherein 600 instances
of the COPA dataset (Roemmele et al., 2011) were
manually translated into 11 languages, including In-
donesian. COPA is an open-domain commonsense
causal reasoning task that consists of two-sentence
pairs, and does not include complex narrative com-
prehension. Moreover, the translation approach
also has its own limitations, in entrenching Anglo-
centric social contexts in other languages.

To summarize, we introduce the first Story Cloze
Test in Indonesian, and perform preliminary stud-
ies based on: (1) a classification task to predict
the correct ending (Li et al., 2019); and (2) a
single-sentence generation task to complete the
story (Guan et al., 2019; Huang et al., 2021). We
perform these two tasks in two settings: (1) mono-
lingual training, and (2) zero-shot cross-lingual
transfer, between Indonesian and English. Our data
and code are available at https://github.com/fajri91/
IndoCloze.

2 Dataset Construction

Following Mostafazadeh et al. (2016), we construct
an Indonesian Story Cloze Test dataset. Each in-
stance consists of a four-sentence premise, and two
candidates for the fifth sentence: an appropriate
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Figure 1: Number of words in each sentence position.

Person Location Organization
(#unique: 1962) (#unique: 114) (#unique: 166)

Rio, Acha,
Reno, Mamat,
Hana, Gina,
Juju, Tarra,
Maria, Elisa

Indonesia, Jakarta,
Bandung, Kenya,
Bali, Jogja, Surabaya,
Korea, Monas

SD Harapan, KAI,
SMA Harapan, SMA
Angkasa, Bobo,
Bimbel, SMP
Harapan

Table 1: Examples of PERSON, LOCATION, and
ORGANIZATION (sampled from top-20 predictions).

and inappropriate ending. Similar to Mostafazadeh
et al. (2016) and Sharma et al. (2018), our corpus
consists of daily-life events, but in Indonesian con-
texts (e.g. locations, places, names, food, culture).

Data creation. We hired seven Indonesian uni-
versity students to each write 500 short stories over
a period of one month. As part of the recruitment,
candidates were provided with story requirements
and several examples,1 and asked to write a 5-
sentence story, as well as an inappropriate fifth
sentence. From ten applicants, we hired the seven
best candidates based on their submitted stories.
After one month, four workers completed the job
and were paid Rp 750,000.2 The three who did
not complete the task were paid a prorated salary,
based on the number of completed stories. This
resulted in a dataset of 2,335 stories (see Table 2
for examples).

Quality control. We additionally assessed the
dataset by employing two Indonesian university stu-
dents that were not involved in the data construc-
tion.3 Based on 100 random samples, we asked
each worker to choose the correct fifth sentence for
a given four-sentence premise, and found that both

1See Appendix for more details.
2The monthly minimum wage in Indonesia is around Rp

4,000,000, and the workload to write 500 short stories equates
to roughly 5-days of full-time work.

3We paid Rp 150,000 to each.

workers achieved 99% accuracy.4

Data statistics. Our corpus contains 14,010 sen-
tences and 106,479 words. In Figure 1, we ob-
serve that word counts in each sentence position are
somewhat similar, with a median sentence length
of 5–10 words.

We used an IndoBERT model (Koto et al.,
2020) to train POS and NER models, based on
the datasets of Dinakaramani et al. (2014) and
Gultom and Wibowo (2017), resp., and used
them to predict VERB, PERSON, LOCATION, and
ORGANIZATION tags.5 First, we found that the
dataset contains 21,447 VERB tokens (3,723 unique
tokens), with the top-3 most frequent verbs hav-
ing a frequency of 2% (see Figure 2 in Appendix).
We also observe that PERSON, LOCATION, and
ORGANIZATIONNEs are mostly local Indonesian
expressions, with common PERSON names being
Reno and Mamat, and organization names being
KAI and Bobo, as captured in Table 1. Addition-
ally, we found that the top-5 most frequent bigrams
and trigrams have a frequency of less than 0.3%,
demonstrating the lexical diversity of our stories,
even though the dataset was created by a small
number of workers (Table 3).

3 Experimental Setup

Similar to Bhagavatula et al. (2020) experiments
in English commonsense reasoning, we conducted
two tasks: (1) a classification task to predict the
correct ending; and (2) a single-sentence generation
task to complete the story. We perform these two
tasks in two settings: (1) monolingual training,
and (2) zero-shot cross-lingual transfer, between
Indonesian and English. The data split is presented
in Table 4.

3.1 Classification
Following Mostafazadeh et al. (2016), we evaluate
the classification task based on accuracy, defined as
#correct
#testcases . Models are tuned based on the develop-
ment set, and results are averaged over three runs.
We experiment with the following four models.

n-gram overlap: We select candidate with the
highest ROUGE-1 (F1; Lin (2004)), computed be-
tween the premise and ending.
fastText-based similarity: We pick the can-

didate with the highest cosine similarity, computed
4The two candidate fifth sentences (the correct and incor-

rect endings) are shuffled for each story.
5The POS and NER models have accuracies of 96.8% and

90.1%, respectively.
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Indonesian English

Context Sepulang sekolah, Rani dan Rina mengunjungi toko
komik. Komik kesukaan mereka terbit hari ini.
Masing-masing membayar sepuluh ribu rupiah. Setelah
membayar, mereka berdua pulang ke rumah

After school, Rani and Rina visit a comic shop. Their
favorite comic will be published today. Each of them
paid ten thousand rupiah. After paying, the two of them
went home.

Right ending Mereka membaca komik itu bersama-sama di rumah. They read the comic together at home.
Wrong ending Komik itu mereka robek jadi dua bagian. They tore the comic into two parts.

Context Hari ini langit sangat mendung. Gemuruh sudah
terdengar sejak pagi. Diprediksi hujan akan segera
turun. Aku bergegas berangkat kerja karena takut
kehujanan.

Today the sky is very cloudy. There has been thunder
since morning. It is predicted that rain will fall soon. I
rush to work to avoid the rain.

Right ending Aku membawa jas hujan. I take a raincoat.
Wrong ending Sebelum berangkat, aku menjemur pakaian di halaman

rumah
Before leaving, I hang my washing outdoors.

Context Boni punya 5 balon. Balon ini dibelikan oleh ayah di
Jalan Margonda. Semua balon Boni berwarna berbeda.
2 balon berwarna merah dan biru.

Boni has 5 balloons. These balloons were bought by his
father at Jalan Margonda. All Boni’s balloons are
different colours. Two of the balloons are red and blue.

Right ending Yang lain berwarna putih, hitam, dan kuning The others are white, black and yellow.
Wrong ending Sedangkan ketiga lainnya berwarna merah muda. While the other three are pink.

Table 2: Three example Story Cloze Test instances, with an English translation for illustrative purposes.

Bigram (#unique: 59,256) Freq (%)

pergi ke (go to) 0.30
tidak bisa (can not) 0.29
hari ini (today) 0.27
teman temannya (his/her friends) 0.25
tidak pernah (never) 0.25

Trigram (#unique: 72,443) Freq (%)

oleh karena itu (therefore/thus) 0.04
pulang ke rumah (go home) 0.04
dengan teman temannya (with his/her friends) 0.03
maka dari itu (therefore/thus) 0.03
dan teman temannya (and his/her friends) 0.03

Table 3: Top-5 bigrams and trigrams.

Task EN ID (ours)

Classification 1,683 / 188 / 1,871 1,000 / 200 / 1,135
Generation 45,496 / 1,871 / 1,871 1,000 / 200 / 1,135

Table 4: Data distribution of train/development/test set.
The English dataset is from Mostafazadeh et al. (2016).

between the premise and ending based on 300d
Indonesian fastText (Bojanowski et al., 2017).

Hierarchical BiLSTM: We use a two-level
200d BiLSTM, using the first to encode a single
sentence with 300d fastText as input. We per-
form average pooling to obtain a sentence repre-
sentation, and apply the second BiLSTM across
all sentences. We concatenate the last hidden state
of the two LSTMs, and perform binary classifica-
tion using a sigmoid function (see Appendix for
hyper-parameters).

Pretrained Language Models: We fine-tune
MBERT (Devlin et al., 2019) and INDOBERT

(Koto et al., 2020) by concatenating the premise
and ending sentence, and use [CLS] for classifica-
tion (see Appendix for hyper-parameters).6

For classification, we first evaluate the difficulty
of our dataset by predicting the fifth sentence based
on a different combination of premises as context.
For zero-shot cross-lingual transfer, we use the
English corpus of Mostafazadeh et al. (2016), and
also use translations from Google Translate.7

3.2 Generation

We use the four-sentence premise as input, and
train MBART (Liu et al., 2020) to generate the fifth
sentence for both English and Indonesian. For En-
glish, we use the 45K stories of Mostafazadeh et al.
(2016) as the training set (see Table 4) and perform
zero-shot cross-lingual transfer in both language
directions (see Appendix for hyper-parameters).

For automatic evaluation we use ROUGE-L
(Lin, 2004), BLEU-4 (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and BERTScore
(Zhang et al., 2020). For Indonesian, we also con-
ducted manual evaluation using 4 models × 50
randomly-sampled test instances, including gold
sentences and predicted sentences, trained on the
EN, ID, and EN+ID datasets. We asked two na-
tive speakers to read the premise and then examine
whether the fifth sentence is coherent Indonesian
text, does not contain repetition, follows common-
sense, contains natural or unnatural code-switching

6We use the Huggingface Pytorch framework for fine-
tuning (Wolf et al., 2019).

7https://translate.google.com/; accessed on April 2021.
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Context n-gram fastText LSTM MBERT INDOBERT

None — — 68.4 ± 1.5 75.7 ± 0.9 76.1 ± 3.4
s4 40.2 58.9 68.8 ± 1.9 77.1 ± 1.4 78.1 ± 0.3
s3→ s4 49.5 62.3 69.5 ± 0.5 77.3 ± 1.5 76.0 ± 7.8
s2→ s4 52.9 62.5 68.6 ± 0.9 77.8 ± 0.9 75.4 ± 0.9
s1→ s4 52.8 62.6 70.0 ± 2.1 78.2 ± 1.4 81.0 ± 2.1

Table 5: Test classification accuracy (%) based on different contexts (si indicates i-th sentence). Human accuracy
is 99 (from 100 samples).

Train Test (EN) Test (ID)

EN 81.9 ± 0.5 71.3 ± 2.3
ID 68.1 ± 1.9 78.2 ± 1.4
EN+ID 81.7 ± 1.0 76.8 ± 1.1

EN′ 69.2 ± 1.5 75.6 ± 0.6
ID′ 78.0 ± 0.9 69.6 ± 0.4
EN+EN′ 82.9 ± 0.3 75.7 ± 1.5
ID+ID′ 78.6 ± 0.6 76.2 ± 0.6

Table 6: Test classification accuracy for English (EN)
and Indonesian (ID) using MBERT. EN′ and ID′ indi-
cate English and Indonesian translations, respectively,
from Google Translate.

Train Test (EN) Test (ID)

R-L B M BS R-L B M BS

EN 20.4 6.9 9.2 75.2 19.2 6.6 8.2 73.8
ID 8.5 4.5 4.0 70.3 17.6 6.2 7.6 74.4
EN+ID 13.6 5.2 6.3 72.4 18.6 6.4 8.0 74.7

Table 7: Fifth-sentence generation using MBART over
the test set (R-L, B, M, and BS indicate ROUGE-L,
BLEU-4, METEOR, and BERTScore, respectively).

(in the case there is code-switching), and the overall
story has good narrative flow.8

4 Results and Analysis

Classification. In Table 5, we find that a 1-
sentence premise (s4) is inadequate to comprehend
the narrative of the story. We also observe that the
n-gram method performs at near-random (52.9%),
while fastText also struggles at 62.6% accu-
racy. The hierarchical BiLSTM and MBERT per-
form substantially better, at 70% and 78.2%, re-
spectively.

Overall, the best performance is achieved by IN-
DOBERT when using all sentences (s1 → s4) as
context, outperforming MBERT with 81% accu-

8Each worker was paid Rp 250,000.

Train A↑ B↑ C↑ D↑
Gold 94 99 99 81

EN 72 66 58 31
ID 92 52 90 25
EN+ID 92 47 97 31

Table 8: Manual evaluation of the generation task for
50 randomly Indonesian samples, in terms of whether
the fifth-sentence: A: does not contain repetition; B:
follows commonsense; C: is fluent Indonesian; D: has
good narrative flow. The presented scores are ag-
gregated across two annotators (in %). The Kappa
scores for each category range between 0.4–0.8 (see
Appendix).

racy. Compared to the English Story Cloze Test,
our corpus is arguably harder, as Li et al. (2019)
reported BERT accuracies of 78% and 88.1% in
the English corpus when using None and s1 → s4
as the premise. We acknowledge that there is a
spurious correlation of sentence-5 candidates with
the commonsense labels, indicated by INDOBERT
accuracy of 76.1% when having context of None.
This phenomenon is worse in the English dataset
(Mostafazadeh et al., 2016) where the BERT accu-
racy of using context of None is 88.1% (Li et al.,
2019).

In Table 6, we use MBERT to examine com-
monsense reasoning crosslingually between En-
glish (EN) and Indonesian (ID). To simplify, we
use L1→L2 to denote training in language L1 and
testing in L2. First, we observe that combining EN
and ID training worsens commonsense reasoning
in both English and Indonesian. Applying zero-
shot learning (i.e. EN→ID and ID→EN) achieves
mixed results, and ID→EN has worse cross-lingual
transfer than EN→ID in terms of performance gap
over monolingual training. We argue this is be-
cause: (1) English is the dominant language in
MBERT training, and (2) our ID corpus contains
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contexts that are less universal (e.g. nasi padang9

vs. hamburger).
To further observe whether the transferability is

affected by factors beyond language, we translate
the training data with Google Translate. In Table 6,
EN′ denotes the English translation of the Indone-
sian training set, and ID′ vice versa. Surprisingly,
we found that ID′→ID has worse performance than
EN→ID, while EN′→EN improves slightly over
ID→EN. This suggests that translating the training
set to the test language is ineffective, and actually
hurts performance for the ID test set. To further
explore this effect, we asked two expert workers
to evaluate 100 random sentences in the Google
Translate output for EN–ID and ID–EN, and found
quality in both translation directions to be high,
with very little difference in terms of adequacy and
fluency (4.5–4.6 out of 5).10

Generation. In Table 7, we observe that train-
ing using EN achieves the best performance across
the automatic metrics on both the EN and ID test
sets, with the one exception of BERTScore for
EN+ID→ID.11 However, in the manual evaluation
of Indonesian (Table 8), we observe a different
trend, in that training using the EN data tends to
generate repetitive fifth sentences. Based on the
manual evaluation, the best results are using ID
and EN+ID as the training data, where the mod-
els do not suffer from repetition, generate fluent
Indonesian, with similar acceptability in terms of
commonsense reasoning.

Although zero-shot cross-lingual transfer of
EN→ID suffers from repetition, we notice that
MBART is capable of generating plausibly code-
mixed sentences made up of Indonesian and En-
glish (Gardner-Chloros et al., 2009). Based on our
manual evaluation on the same 50 Indonesian test
set, we found that 41% of generated fifth sentences
contain code-mixing, of which 75% are naturalistic
(see Table 9 for examples).

5 Conclusion

In this paper, we introduced the first Indonesian
story cloze dataset, and performed preliminary
analysis in classification and generation settings
in two scenarios: monolingual training and zero-
shot cross-lingual transfer between Indonesian and

9Indonesian cuisine.
10Please see Appendix for the adequacy and fluency scores

(including Pearson correlations) of each translation system.
11EN+ID means that we train the model in a pipeline, using

EN first, then ID.

Natural code-mixing sentence

Now Armend memiliki printer di rumahnya
(Now Armend has a printer in his house)

The only time Livia keluar kamar, adalah ketika ia sedang tidur
The only time Livia left the room is when she sleeps

Unnatural code-mixing sentence

He Hendrik ditangkap oleh Polda
(He Hendrik is arrested by the local police)

Shearing her teeth ketika diminta untuk menyanyi paling keras!
(Shearing her teeth when she is asked to sing loudly!)

Table 9: Example of code-mixing sentence, generated
by MBART when trained on the EN dataset. Red font
denotes English words.

English. From both experiments, we found that
the cross-lingual transfer of commonsense from
English to Indonesian does not perform well, moti-
vating the construction of commonsense reasoning
resources in different languages.

6 Ethical Considerations

We paid our expert workers fairly, based on the
monthly minimum wage in Indonesia. All workers
were made aware that the submitted stories would
be distributed, and used for research purposes. No
sensitive information about the workers will be
released.
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A Training Configurations

A.1 Classification

For LSTM, we set the maximum token for each
sentence to be 30, and train the model for 100
epochs with early stopping (patience = 20), a batch
size of 20, Adam optimizer, and a learning rate of
0.01. For pretrained-language model, we set the
maximum token to be 450 and 50 for the premise
and ending sentence, respectively, and train the
model for 20 epochs with early stopping (patience
= 5), a batch size of 40, Adam optimizer, an initial
learning rate of 5e-5, and warm-up of 10% of the
total steps.

A.2 Generation

To train the sentence-5 generation task, we set the
maximum length of tokens to be 200 and 50 for
the input and target text, respectively. We train
the models on 4×V100 32GB GPUs for 60 epochs
with an initial learning rate of 1e-4 (Adam opti-
mizer). We use a total batch size of 320 (20 x 4
GPUs x gradient accumulation of 4), a warmup of
10% of total steps, and save checkpoints for ev-
ery 500 steps. We also compute ROUGE scores
(R1) to pick the best checkpoint based on the de-
velopment set. For calculating BERTScore we use
bert-base-multilingual-cased based on layer
suggested by Zhang et al. (2020).

B Additional Data Statistics
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Figure 2: Distribution of top-50 verbs in our corpus.

C Analysis on Classification Task: FP
and TP Samples

We further analyze false positive (FP) and true posi-
tive (TP) of INDOBERT by considering 1) whether
the story contains temporal and causal relations;
and 2) the number of premise sentences that are
minimally required to entail the right ending.12

We randomly selected 50 samples from each FP
and TP sets, and found that 60% of FP samples
have temporal relations while TP has lower per-
centage (56%). On the other hand, causal relations
tends to be correctly predicted, with proportion
88% and 94% for FP and TP, respectively. Lastly,

12Sentence can be in any position.
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we found that FP samples have a higher average of
minimally-required premise: 2.8 (out of 4), while
TP samples are only 2.1.

D Human Evaluations

Aspect Kappa Score

A 0.59
B 0.49
C 0.75
D 0.40
E 0.80
F 0.59

Table 10: Generation task: Kappa scores (inter-
annotator agreement) of manual evaluation for 4 mod-
els × 50 randomly sampled Indonesian test. We eval-
uate whether the fifth-sentence: A: does not contain
repetition; B: follows commonsense; C: is a fluent In-
donesian; D: has a good flow; E: has natural English
code-switching; and F: has unnatural English code-
switching.

Aspect EN–ID ID–EN
Adequacy Fluency Adequacy Fluency

Pearson 0.55 0.56 0.39 0.37
Score 4.47 4.57 4.60 4.58

Table 11: Classification task: We randomly sample
100 sentences (of stories) and use Google Translate to
obtain the translation. We ask two expert workers to
evaluate adequacy and fluency of EN–ID and ID–EN
translation (Koehn and Monz, 2006). Scores reflect the
average of two annotations, ranging between 1–5.

E Interview Questions

Buatlah sebuah cerita pendek dengan 5 kalimat!
Cerita pendek yang kami maksud terdiri dari 4 kalimat dan 2 kalimat penutup. Satu kalimat
penutup merupakan kalimat yang sesuai dengan logika manusia berdasarkan 4 kalimat
premise (sesuai dengan commonsense), sedangan 1 kalimat penutup lainnya merupakan
kalimat yang tidak sesuai dengan logika manusia (commonsense).

==== Contoh STORY-1 ====

1. Nenek sangat suka menonton sinetron
2. Tiap sore setelah sholat isya beliau duduk di depan layar televisi selama 3 jam
3. Sesekali beliau bergumam karena kesal melihat pemeran antagonis yang tingkahnya
sering menjahati pemeran utama
4. Tak jarang nenek juga ditemani kakek ketika menonton sinetron
Correct ending (5): Bagi nenek sinetron menjadi sarana hiburannya di malam hari
Incorrect ending (5): Nenek sangat ingin menjadi salah satu pemeran sinetron dan akan
syuting esok hari

==== Contoh STORY-2 ====

1. Pak Miskin punya 3 orang anak
2. Sinta anak pertama kelas 6 SD
3. Anak kedua bernama Heru berusia 4 tahun
4. Anak yang paling kecil bernama Cahyono
Correct ending (5): Ia masih berusia 10 bulan
Incorrect ending (5): Cahyono duduk di kelas 3 SD

Make a short story with 5 sentences!
The short story consists of 4 sentences and 2 ending sentences. One ending sentence is a
sentence that is in accordance with human logic based on 4 premise sentences (follows the
commonsense), while the other one is a sentence that is not in accordance with human logic
(do not follow the commonsense).

==== Example-1 ====

1. Grandma really likes watching soap operas.
2. Every evening after evening prayer she sits in front of the television for 3 hours.
3. Sometimes she muttered because she was annoyed to see the antagonist.
4. Often, she is accompanied by her husband when watching soap operas
Correct ending (5): For my grandmother, soap operas are a good entertainment at night
Incorrect ending (5): Grandma really wants to be a soap opera actor and will shoot
tomorrow

==== Example-2 ====

1. Pak Miskin has 3 children
2. Sinta, the first child is in grade 6.
3. The second child named Heru is 4 years old
4. The youngest child is Cahyono
Correct ending (5): He is still 10 months old
Incorrect ending (5): Cahyono is in grade 3.

Figure 3: Interview question that is used in the hiring of
story writers. The second row is the English translation
(for illustration).

15



F Examples of Sentence-5 Generation

Premise: 
Sudah lima belas tahun Jerry tidak berkunjung ke SD
tempatnya menuntut ilmu. 
Saat ia akan menikah, ia mengunjungi sekolahnya untuk
memberikan undangan ke guru-gurunya. 
Saat bertemu mereka, ia merasa sangat terharu. 
Guru-guru yang mengajarnya saat SD, kini tidak lagi
semuda dulu. 

Gold: 
Meski begitu, mereka masih ingat dengan Jerry dan
kenakalannya semasa sekolah 

EN model: 
Jerry merasa kehilangan sekolah tempatnya menuntut
ilmu 

ID model: 
Jerry senang sekali dengan keberadaan guru-gurunya 

EN+ID model: 
Jerry sangat bangga dengan tempatnya belajar ilmu 

Premise: 
It has been fifteen years that Jerry has not visited his
elementary school.
Today he is visiting his school to invite his teachers to
his wedding.
He feels so happy meeting with his former teachers.
Those teachers are no longer as young as fifteen years
ago.

Gold: 
Even so, they still remember Jerry. 

EN model: 
Jerry feels that he has lost his school. 

ID model: 
Jerry is very happy with his teachers. 

EN+ID model: 
Jerry is very proud of his primary school.

Figure 4: Example of sentence-5 generation output us-
ing MBART model. The second row is the English
translation (for illustration).
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Abstract

Neural language models have attracted a lot
of attention in the past few years. More and
more researchers are getting intrigued by how
language models encode commonsense, specif-
ically what kind of commonsense they under-
stand, and why they do. This paper analyzed
neural language models’ understanding of com-
monsense pragmatics (i.e., implied meanings)
through human behavioral and neurophysiolog-
ical data. These psycholinguistic tests are de-
signed to draw conclusions based on predictive
responses in context, making them very well
suited to test word-prediction models such as
BERT in natural settings. They can provide the
appropriate prompts and tasks to answer ques-
tions about linguistic mechanisms underlying
predictive responses. This paper adopted psy-
cholinguistic datasets to probe language mod-
els’ commonsense reasoning. Findings suggest
that GPT-3’s performance was mostly at chance
in the psycholinguistic tasks. We also showed
that DistillBERT had some understanding of
the (implied) intent that’s shared among most
people. Such intent is implicitly reflected in
the usage of conversational implicatures and
presuppositions. Whether or not fine-tuning
improved its performance to human-level de-
pends on the type of commonsense reasoning.

1 Introduction

In this paper, we focus on Language Models’ (LMs)
performance in commonsense reasoning tasks. Dif-
ferent from language semantics concerning logical
relations between isolated sentence meanings, we
take pragmatics to be sentences’ relations relying
on conversational participants’ commonsense, such
as the basic level intent that is commonly shared
among most people. Humans reason about what
their interlocutor could have said but chose not to,
thereby drawing various inferences. The way hu-
mans put linguistic meanings to use depends on
social interaction and commonsense assumption.
What about machines whose pre-trainings do not

involve social interaction? To what extent do they
still have this pragmatic knowledge? How do they
cooperate without any forms of learning in Grice
pragmatics (Grice, 1975)? This paper attempts to
answer these questions by examining transformer
LMs’ performance in commonsense reasoning.

We focus on two commonsense pragmatics phe-
nomena: (i) Presupposition (henceforth Presp), for
example, by using determiner the in the utterance
“the teacher spoke to me” most people typically
presuppose the existence of such a teacher in the
context; (ii) Scalar Implicature (henceforth SI), for
example, by using quantifier some in “I ate some of
the cookies”, most people generally imply “not all”.
We provided linguistic perspectives about how hu-
mans compute and evaluate commonsense pragmat-
ics. We then assessed the extent to which LMs can
understand the meanings pragmatically enriched
by human speakers. Moreover, we fine-tuned LMs
with pragmatic inference datasets. Evaluation com-
parisons are reported and discussed. We make all
code and test data available for additional testing1.

2 Related work

LMs’ knowledge about syntax and semantics is
relatively well studied (Warstadt et al., 2020; Ten-
ney et al., 2019; Devlin et al., 2019). Consider-
ably fewer studies have been done on speaker’s in-
tent: the implied meaning that’s commonly shared
among most people’s intention. This is called
Conversational Implicature in pragmatics literature
(Grice, 1975). Implicature phenomena like quan-
tifiers some and many are tested in recent studies
(Schuster et al., 2020; Jeretic et al., 2020). The
diagnostics in these studies are controlled. Most of
them incorporate offline human responses to words
in context such as acceptability judgment surveys.

Relatively few studies include online human re-
sponse in the assessment (Ettinger, 2020). On-

1https://github.com/yancong222/
Pragamtics-Commonsense-LMs
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line measurement uses neurolinguistic equipment
electroencephalogram (EEG) and Event-Related-
Potentials (ERP) to record brain activity (Luck,
2012). ERP components such as N400 wave is an
event-related brain potential measured using EEG.
N400 refers to a negativity peaking at about 400
milliseconds after stimulus onset. It has been used
to investigate semantic processing. N400 is rele-
vant because it’s an online real-time measurement
of human brain’s response to different language
phenomena, and it has been mostly elicited as a
result of human processing sentences with seman-
tic anomalies. Online measurement differs from
offline judgments survey or cloze test in that online
measurement reveals human brain’s real-time sen-
sitivity to (linguistic) cues. We examine LMs using
human centered datasets that are collected through
both offline and online experiments.

How “human-like” the state-of-the-art LMs are
(cognitive plausibility) has not comprehensively
justified (Wang et al., 2019). Goldstein et al. (2021)
provides empirical evidence that the human brain
and GPT-2 share fundamental computational prin-
ciples as they process natural language. In a sense
that both are engaged in continuous next-word pre-
diction, and both represent words as a function of
the previous context. Against this background, we
study LMs’ cognitive plausibility through examin-
ing their performance in understanding pragmati-
cally enriched meanings, which are implied or pre-
supposed among most people (i.e. conversational
participants) to convey their intentions.

3 Experiments

We first designed most of the tests in the form
of cloze tasks, so as to test the pre-trained LMs
in their most natural setting, without interference
from fine-tuning. The main schema we used in
this study is called the minimal pair paradigm, in
which two linguistic items are in contrastive distri-
bution, meaning the two items are identical except
one single aspect. The notion of minimal pair is
widely used in linguistic experiments probing the
underlying structures of a linguistic utterance. Typ-
ically, one of the two items is pragmatically odd
according to most people’s commonsense knowl-
edge (marked by #), relative to the other utterance
in the minimal pair.

The hypothesis and the accuracy calculation
pipeline are as follows. If LMs understand com-
monsense intent, which gets reflected in the usage

Model nparams nlayers

DistillBERT-base-uncased 67M 6
GPT-3/InstructGPT 175.0B 96

Table 1: (pre-trained LMs) Model cards

of SI and Presp, LMs should endorse more often
the pragmatically good sentence than its pragmati-
cally odd counterpart in a minimal pair. To quantify
such “endorsement”, we calculated the percentage
p of cases in which LMs favor the pragmatically
good sentence over the pragmatically odd one. The
extent to which LMs (dis-)favor an sentence is de-
rived from LMs’ tokenized sequence log proba-
bility (henceforth logprob). The accuracy mean
for each condition (good vs. bad/so-so) is then
calculated per phenomenon (SI and Presp), using
the sum of percentage p divided by the number of
sentences, grouped by phenomenon. DistillBERT
(Sanh et al., 2019) is used, which has only the en-
coder transformer, It’s necessary that models are
able to use right-hand context for word predictions.
We compare DistillBERT with another type of LMs
GPT-3 (Brown et al., 2020), which has only the de-
coder. We present model cards in Table (1).

Study 1: Presupposition Our first study is built
up on Singh et al. (2016). They performed human
behavioral acceptance judgment experiments us-
ing the presupposition triggers the. Participants
were asked to drop out when they think the sen-
tence stops making sense. Singh et al. (2016)’s
findings show that humans think utterances make
less sense relative to the controls when the presup-
posed information is implausible. We extracted 82
items from Singh et al. (2016) human experiments
stimuli, which are already cognitively justified and
freely available in their appendix. Seth went to jail/
# a restaurant on Saturday night. The guard spoke
to him there for a while. presupposes that there
is a unique guard in the context. Given common-
sense world knowledge and the close association of
guard and jail, “Seth went to jail” is a more likely
and plausible context, thus “a restaurant” is marked
with #. Utterance Kristen went to a restaurant/ #
jail in the morning. The waiter served her there
quickly. presupposes the existence of a (unique)
waiter in the context. “Kristen went to a restau-
rant” is a better context in a sense that it lays out
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a background where there is a waiter. By contrast,
jail is rarely associated with waiter, “went to jail”
is implausible and is marked with #. It’s both the
uniqueness of the “waiter” and the relevance of
the job to the place “restaurant” that affect the con-
text. Singh et al. (2016) reported that in this stops-
making-sense paradigm, human participants were
near-ceiling in accepting plausible conditions: at
the last region of the sentence, the acceptance rate
was 95% in the plausible condition. For implausi-
ble the, by the end of the sentence, 50% dropped
out since it stops making sense and most people
cannot accept it.

Built up on Singh et al. (2016) human experi-
ment, we evaluated LMs’ sensitivity to Presp. We
compared the accuracy mean of each condition, as
exemplified in John went to school on Monday af-
ternoon. The substitute teacher spoke to him there
briefly. versus John went to a concert on Monday
afternoon. The substitute teacher spoke to him
there briefly.. The two utterances differ in only one
element “school”/“concert”. The former is prag-
matically good relative to the latter, given that the
presupposes a context where there is a teacher, and
commonsense tells us that “teacher” and “school”
are closer than “teacher” and “concert”.

GPT-3 is evaluated by the extent to which it
favors plausible cases over the implausible ones.
Sequential word-by-word logprob is generated and
transformed into percent. We take the sum of word
level logprob averaged by sentence length to be
a proxy to the sentence naturalness. Higher per-
cent indicates that GPT-3 evaluates the sentence
to be natural. DistillBERT is evaluated through
critical word prediction. Noun phrase in the ini-
tial sentence is masked and taken as the critical
word. (e.g., school is masked in “John went to
school. The substitute teacher spoke to him there
briefly.”, whereas concert is masked in “John went
to a concert. The substitute teacher spoke to him
there briefly.”. Given that human data shows pref-
erence to the plausible over the implausible, Dis-
tillBERT is considered to have succeeded if the
critical word is in its topK (K=5) tokens for the
plausible sentence. It’s also considered succeed if
the critical word is NOT in BERT’s topK for the
implausible sentence.

Study 2: Scalar Implicature According to
Nieuwland et al. (2010), relative clauses can make
implicatures unnoticed by most people in sentence
processing. Table (2) shows that there is a prag-

matic violation in (a) if conversation participant
actively draws pragmatic inference that “some (but
not all)” office buildings have desks. However, this
violation is left unnoticed in (a) due to the pres-
ence of the relative clause. (c) is relatively bad and
implausible compared to (d): the violation in (c)
is noticed due to the absence of a relative clause.
Note that Nieuwland et al. (2010) considered the
Communication sub-scale of the Autism-Spectrum
Quotient questionnaire (AQ) (Baron-Cohen et al.,
1994, 2001; Baron-Cohen, 2008) to be a proxy to
be an individual’s pragmatic skills. According to
Nieuwland et al. (2010), the AQ quantifies prag-
matic capabilities on a continuum from autism to
typicality.

Nieuwland et al. (2010) reported that only prag-
matically skilled participants (i.e., lower autism
scores) are sensitive to the pragmatic violation in
(c) (r=-.53, p=0.003). For (a), in which the impli-
cature is left unnoticed, so is the violation. There
is thus no significant difference between the prag-
matically skilled participants and those who have
high autism scores (r=-.29, p=0.13). Overall prag-
matically skilled people are good at generating ro-
bust pragmatic inferences that some implies not
all, which gives rise to larger N400 when the utter-
ance is pragmatically bad - N400 is a verified ERP
elicited by anomaly stimuli (Luck, 2012).

We extracted 168 items from Nieuwland et al.
(2010). Some examples of items from their data
are “Some people have lungs/pets, which require
good care”. GPT-3 is used for sequential word
prediction. Using sum of token level logprob av-
eraged by sentence length, we examine if there
is a difference with and without the SI being no-
ticed. GPT-3 is considered succeed if the plausible
sentence mean is higher (hence more favorable)
than the soso/unacceptable sentence mean. We use
masked language models like DistillBERT for crit-
ical word prediction. We masked quantifiers and
take some as the critical word for (a,b,d). We take
all as the critical word for (c), because SI is noticed
and all is commonsense intent. Now that (a,b,c,d)
are all not implausible, BERT is marked as succeed
if the critical word is in its top5 tokens list.

Sanity check One may wonder to what extent
LM is merely leveraging nouns joint-probability.
This motivates us to check whether the test datasets
contain enough noun co-occurrence patterns that
could make the LMs find a likelihood pattern rather
than actually reason to conclude which sentence
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Plausibility Example Label

So-so (a) [Some] office buildings have desks that are covered with dust. SI unnoticed
Plausible (b) [Some] office buildings have plants that are covered with dust. SI unnoticed
Implausible (c) [Some] office buildings have desks and can become dusty. SI noticed
Plausible (d) [Some] office buildings have plants and can become dusty. SI noticed

Table 2: Datasets and examples used in SI evaluation (Nieuwland et al., 2010)

is more plausible. For instance, the co-occurrence
of office-buildings and desks in the SI good pair
seems to be more frequently seen than that of office-
buildings and plants in the bad pair, since plants
are not essential, but desks are. Similarly, for the
Presp stimuli, it appears that humans tend to as-
sociate jail with guard more frequently than they
do so for restaurant and guard. To address these
confounding factors, we use n-gram to calculate
joint-probability (Yin et al., 2016). Results show
that 70% of the SI and 50% of the Presp stimuli
show higher co-occurrence probability in the ‘good’
sentence than in the ‘bad’ sentence2.

4 Fine-tuning DistillBERT with ImpPres

In order to examine how to improve LMs’ accuracy
in these downstream tasks, and to further evaluate
pre-trained LMs versus fine-tuned LMs, we fine-
tuned DistillBERT-base-uncased with the ImpPress
dataset (Jeretic et al., 2020). It consists of >25k
semi-automatically generated sentence pairs illus-
trating well-studied commonsense pragmatic infer-
ence types. 14100 tagged utterance pairs were used
in the training of Presp, and 1410 tagged pairs for
testing. Here is the input representation: sentence
1 Victoria’s mall that has hurt Sam might upset
Helen.; sentence 2 Victoria doesn’t have exactly
one mall that has hurt Sam.; Label contradiction.
As to SI, 6000 tagged utterance pairs were used for
training and 600 for testing. Here is the input repre-
sentation: sentence 1 The teacher resembles some
sketches.; sentence 2 The teacher doesn’t resemble
all sketches.; Label entailment.

We fine-tuned DistillBERT-base-uncased on an
Apple M1 CPU for 3 epochs. We used a batch size
64 of and optimized using Adam (Kingma and Ba,
2014) with betas=(0.9,0.999), with a learning rate

2This would seem to raise questions about the strength of
the conclusions being drawn (c.f. section5) - it seems that LMs
merely leverage co-occurrence frequency; on the other hand, it
also appears that LMs’ trend aligns with joint frequency - LMs
does not fail the sanity check because frequency/prevalence
heavily influences humans’ commonsense reasoning too.

of 2e-05.

5 Evaluations and discussion

Error bar in Fig.1 shows DistillBERT does not
seem to have difficulty detecting Presp, and fine-
tuning slightly decreases its performance. This is
likely due to the fact that Singh et al. (2016) data
is not formatted the same as the ImpPress training
data. Fine-tuning might have misled DistillBERT.
Regarding SI, fine-tuning significantly increases
LMs’ performance, indicating that the ImpPress
dataset is a good candidate for improving LMs’ sen-
sitivity to commonsense SIs. Error bar in Fig.2 in-
dicates that GPT-3 is slightly better in detecting SI
than in Presp, but overall GPT-3 is not good at the
psycholinguistic task. This maybe because GPT-
3 has a different architecture. LMs performance
aligns with n-gram baseline in that overall the SI
dataset is less challenging than the Presp: 70% of
SI dataset shows the favorable co-occurrence direc-
tion: the pair tagged as ‘good’ also shows higher
nouns co-occurrence rate than the ‘bad’ pair does.
The Presp dataset is less helpful (50%).

It’s worth noting that it’s not clear if we can
make a direct comparison between human deci-
sions and LMs’ rates, especially for the SI cases.
Nieuwland et al. (2010) suggests that for humans,
the informative and pragmatically good statements
elicited larger N400 ERPs than underinformative
and pragmatically bad statements. However, this
does not directly transfer to the accuracy mean met-
ric we used for LMs. All Fig.2 showed is that
GPT-3’s performance is roughly at chance, with
respect to accuracy mean. For future studies, we
plan to conduct parallel human studies to collect
baseline human decision rates.

Regarding LMs evaluation analysis, our study
shows that in order to probe commonsense knowl-
edge from LMs, understand their reasoning mecha-
nisms, and identify their limitations for AI applica-
tions due to the lack of commonsense knowledge,
we need to carefully consider how to prompt the
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pre-trained LMs. For masked LMs such as Dis-
tillBERT, our results suggest that an appropriate
method to examine how ‘human-like’ LMs are is
to mask the same token as psycholinguists do in
their behavioral/neural experiments with humans,
and keep the same contextual information, so that
the experiment setting is as close to human exper-
iments as possible. As to unidirectional LMs like
GPT-3, they read in sentence using almost the same
fundamental mechanisms as humans do, we thus
took sentence to be a unit to derive logprob. How
much GPT-3 like the sentence is directly reflected
in its sentence logprob. It’s crucial to use different
metrics for BERT and GPT-3 to avoid the pitfall
of comparing the two with the same metrics, as
they are trained very differently, and a perplexity
comparison would be inconclusive.

Figure 1: Evaluate BERT with human data. DistillBERT
is used for critical word prediction. FT: fine-tuned.

Figure 2: Evaluate GPT-3 with human data. GPT-3 is
used for sequential word prediction.

Our study has some limitations. Although we
mention multiple times that these pragmatics of-
ten exist in conversations, the actual datasets we
used are not conversational. For future work, we
hope to see how LMs perform in a conversation sce-
nario in terms of commonsense pragmatics. This

could give us a better grasp of LMs’ competence
at the conversational level of language understand-
ing. For the current work, our motivation of using
non-conversational human data for conversational
implicature is that LMs are not trained the same
way through many dialogues, but rather with text
found on the web. Additionally, we acknowledge
that there were some glitches in DistillBERT’s SI
evaluation setting. BERT is considered succeed
as long as the critical word is in its topK. By not
penalizing that some can be above all in the case
where both would be in the topK choices, we ac-
cept LM’s choice as “correct” white it isn’t. It’s
also not very surprising that all doesn’t show up
as much as other options in BERT’s topK choices
for scenarios that all is the commonsense intent,
given that LM might generate adjectives but not
quantifiers to modify the following noun. It’s likely
that this has nothing to do with the implication,
nevertheless they still make sense considering that
the LM’s learning algorithm uses masked loss. For
future research, we hope to get more valid con-
clusions through directly comparing whether all is
relatively more likely than some.

Humans show no difficulty in using common-
sense knowledge to reason about daily conversa-
tions. By contrast, the extent to which LMs are
sensitive to commonsense reasoning has remained
an elusive research question in AI research for
decades. Here, we provide an approach for com-
monsense reasoning tasks: incorporating online
and offline psycholinguistic datasets into LMs eval-
uation. Using well-controlled task design and high
resolution neurophysiology equipment, psycholin-
guistics studies all kinds of implicit meanings in
natural language. To examine how ‘human-like’
LMs can be, human data is the key. These methods
can improve the interpretability and explainability
of neural models for reasoning about implied yet
commonsense message.

To sum up, our paper aims to evaluate Distill-
BERT and GPT-3’s ability to make human-like
pragmatic inferences, such as SI and Presp, through
human behavioral and neural data. Findings show
psycholinguistic datasets can help get a good grasp
of LMs’ accuracy in detecting commonsense rea-
soning. Our study adopted a theory-supported lens
for investigating the often vaguely-defined “com-
monsense”, and illustrated how to establish connec-
tion between commonsense reasoning in NLP and
pragmatic semantics.
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Abstract

Large-scale visual-linguistic pre-training aims
to capture the generic representations from
multimodal features, which are essential for
downstream vision-language tasks. Existing
methods mostly focus on learning the seman-
tic connections between visual objects and lin-
guistic content, which tend to be recognition-
level information and may not be sufficient for
commonsensical reasoning tasks like VCR. In
this paper, we propose a novel commonsen-
sical vision-language pre-training framework
to bridge the gap. We first augment the con-
ventional image-caption pre-training datasets
with commonsense inferences from a visual-
linguistic GPT-2. To pre-train models on image,
caption and commonsense inferences together,
we propose two new tasks: masked common-
sense modeling (MCM) and commonsense type
prediction (CTP). To reduce the shortcut effect
between captions and commonsense inferences,
we further introduce the domain-wise adaptive
masking that dynamically adjusts the mask-
ing ratio. Experimental results on downstream
tasks, VCR and VQA, show the improvement
of our pre-training strategy over previous meth-
ods. Human evaluation also validates the rel-
evance, informativeness, and diversity of the
generated commonsense inferences. Overall,
we demonstrate the potential of incorporating
commonsense knowledge into the conventional
recognition-level visual-linguistic pre-training.

1 Introduction

Vision-language multimodal tasks have received
vast attention in the deep learning field in recent
years. Tasks, like Visual Question Answering
(VQA) (Antol et al., 2015; Goyal et al., 2017) and
Visual Commonsense Reasoning (VCR) (Zellers
et al., 2019), require different levels of multimodal
reasoning ability to make task-specific decisions.

*These authors contributed equally. The majority of this
work is finished during their master’s degree at Columbia
University.

Pre-training Fine-tuning

Why is [person0] holding on to a rope?

Because Jessie wanted to get 
into the water, a girl Jessie on 
a beach pulls a horse on a 
rope

A girl Jessie on a beach pulls a 
horse on a rope 

(a) [person0] is climbing over the boat.
(b) To keep from being washed away.
(c) [person0] is trying to tie the rope to 
something.
(d) The rope helps [person0] get to the 
other side of the train tracks.

(c) [person0] is trying to tie the rope to 
something.

Figure 1: An example of our commonsensical visual-
linguistic pre-training (bottom) compared against the
conventional visual-linguistic pre-training (top). Com-
monsensical knowledge (e.g., the bold underlined text)
is generated and learned by models during our com-
monsensical pre-training. Such knowledge becomes
useful for downstream commonsense reasoning tasks:
our model correctly answers the question while the con-
ventional method is wrong.

Motivated by the advancement of pre-training
in both computer vision (CV), such as backbone
networks pre-trained on ImageNet (Deng et al.,
2009), and natural language processing (NLP),
such as BERT (Devlin et al., 2018) and GPT-2
(Radford et al., 2019), numerous visual-linguistic
pre-training strategies were proposed to learn the
generic feature representations for vision-language
tasks. Most of them (Su et al., 2020; Lu et al.,
2019a; Chen et al., 2020; Tan and Bansal, 2019;
Gan et al., 2020) take advantage of large-scale im-
age captioning datasets, such as Conceptual Cap-
tions (Sharma et al., 2018) and MSCOCO Captions
(Lin et al., 2014). These pre-training tasks mostly
focus on learning the modality alignments between
regions-of-interest (RoIs) from images and words
from captions by applying the visual-linguistic ex-
tensions of the masked language modeling (MLM)
objective. There are also other multimodal objec-
tives, such as word-region alignment (Lu et al.,
2019a; Chen et al., 2020), image-text matching
(Chen et al., 2020) and scene graph prediction (Yu
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Recognition-level Commonsensical
Type Low-level Caption Commonsense Inference High-level Caption
Dataset MSCOCO VisualCOMET Ours
Example A girl Jessie on a beach

pulls a horse on a rope
<intent> get into the water Because Jessie wanted to get into the water, a

girl Jessie on a beach pulls a horse on a rope.

Table 1: Terminologies used in this paper, along with their corresponding datasets and examples. The bold text
represents the commonsense inference and the underlined text represents template tokens for the commonsense
type, <intent>. The example captions correspond to the left image in Figure 1.

(a) Recognition-level VQA Example.
Q: What are the people racing?
A: Horses.

(b) Commonsensical VQA Example.
Q: Why are the men jumping?
A: To catch frisbee.

(c) VCR Example (Commonsensical).
Q: Why is [person4] pointing at [person1]?
A: He is telling [person3] that [person1]
ordered the pancakes.

Figure 2: Recognition-level and commonsensical visual question answering examples from VQA and VCR.

et al., 2020).

Despite the variety of those proposed pre-
training strategies, they mostly capture the
recognition-level relationship between the two
modalities, which might not be sufficient for vision-
language tasks that require cognition-level reason-
ing abilities. Here, the term cognition is taken from
VCR to represent reasoning abilities and is more ad-
vanced than recognition. In this work, we rephrase
cognition-level as commonsensical to avoid con-
fusion. As an example, being aware of the word
“man” referring to the human-alike object in the
image is insufficient to infer his future behavior. Su
et al. (2020); Chen et al. (2020) also showed the
similar discrepancy between recognition-level pre-
training and commonsensical fine-tuning. Thus,
the motivation of this work is to bridge the gap be-
tween the two learning stages for vision-language
reasoning tasks.

Not to be confused with the term “common-
sense” described in CommonsenseQA (Talmor
et al., 2019), we approach it from a cognitive per-
spective and take the concept of “commonsense
inference” proposed in VisualCOMET (Park et al.,
2020) as the starting point. It introduced three spe-
cific types of commonsense knowledge, which are
the possible incidents before or after the current
event (i.e., temporal), and the potential intentions
of the target subjects (i.e., intentional). Unfortu-
nately, these information does not normally exist
in conventional captions. Therefore, a natural ques-
tion would be whether introducing additional com-
monsense knowledge in pre-training can further
improve upon the downstream commonsensical

tasks.

To answer this question, we develop a novel com-
monsensical vision-language pre-training frame-
work, which contains two main components: (1)
Generating commonsense inferences for the con-
ventional image-caption dataset; (2) Introducing
suitable pre-training strategies for image, caption,
and commonsense inference together.

As for commonsense inference generation, we
fine-tune a visual-linguistic GPT-2 on Visual-
COMET (Park et al., 2020) as our common-
sense generator and infer the temporal and inten-
tional commonsense for the image-caption pairs
in MSCOCO dataset. We define the conventional
captions such as MSCOCO captions as the low-
level captions. We then combine the low-level
captions with the commonsense inferences using
pre-defined templates to get the high-level captions.
The terminologies used in this paper are collected
in Table 1 and examples are shown in Figure 2.

Given additional commonsense inferences be-
sides the image and caption, the pre-training strat-
egy is the key to bridge the recognition-level infor-
mation and commonsense. In short, we replace the
low-level captions used in most conventional pre-
training methods with the high-level captions. We
propose two tasks toward commonsense inferences:
masked commonsense modeling (MCM) and com-
monsense type prediction (CTP). MCM requires
the model to predict the commonsense inference
masked by the domain-wise adaptive masking strat-
egy. It dynamically adjusts the masking ratio based
on the semantic similarity between commonsense
inferences and captions, for the sake of avoiding ob-
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vious shortcuts. In CTP, the type of commonsense
among <intent>, <before> or <after> is predicted
without knowing the template tokens, which forces
the model to learn global relationships among com-
monsense, captions, and images.

Eventually, we take VCR and VQA as two down-
stream evaluation tasks to demonstrate the effec-
tiveness of our framework. We further provide
qualitative analysis and human evaluation to reveal
the insights behind it.

Our main contributions in this paper are:

• We propose a novel commonsensical visual-
linguistic pre-training framework for incor-
porating commonsense knowledge into the
conventional image-caption pre-training;

• We fine-tune a visual-linguistic GPT-2 model
as the commonsense generator that takes as
input a low-level image-caption pair;

• We develop two commonsensical pre-training
tasks—MCM and CTP, which encourages the
model to internalize commonsensical reason-
ing ability;

• We conduct comprehensive comparison and
ablation study to show that our pre-training
framework leads to improvements of 1.43%
on VCR and 1.26% on VQA. Moreover, a hu-
man evaluation is conducted to validate the
quality of the generated commonsense infer-
ences.

2 Related Work

2.1 Visual-linguistic Model
Vision and language models have been advanc-
ing rapidly and, with the introduction of Faster
R-CNN (Ren et al., 2015) and Transformer-based
models (Vaswani et al., 2017) (e.g., GPT (Radford
et al., 2018, 2019; Brown et al., 2020) and BERT
(Devlin et al., 2018)), many vision-language tasks
are becoming easier to solve. The original BERT
can be easily extended to vision-language multi-
modal settings by concatenating the visual features
of regions-of-interest (RoIs) and linguistic features
of word tokens. Multiple BERT variants were intro-
duced to solve the visual question answering tasks
in the past few years and they can be grouped into
two categories: single-stream cross-modal Trans-
formers and two-stream cross-modal Transformers.
Single-stream Transformers (Su et al., 2020; Chen

et al., 2020; Li et al., 2019; Huang et al., 2019)
have only one encoder. The visual features and the
linguistic features are concatenated together into
a single input sequence. On the other hand, two-
stream Transformers (Lu et al., 2019b; Yu et al.,
2020; Tan and Bansal, 2019) have two independent
encoders, one for the visual feature stream and the
other one for the linguistic feature stream. Then
a third encoder is used to capture the cross-modal
relationship between the two modalities.

2.2 Visual-linguistic Pre-training

Visual-linguistic pre-training is widely applied to
multimodal tasks using large-scale image caption-
ing datasets, such as Conceptual Captions (Sharma
et al., 2018) and MSCOCO (Lin et al., 2014). Two
common pre-training tasks are masked language
modeling with visual clues (MLM) and masked
RoI classification with linguistic clues (MRC) (Su
et al., 2020), which are the extensions of the origi-
nal MLM task from BERT. Word-region alignment
(Lu et al., 2019a; Chen et al., 2020), image-text
matching (Chen et al., 2020), and RoI feature re-
gression (Tan and Bansal, 2019) were also pro-
posed. ERNIE-ViL (Yu et al., 2020) proposed the
scene graph prediction task based on the semantic
graphs parsed from the captions.

Other approaches for improving visual question
answering performance were also proposed in ad-
dition to visual-linguistic pre-training. Wu et al.
(2019) proposed to generate question-relevant cap-
tions jointly with answering the VQA questions.
Kim and Bansal (2019) proposed to fuse the im-
age, question, and answer inputs with an additional
paragraph that provides a diverse and abstract de-
scription of the image. A similar idea is found in
(Li et al., 2018) where generated captions are used
to explain the image and combined with the ques-
tion to produce more accurate answers. A detailed
study (Singh et al., 2020) investigated the effect of
the similarity between pre-training and fine-tuning
datasets.

3 Our Method

3.1 Commonsense Inference Generation

Prior to our pre-training, we first generate com-
monsense inferences from the conventional image-
caption pairs. In addition to the image domain and
the caption domain, commonsense inferences are
treated as a third knowledge domain that is required
for our proposed pre-training. We take a visual-
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⟨image, low⟩

⟨CI⟩

Training
VisualCOMET

Inference
MSCOCO

⟨image, low⟩

⟨CI⟩

Visual-Linguistic GPT-2 Visual-Linguistic BERT

⟨image, high⟩ ⟨image, question⟩

MCM CTPMRC

Pre-training
MSCOCO + CI

Fine-tuning
VCR / VQA

⟨answer⟩

<before> walk onto the 
deck

<intent> think deeply 
about something

<after> talk with 2 
about his problems

[Person1] leans on the 
railing looking 
pensively into the 
water

A girl Jessie on a beach 
pulls a horse on a rope 

<before> get up on the 
horse

<intent> get into the 
water

<after> pet the horse

Because Jessie [MASK] to get 
into the [MASK], a girl Jessie on 
a beach pulls a [MASK] on a rope

Why is [person3] not looking at [person1] ?
(a) Something else has captured her 
attention.
(b) [person3] is turned around because 
[perons1] is speaking with her

Why is [person3] not looking at [person1] ?
(a) Something else has captured her 
attention.
(b) [person3] is turned around because 
[perons1] is speaking with her

Because Jessie wanted to get 
into the water, a girl Jessie on a 
beach pulls a horse on a rope……

…… ……

……

MLM

Commonsense Inference Generation Commonsensical Training

Figure 3: An overview of our commonsensical pre-training framework. The left part shows the commonsense
inference generator; the right part shows the pre-training and fine-tuning pipelines. The bold text in the pre-training
stage is the generated commonsense inference (CI) and the template tokens. The blue arrows point from the inputs
to the target outputs. That is, the bottom images and sentences are the inputs while the top images and sentences are
the objectives. “Low” and “high” stand for low-level captions and high-leval captions, respectively.

linguistic GPT-2 as the commonsense generator
and fine-tune it on the VisualCOMET (Park et al.,
2020) dataset. VisualCOMET introduces three
specific types of commonsense inferences given
the images and the captions (termed as <event>),
which are the possible incidents before or after the
current event (<before>, <after>) and the potential
intentions of the people in the image (<intent>).
Different from the GPT-2 model proposed in Visu-
alCOMET that requires additional location infor-
mation, our GPT-2 only takes image and caption
as inputs, as shown in the left half of Figure 3. In
general, it can be easily applied to any existing
large-scale image captioning dataset. In this pa-
per, we generate commonsense inferences for the
image-caption pairs in MSCOCO (Lin et al., 2014).
Appendix A.3 includes more details about how our
GPT-2 model is fine-tuned. Instead of simply con-
catenating the features from the three knowledge
domains, captions and commonsense inferences
are combined by a set of pre-defined templates. We
term the combined sequence as the high-level cap-
tion. An example is shown in Table 1 and template
details are included in Appendix A.4.

3.2 Commonsensical Pre-training

To exploit the additional knowledge inside the com-
monsense inferences, we introduce a novel com-

monsensical pre-training strategy, which consists
of two new tasks: masked commonsense modeling
(MCM) and commonsense type prediction (CTP).
Both tasks are proposed to learn commonsense
from a fine-grained and global aspect, alongside
the conventional masked language modeling with
visual clues (MLM) and masked RoI classification
with linguistic clues (MRC). In MCM, instead of
the random masking used in previous works (Su
et al., 2020; Chen et al., 2020; Tan and Bansal,
2019; Devlin et al., 2018), we propose the domain-
wise adaptive masking to adjust the masking ratio
according to the semantic similarity between com-
monsense inferences and captions. We detail them
one by one below.

Masked Commonsense Modeling By incorpo-
rating commonsense inferences as the third knowl-
edge domain additional to images and captions, we
propose masked commonsense modeling. It is an
extension of MLM with commonsense inferences
as the input data and the domain-wise adaptive
masking as the masking strategy. Each common-
sense token is masked out by a probability that is
controlled by the strategy detailed in the following
“Domain-wise Adaptive Masking” subsection. The
masked commonsense token cm is replaced with
the special token [MASK]. The model aims to pre-
dict cm given the unmasked commonsense content
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c\m as well as the visual tokens v and linguistic to-
kens w by minimizing the negative log-likelihood:

LMCM(θ) = −E(c,w,v)∼D logPθ(cm|c\m, w, v)

where θ is the model parameters, and D is the
training dataset. We argue that the introduction of
commonsense knowledge will help the model gain
commonsensical reasoning ability.

For image regions and linguistic tokens, inher-
iting from previous works (Lu et al., 2019a; Su
et al., 2020; Chen et al., 2020), we still use MLM
and MRC tasks. One slight difference is that our
MLM/MRC task is conditioned on both common-
sense clues and visual/linguistic clues.

Domain-wise Adaptive Masking Since com-
monsense inferences are generated from low-level
image-caption pairs by a commonsensical GPT-2,
captions and commonsense inferences are likely to
be semantically related to each other. It means that
the model could potentially take the shortcut by
excessively relying on the low-level captions when
predicting the masked commonsense tokens and
vice versa, which makes MLM and MCM easier
to solve. Below is an example where [MASK]4 is
more likely be to predicted as “bridge” based on
the linguistic clues of “overlooking the river” rather
than visual clues, because “bridge” and “river” of-
ten coexist in a sentence:

“Before a man Casey in a wheelchair
and another [MASK]1 on a bench
[MASK]2 [MASK]3 overlooking the
river , Casey needed to walk onto the
[MASK]4.”

To tackle this issue, we introduce the domain-
wise adaptive masking strategy. In conventional
settings, each linguistic token has a probability of
15% to be masked. Domain-wise adaptive masking
considers the semantic distance between common-
sense inferences and low-level captions and com-
putes the masking ratio accordingly. It takes the
sentence embeddings of commonsense inferences
and low-level captions from a pre-trained BERT
(Devlin et al., 2018) and calculates their cosine
similarity. The similarity score is passed to a lo-
gistic function and rescaled to a high probability
interval. We pick the rescaling interval (0.5, 1.0)
to ensure high masking ratio. A higher semantic
similarity between the low-level caption and the
commonsense inference leads to a higher masking

ratio on either the low-level captions or the com-
monsense inferences. Thus, the masking ratio is
“adaptive” with respect to the embedding similar-
ity. Detailed formulae and examples are shown in
Appendix A.5.

During pre-training, adaptive masking is ran-
domly applied on either low-level captions or com-
monsense inferences. Therefore, it is “domain-
wise”. When domain-wise adaptive masking is
applied on low-level captions, it encourages the
model to focus more on the visual clues for MCM.
When domain-wise adaptive masking is applied on
commonsense inferences, the same idea follows for
MLM. The high masking ratio reduces the salience
of one domain and elicits more advanced reasoning
abilities, such as directly inferring commonsense
knowledge from the images with only a few lin-
guistic clues (heavily masked low-level captions).

Commonsense Type Prediction We also intro-
duce a novel task of commonsense type prediction
(CTP). It is an additional classification task that pre-
dicts the commonsense type (<intent>, <before> or
<after>). Note that the template tokens are forced
to be masked out in CTP since they are essentially
the indicators of commonsense type. We also in-
clude the language modeling objective of these
masked tokens in CTP. In general, it requires the
model to perform commonsensical inference on
the global relationship between commonsense and
image-caption pairs.

4 Experiments

4.1 Implementation Details

GPT-2 is fine-tuned on VisualCOMET for 5 epochs
using the AdamW optimizer with a learning rate
of 5.0 × 10−5. In pre-training and fine-tuning,
we use the VL-BERTBASE configuration (Su et al.,
2020), which is a single-stream cross-modal Trans-
former. VL-BERT is pre-trained for 10 epochs
using the AdamW optimizer with a learning rate of
1.0×10−7 and a weight decay of 0.0001. For down-
stream task evaluation on VCR, the pre-trained VL-
BERT is fine-tuned for 20 epochs using the SGD
optimizer with a learning rate of 7.0 × 10−5 and
a weight decay of 0.0001. For downstream task
evaluation on VQA, the pre-trained VL-BERT is
fine-tuned for 20 epochs using the AdamW opti-
mizer with a learning rate of 6.25 × 10−7 and a
weight decay of 0.0001. Our experiments are con-
ducted on 4 Nvidia TITAN RTX GPUs.
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Pre-training VCR VQA(v2)
Q→A test-std test-dev val-human

None 70.00 69.03 68.85 63.43

Recognition-level
70.46

(+0.46)
69.95

(+0.92)
69.71

(+0.86)
66.09

(+2.66)

Commonsensical
71.43

(+1.43)
70.29

(+1.26)
69.97

(+1.12)
66.46

(+3.03)

Table 2: Performance (accuracy) comparison on VCR
and VQA among 3 settings: fine-tuning from scratch,
fine-tuning from recognition-level pre-training, and fine-
tuning from commonsensical pre-training. “Q→A” rep-
resents the question answering task from the validation
set of VCR; “test-std” and “test-dev” represents the
two testing phases of VQA; “val-human” represents the
human-centric validation set of VQA.

4.2 Datasets

Pre-training We take MSCOCO (Lin et al.,
2014) as our low-level image captioning dataset
and apply our fine-tuned GPT-2 model on it to
generate commonsense inferences. To avoid noisy
labeling, we only augment the image-caption pairs
which depict humans since it is counter-intuitive
to infer intentions for non-human objects. Then
commonsense inferences and low-level captions
are combined by a set of pre-defined templates to
form high-level captions.

Fine-tuning To evaluate the effectiveness of our
commonsensical pre-training, we use Visual Com-
monsense Reasoning (VCR) (Zellers et al., 2019)
and Visual Question Answer v2.0 (VQAv2) (Goyal
et al., 2017) for downstream task evaluation. The
overall task of VCR is to select the correct an-
swer (A) as well as the rationale (R) given an
image-question (Q) pair. Existing works (Lu et al.,
2019a; Su et al., 2020; Chen et al., 2020; Tan and
Bansal, 2019; Yu et al., 2020) have shown that
Q→A is a more challenging task, which is what
we use to evaluate our proposed pre-training frame-
work. VQAv2 is another visual question answering
task, where it primarily targets recognition-level
understanding. In addition to the test set, we also
evaluate our pre-training on a validation subset of
VQAv2, where only images that depict humans
are considered. We term this subset as the human-
centric VQA. We argue that these image-question
pairs are more likely to be commonsensical (e.g.,
why is person...?). The subset is selected by the key-
word matching of VQA’s corresponding MSCOCO
captions by a pre-defined human entity dictionary
(e.g., student, firefighter).

4.3 Downstream Task Evaluation

To demonstrate the effectiveness of our pre-training
framework, we fine-tune VL-BERT with different
pre-train settings on VCR and VQA, including VL-
BERT without pre-training, VL-BERT with con-
ventional (i.e., recognition-level) pre-training, and
VL-BERT with our commonsensical pre-training.
Table 2 shows their performance comparison of
accuracy on downstream tasks.

VCR The 1.43% performance increase on VCR
from the no pre-training setting indicates the effec-
tiveness of our proposed method and, in turn, the
advantage of incorporating commonsense knowl-
edge in pre-training. The slight 0.46% performance
increase made by the conventional image-caption
pre-training is consistent with the findings in VL-
BERT and UNITER that the recognition-level pre-
training might not be sufficient for commonsensical
reasoning tasks. Our commonsensical pre-training
enabled a 0.97% improvement over the recognition-
level pre-training.

VQA As for VQAv2, there is a 1.26% perfor-
mance increase from no pre-training to our com-
monsensical pre-training in test-std set and a 1.12%
increase in test-dev set. Our pre-training also im-
proves over the conventional image-caption pre-
training by 0.34% and 0.28%, respectively. Such
increments are slightly smaller when compared to
that on VCR. The reasone is that the questions in
VQA mostly target recognition-level understanding
(e.g., What color is the ...?, What is the ...?, How
many ...?), the gap between recognition-level pre-
training and fine-tuning on VQA is much smaller
than that on VCR. In other words, commonsensical
pre-training might be less necessary for VQA. On
the other hand, the performance increment in the
human-centric VQA is larger, at 0.37%. The com-
parison of no pre-training settings between “val-
human” and the remaining VQA set (Table 2) has
shown that human-centric VQA is a more challeng-
ing problem than the general VQA.

The performance gap between our results and
the reported results from previous works (Su et al.,
2020) is expected since our pre-training dataset
is much smaller than the commonly used massive
image-caption datasets, such as Conceptual Cap-
tions (Sharma et al., 2018). We also did not perform
any hyperparameter tuning for the visual-linguistic
BERT or fine-tuning of the image feature extrac-
tor Faster R-CNN, since we are aiming for rela-
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Pre-training VCR Acc.
(Q→A)

(a) None 70.00
(b) MLMrec 70.46
(c) MLMrec (Aug. + Rand-1 + DAM) 70.55
(d) MLMrec + MCM (Top-1) 70.32
(e) MLMrec + MCM (Rand-1) 70.60
(f) MLMrec + MCM (Rand-1 + DAM) 71.02
(g) MLMrec + MCM (Rand-1 + DAM) + CTP 71.43

Table 3: Comparison of individual component of our
proposed pre-training on VCR. MLMrec: recognition-
level pre-training tasks, including MLM and MRC; Top-
1: pre-train using the top-1 commonsense inference
from our fine-tuned GPT-2; Rand-1: pre-train using
one commonsense inference randomly selected from
the five candidates at each iteration; MCM: masked
commonsense modeling; DAM: domain-wise adaptive
masking strategy; CTP: commonsense type prediction
task.

tive performance comparison rather than absolute
improvement with respect to the state-of-the-art
models.

4.4 Ablation Study

We further conduct a comprehensive ablation study
to analyze the effect of each component in our
commonsensical pre-training, as shown in Table 3.
The ablation study is on VCR because we are more
interested in commonsensical tasks and VCR is
specifically designed for that.

The improvement from (d) to (e) indicates that
the diversity of commonsense knowledge benefits
the learning. When comparing (e) against (b), we
can conclude that our commonsensical pre-training
is indeed more advantageous than recognition-level
pre-training. The performance increase from (e) to
(f) demonstrates the effectiveness of domain-wise
adaptive masking in encouraging better common-
sensical multimodal learning by adaptively reduc-
ing the salience of one knowledge domain. The
improvement of (g) over (f) demonstrates the ef-
fectiveness of the CTP task.

Since our high-level captions are essentially aug-
mented captions with commonsense knowledge,
we would like to see how it compares to other aug-
mentation methods. One obvious baseline is to
use a well-trained caption generator to obtain addi-
tional information for caption augmentation. We
use OSCAR (Li et al., 2020), a state-of-the-art cap-
tion generator, to augment the original image cap-
tion with its generated recognition-level informa-
tion. Then (c) represents the OSCAR-augmented
recognition-level pre-training with Rand-1 and

Relevance
(cap)

Relevance
(img+cap)

Informa-
tiveness Diversity

Ground Truth 3.88 3.95 3.29 3.21
Generated 3.43 3.48 3.58 3.66

Ratio 88.4% 88.0% 108.9% 114.2%

Table 4: Human evaluation of our generated common-
sense inference on MSCOCO compared to the ground
truth commonsense inference from VisualCOMET. “Ra-
tio” is the score ratio of “generated” against “ground
truth”. The scores are on the scale of 0-5.

domain-wise adaptive masking applied. Although
it improves from (b) approximately by 0.1%, it is
much weaker than the increment between (b) and
(f), at 0.56%. It demonstrates that the high-level
commonsensical captions contain more useful and
compatible information than the same amount of
low-level captions do. Thus, we can conclude that
the commonsense knowledge is indeed more com-
patible with the commonsensical reasoning ability
for the downstream VCR task.

4.5 Commonsense Inference Evaluation

Because the MSCOCO dataset does not contain
ground truth commonsense knowledge, we conduct
a human evaluation on the quality of the common-
sense inferences generated by our GPT-2. Follow-
ing the evaluation method used in (Dua et al., 2021),
we randomly sample image-caption pairs along
with their corresponding generated commonsense
inferences for MSCOCO and ground truth com-
monsense inferences from VisualCOMET, with a
mixture ratio of 4:1.

We ask 10 human evaluators and have each of
them evaluate 20 <image, caption, commonsense>
entries without knowing whether the commonsense
inferences are generated (MSCOCO) or annotated
(VisualCOMET). Evaluators are asked to evaluate
each commonsense inference from four dimensions
on the scale of 0 to 5: relevance (cap): how plau-
sible is the commonsense inference provided the
low-level caption only, relevance (img+cap): how
plausible is the commonsense inference given the
image and the low-level caption, informativeness:
how much extra information does the common-
sense inference contain compared to the low-level
caption, and diversity: the diversity of the five can-
didates commonsense inferences of each common-
sense type.

We receive 12000 scores (10× 20× 3× 5× 4)
in total. We then separate the results by generated
(MSCOCO) versus annotated (VisualCOMET) and
average the scores of each dimension. The results
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VQAhuman
VQAobject

VCR

Low-level
High-level

Figure 4: Corpus distribution of low-level captions,
high-level captions, VCR, VQAhuman, and VQAobject.

are shown in Table 4. The ground truth scores
are treated as the reference for the quantified as-
sessment of commonsense inferences quality. In
terms of relevance measure, both caption-only and
image-caption settings show considerable valid-
ity of our commonsense inferences on MSCOCO
dataset, which is 88.4% and 88.0% of the ground
truth relevance scores. It also shows that generated
commonsense inferences are often more informa-
tive and diverse compared to the ground truth com-
monsense inferences. Detailed examples and analy-
sis regarding the success and failure commonsense
inference cases are included in Appendix A.6.

4.6 Qualitative Analysis

To understand how our proposed pre-training
framework improves the downstream task perfor-
mance, we perform a qualitative analysis regard-
ing the semantic relationship among the conven-
tional caption corpora, our pre-training corpora,
and the corpora of VCR and VQA. We further sep-
arate VQA into VQAhuman and VQAobject, where
VQAhuman is the human-centric VQA whose im-
ages depict human. We term VQAobject as the
object-centric VQA whose images depict things
other than human. The visualization details are
included in Appendix A.7. The distance between
corpus distributions indicates different levels of
information (e.g., recognition-level or common-
sensical) and different knowledge domains (e.g.,
human-centric or object-centric) within each cor-
pus.

It is easy to see that different datasets are well-
separated in Figure 4. Considering the spatial re-
lationship in the embedding space, the corpus dis-
tribution of VCR is the furthest away from that of
VQAobject. This follows our intuition in that VCR
and VQAobject require different levels of under-
standing and reasoning and, additionally, VCR is

Fine-tuning VCRsub Acc. (Q→A)
VL-BERT 68.30

VL-BERT + Low-level 70.87
VL-BERT + High-level 71.17

Table 5: Fine-tuning performance comparison with ad-
ditional linguistic information (without, low-level, and
high-level) on the VisualCOMET subset of VCR.

human-centric while VQAobject is not. The overlap
between VQAhuman and VQAobject implies that a
large portion of VQAhuman is still at recognition-
level. The low-level pre-training dataset also con-
tains human-centric captions, which explains the
adjacency between low-level caption corpus and
VQAhuman. Although the low-level caption cor-
pus is closer to VCR than VQA is to VCR, there
still exists a gap between low-level caption cor-
pus and VCR. Our commonsensical (i.e., high-
level) pre-training corpus with commonsense in-
ferences generated by GPT-2 successfully bridges
the gap between the low-level caption corpus and
the downstream commonsensical corpus, which ex-
plains part of the performance improvement by our
proposed method. Additionally, the distance dif-
ference between high-level caption to VQAobject

and high-level caption to VQAhuman could ex-
plain why our proposed pre-training gains larger
improvement on VQAhuman. It demonstrates the
pre-training can generalize better to tasks with sim-
ilar knowledge domains, and implies that object-
centric commonsense might be more suitable for
improving VQAobject.

4.7 Fine-tuning with High-level Captions
Besides pre-training with high-level captions, we
could also introduce low-level or high-level cap-
tions as additional information to support fine-
tuning on VCR. We fine-tune the VL-BERT model
on a subset of VCR where the images overlap with
those in VisualCOMET (VisualCOMET uses a sub-
set of VCR images, which takes up about half the
size of the full VCR.). The three settings shown in
Table 5 are the original fine-tuning of VL-BERT,
fine-tuning with the addition of low-level captions,
and fine-tuning with the addition of high-level cap-
tions. Results show that the high-level captions are
also more useful than low-level captions in helping
VL-BERT improve performance during the fine-
tuning stage.

5 Discussion

Summary We propose a novel visual-linguistic
pre-training framework that incorporates common-
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sense knowledge in visual-linguistic pre-training to
enhance the commonsensical reasoning ability of
the model. The framework includes commonsense
inference generation and two novel commonsen-
sical pre-training tasks. The effectiveness of our
pre-training framework is reflected through down-
stream task evaluation on VCR and VQA. We also
perform extensive empirical analysis to get insights
behind the improvement and demonstrate that our
commonsensical pre-training is more compatible
with commonsensical downstream tasks.

Limitation It is noted that the current common-
sensical pre-training is bounded by the perfor-
mance of the commonsensical GPT-2. Theoreti-
cally speaking, this module is replaceable by any
other visual-linguistic commonsense generators or
retrievers. In addition, the scope of commonsense
knowledge within this work only covers the tem-
poral and intentional domains, while the potentials
of utilizing other commonsense knowledge (e.g.,
object-centric) in pre-training remains unexplored.

Future Work We plan to push the limits of the
proposed pre-training framework by the following
options: (1) Improve the quality of the existing
commonsense generator; (2) Scale up the com-
monsensical pre-training with larger image-caption
datasets, such as Conceptual Captions, and with
larger vision-language models; (3) Explore more
advanced commonsensical pre-training techniques
other than using the extensions of the MLM ob-
jective. Another interesting direction would be
exploring the pre-training effect of commonsense
other than temporal and intentional knowledge.
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A Appendix

A.1 Transformer Revisit
The core component of Transformer (Vaswani et al.,
2017) is Multi-head Self-Attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i )

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where the trainable weights are WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO ∈
Rhdv×dmodel ; dmodel, dk, dv are hyperparameters and
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h is the number of self-attention heads. Because
it is permutation equivariant, positional encodings
are injected into the token embeddings.

BERT (Devlin et al., 2018) is a deep bidirec-
tional Transformer, which is a stack of Transformer
encoder layers:

X = MultiHead(El−1
out , E

l−1
out , E

l−1
out )

X ′ = LayerNorm(X + El−1
out )

El
out = LayerNorm(FFN(X ′) +X ′)

where El
out are the encoder output at the lth layer.

In BERT pre-training, masked language modeling
(MLM) was proposed. It is a self-supervised setting
where the model needs to predict the tokens that
are masked out (with a probability of 15%) from
the remaining tokens.

GPT-2 (Radford et al., 2019) is a multi-layer
Transformer decoder where each decoder layer can
be expressed as:

X = MaskedMultiHead(Dl−1
out , D

l−1
out , D

l−1
out )

X ′ = LayerNorm(X +Dl−1
out )

Dl
out = LayerNorm(FFN(X ′) +X ′)

where Dl
out are the decoder output at the lth layer.

A.2 VL-BERT Visual Features
Visual features and detected object boxes for both
tasks are pre-computed and extracted by Faster R-
CNN (Ren et al., 2015) that is pre-trained on the
Visual-Genome (Krishna et al., 2016) dataset.

A.3 Commonsense Inference GPT-2
The GPT-2 model of VisualCOMET relies on not
only the low-level captions (named “event” in Visu-
alCOMET) but also a “place” descriptor. In order
to make the model more general, we fine-tune the
GPT-2 model without the “place” information: it
only takes as input a pair of image and low-level
caption and generates commonsense inferences, as
shown in the left half of Figure 3. The visual part
of the GPT-2 model is unchanged, which depends
on the visual features extracted by a Faster R-CNN
model.

More specifically, the input sequence is
[<|b_img|>, v0, . . . , vm, <|e_img|>, <|b_ev|>, l0,

. . . , ln, <|e_ev|>, <|before|>], where v and l
are visual features and word embeddings, respec-
tively; <|b_· · ·|> and <|e_· · ·|> are special to-
kens for marking the beginning and the end of the
image and “event” sequences; the <|before|>
token can also be replaced with <|after|> or

<|intent|> to specify what type of common-
sense inference to generate.

A.4 High-level Caption Construction
After the three types of commonsense inferences
are generated by GPT-2 for each image, we con-
struct high-level captions by merging the original
(low-level) caption with commonsense inference
using the following templates:

• Before [low], [person] wanted to [common-
sense inference].

• After [low], [person] will most likely [com-
monsense inference].

• Because [person] wanted to [commonsense
inference], [low].

where [person] is the extracted subject name, [low]
is the low-level caption and [commonsense infer-
ence] is the generated type-specific commonsense
inference; all other tokens are named template to-
kens (e.g., Before . . . wanted to). The “Inference
section” of Figure 3 includes an example of such
high-level caption.

We take the MSCOCO dataset (Lin et al., 2014)
as our base pre-training dataset. It contains 533K
unique image-caption pairs. Since VCR is a human-
centric reasoning task, we filter MSCOCO by key-
word matching with an pre-defined person-entity
vocabulary (e.g., student, firefighter) and obtain its
human-centric subset. We then generate human-
centric commonsense inference on it. Our final pre-
training dataset contains 257K unique low-level
image-caption pairs and 3915K (≈3×5×257K)
unique high-level image-caption pairs.

A.5 Domain-wise Adaptive Masking
Computation

The domain-wise adaptive masking ratio is com-
puted by the equations below:

score = cos_sim(hlow,hCI)

ratio = Rescale(σ(score)))

where hlow is the sentence embedding for the
low-level captions, and hCI is the sentence em-
bedding for its corresponding commonsense infer-
ences. The sentence representation is the repre-
sentation of the [CLS] token taken from BERT;
cos_sim(·) is the cosine similarity; σ(·) is the lo-
gistic function; Rescale is the min-max scaling,
where the prior minimum and prior maximum are
precomputed from the training data. In this work,
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the posterior range is (0.5, 1). Figure 5 is the his-
togram of the computed adaptive masking ratios
from the training data with the mean ratio equals
to 0.715. Examples of the calculated masking ratio
are shown in Figure 6. Since “stop skiing” is more
semantically related to “middle of a skiing jump”,
the function outputs a larger masking ratio com-
pared to “fear for his life”. The same idea follows
as the “get served piazza” is more semantically
related to “in front of two piazzas” compared to
“gather the ingredients”.

Figure 5: Histogram of the adaptive masking ratio from
the training data.

A.6 Commonsense Inference Evaluation

The generated commonsense inferences on
MSCOCO are evaluated by human annotators from
four dimensions on the scale of 0-5: relevant score
given the caption only, relevant score given the
image-caption pair, informative level, and diversity
level. We include two examples in Figure 7, which
corresponds to the success case and the failure case
of the commonsense inference considering the eval-
uation scores. In the success case (Figure 7a), even
though the caption mistakenly treats the Frisbee as
a white ball, our commonsense inference GPT-2
successfully identifies the Frisbee and generates the
commonsense inferences accordingly. The noisy
caption explains the low scores in rel1. The high
rel2 scores show the strength of our commonsense
generator. Commonsense inferences in Figure 7b
are evaluated as poorly generated. Both of its rel1
and rel2 scores are much lower. Compared to its
image with the success case, we can see that it de-
picts a much larger scene where object details are
harder to be perceived by the model. For example,
the skier is doing tricks, while it can be ambiguous
for the model to even identify human-alike shapes.
However, the GPT-2 seems to recognize the scene
as a big event. On the other hand, we can see
that high information-level can be due to either in-

adequate captions, valid and informative common-
sense inferences, or noisy commonsense inferences.
The examples also show how the diversity-level can
be positively correlated with the ambiguity-level
of the images and negatively correlated with the
relevant scores. It introduces some insights behind
the higher informative and diversity score of the
generated commonsense inferences in Table 4.

A.7 Corpora Visualization
We randomly sample 10K “sentences” from each
dataset to estimate their corpus distribution. For
low-level pre-training and commonsensical pre-
training, sentences simply refer to the low-level
captions and high-level captions, respectively. For
VQA, a sentence is the concatenation of a question
and its corresponding ground truth answer with the
highest confidence. The VQA corpus is further di-
vided into human-centric VQA and object-oriented
VQA. In VCR, a sentence is the concatenation of a
question, its corresponding answer, and the ground
truth rationale.

We use a pre-trained Sentence-BERT (Reimers
and Gurevych, 2020) to retrieve the embedding
of each sentence. Then each of the five datasets
is represented by an embedding matrix of size
10, 000× 768, where 10,000 is the sample size and
768 is the hidden dimension size. We use the t-SNE
nonlinear dimension reduction technique to project
and plot the corpus distributions in a 2-dimensional
space, as shown in Figure 4.
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<before>• gather the ingredients  
• get served piazza 

“a girl Pat si+ng at a table in front of two pizzas” 0.698 
0.826

“A fuzzy picture of a man Quinn in the middle of a skiing jump” • fear for his life  
• stop skiing <a=er>

0.682 
0.805

Figure 6: Examples of the calculated domain-wise adaptive masking ratio from low-level captions (left) and
commonsense inferences (right).

“a man Pat in a blue shirt playing with a white ball”

• have fun 
• enjoy the day 
• win the trophy 
• enjoy the experience of playing with the frisbee 
• be famous 

• have spo:ed the Frisbee on the ground 
• gather the frisbee together 
• see the Frisbee 
• hear the Frisbee becoming a crock 
• be walking around the field 

• throw the Frisbee in the air 
• pump the frisbee into the air 
• throw the frisbee back into the air 
• get good at his game 
• eat some food 

<Intent>

<before>

<aAer>

4 5 3 3
4 5 3 3
2 2 5 5
2 5 3 3
3 3 5 5
1 5 5 4
1 5 5 4
1 5 5 4
0 0 5 5
3 2 5 5
1 5 5 2
1 5 5 3
1 5 4 2
1 4 4 4
5 5 3 3

rel1 rel2 info div

(a) Success Case

“A person Kerry riding a snowboard  
down a snow covered ramp .”

• see 
• dive out to chase the penguins  
• see the surprise of the ice sculpture  
• enjoy the show 
• enjoy the show 

• win an ice sculpture award 
• pral the walk 
• go on board 
• purchase 9ckets for the event 
• perform 

• watch 
• dive for the ballet doors 
• go up on the chute 
• purchase 9ckets for the event 
• climb down the boat 

<Intent>

<before>

<a>er>

2 3 5 4
4 0 3 3
2 1 5 3
4 3 5 3
3 3 5 3
3 0 5 3
3 1 5 5
0 3 4 5
5 2 2 5
3 4 5 5
2 4 3 5
4 1 3 5
1 5 5 5
1 2 5 5
1 0 5 5

rel1 rel2 info div

(b) Failure Case

Figure 7: Examples of generated commonsense inference on MSCOCO with human evaluation. Left: image-caption
pair as the inputs of the commonsense generator; Middle: generated commonsense inference; Right: human
evaluation from four dimensions: rel1 is the relevant score given the caption only; rel2 is the relevant score given
the image-caption pair; info is the informative score; div is the diversity score.
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Abstract
Starting from the COMET methodology by
Bosselut et al. (2019), generating common-
sense knowledge from commonsense trans-
formers has recently received significant atten-
tion. Surprisingly, up to now no materialized
resource of commonsense knowledge gener-
ated this way is publicly available. This pa-
per fills this gap, and uses the materialized re-
sources to perform a detailed analysis of the
potential of this approach in terms of precision
and recall. Furthermore, we identify common
problem cases, and outline use cases enabled
by materialized resources. We posit that the
availability of these resources is important for
the advancement of the field, as it enables an
off-the-shelf-use of the resulting knowledge,
as well as further analyses on its strengths and
weaknesses.

1 Introduction

Compiling comprehensive collections of common-
sense knowledge (CSK) is an old dream of AI.
Besides attempts at manual compilation (Liu and
Singh, 2004; Lenat, 1995; Sap et al., 2018) and text
extraction (Schubert, 2002; Tandon et al., 2014;
Mishra et al., 2017; Romero et al., 2019; Nguyen
et al., 2021a), commonsense knowledge compila-
tion from pretrained language models (Bosselut
et al., 2019; Hwang et al., 2021; West et al., 2021)
has recently emerged. In 2019, Bosselut et al. in-
troduced Commonsense Transformers (COMET),
an approach for fine-tuning language models on ex-
isting corpora of commonsense assertions. These
models have shown promising performance in gen-
erating commonsense assertions after being trained
on established human-authored commonsense re-
sources such as ATOMIC (Sap et al., 2018) and
ATOMIC20

20 (Hwang et al., 2021).
More recently, West et al. (2021) extracts com-

monsense assertions from a general language
model, GPT-3 (Brown et al., 2020), using sim-
ple prompting techniques. Surprisingly, using this

machine-authored commonsense corpus to fine-
tune COMET helps it outperform GPT-3, which
is 100x larger in size, in terms of commonsense
capabilities.

Despite the prominence of this approach (the
seminal COMET paper (Bosselut et al., 2019) re-
ceiving over 300 citations in just two years), to
date, no resource containing commonsense knowl-
edge compiled from any COMET model is publicly
available. As compilation of such a resource is a
non-trivial endeavour, this is a major impediment
to research that aims to understand the potentials
of the approach, or intends to employ its outputs in
downstream tasks.

This resource paper fills this gap. We fine-tune
the COMET pipeline on two established resources
of concept-centric CSK assertions, CONCEPTNET

(Speer et al., 2017) and ASCENT++ (Nguyen et al.,
2021a), and execute the pipeline for 10K promi-
nent subjects. Unlike the ATOMIC resources, which
were used to train COMET in (Bosselut et al., 2019;
Hwang et al., 2021) and have their main focus on
events and social interactions, the two resources
of choice are mostly about general concepts (e.g.,
lions can roar, or a car has four wheels). Fur-
thermore, as those two resources were constructed
using two fundamentally different methods, crowd-
sourcing and web text extraction, it enables us to
discover potentially different impacts they have on
the COMET models.

By taking the top-10 inferences for each subject-
predicate pair, we obtain four resources, CONCEPT-
NET (GPT2-XL, BART) and ASCENT++ (GPT2-
XL, BART), containing 900K to 1.4M ranked as-
sertions of CSK. We perform a detailed evaluation
of the intrinsic quality, including fine-grained preci-
sion (typicality and saliency) and recall of each re-
source, derive qualitative insights into the strengths
and weaknesses of the approach, and highlight ex-
trinsic use cases enabled by the resources.
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Our contributions are:

1. The materialization of the COMET ap-
proach for two language models (GPT2-XL,
BART) on two concept-centered common-
sense knowledge bases (CONCEPTNET, AS-
CENT++);

2. Quantitative and qualitative evaluations of the
resulting resources in terms of precision, re-
call and error categories, showing that in terms
of recall, COMET models outperform crowd-
sourced construction and are competitive with
web text extraction, while exhibiting moderate
gaps in terms of precision to both;

3. Illustrative use cases of the materialized re-
sources in statement aggregation, join queries,
and search.

The materialized resources, as well as an in-
teractive browsing interface, are available at
https://ascentpp.mpi-inf.mpg.de/comet.

2 Related work

Early approaches at CSK compilation relied on ex-
pert knowledge engineers (Lenat, 1995) or crowd-
sourcing (Liu and Singh, 2004), and the latter
approach has recently been revived (Sap et al.,
2018). To overcome scalability limitations of man-
ual compilation, text extraction is a second pop-
ular paradigm. Following early attempts on lin-
guistic corpora (Mishra et al., 2017), increasingly
approaches have targeted larger text corpora like
Wikipedia, book scans, or web documents (Tandon
et al., 2014; Romero et al., 2019; Nguyen et al.,
2021a,b), to build CSK resources of wide coverage
and quality.

Recently, both approaches have been com-
plemented by knowledge extraction from pre-
trained language models: Language models like
BERT (Devlin et al., 2019) or GPT (Radford et al.,
2019; Brown et al., 2020) have seen millions of
documents, and latently store associations among
terms. While West et al. (2021) used prompting
to extract symbolic CSK from GPT-3, Bosselut
et al. (2019) proposed to tap this knowledge by
supervised learning: The language models are fine-
tuned on statements from existing knowledge re-
sources, e.g., trained to predict the object Africa
when given the subject-predicate pair elephant, At-
Location, based on the ConceptNet triple 〈elephant,
AtLocation, Africa〉. After training, they can be

used to predict objects for unseen subject-predicate
pairs, e.g., locations of wombats.

The approach gained significant attention, and
variants are employed in a range of downstream
tasks, e.g., commonsense question answering
(Bosselut and Choi, 2020), commonsense expla-
nation (Wang et al., 2020), story generation (Guan
et al., 2020), or video captioning (Fang et al., 2020).

Yet, to date, no materialized knowledge re-
source produced by any COMET model is avail-
able (AUTOTOMIC from (West et al., 2021) be-
ing based on prompting GPT-3). The closest to
this is a web interface hosted by the AllenAI insti-
tute at https://mosaickg.apps.allenai.org/

model_comet2020_entities. However, this visu-
alizes only predictions for a single subject, making,
e.g., aggregations or count impossible, and only
shows top-5 predictions, and without scores.

3 Methodology

We follow the implementations in the offi-
cial code repository1 of the COMET-ATOMIC20

20

project (Hwang et al., 2021) to compute assertions,
and decide on output thresholds.

Training CSKBs. We use two established
concept-centered commonsense knowledge bases
(CSKBs), CONCEPTNET 5.7 (Speer et al., 2017)
and ASCENT++ (Nguyen et al., 2021a) as training
resources, considering 13 CSK predicates from
each of them: AtLocation, CapableOf, Causes,
Desires, HasA, HasPrerequisite, HasProperty,
HasSubevent, MadeOf, MotivatedByGoal, PartOf,
UsedFor and ReceivesAction.

1. CONCEPTNET (Speer et al., 2017) is arguably
the most widely used CSKB, built by crowd-
sourcing. CONCEPTNET 5.7 is its lastest ver-
sion2, consisting of 21 million multilingual as-
sertions, spanning CSK as well as general lin-
guistic and taxonomic knowledge. We retain
English assertions only, resulting in 207,210
training assertions for the above-mentioned
predicates.

2. ASCENT++ (Nguyen et al., 2021a) is a project
aiming for automated CSK extraction from
large-scaled web contents based on open in-
formation extraction (OpenIE) and judicious

1https://github.com/allenai/
comet-atomic-2020/

2https://github.com/commonsense/
conceptnet5/wiki/Downloads
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Parameter GPT2-XL BART

num_beams 10 10
temperature 1.0 1.0
top_p 0.9 1.0
repetition_penalty 1.0 1.0
max_length 16 24
no_repeat_ngram_size 0 3
early_stopping True True
do_sample False False

Table 1: Configurations for beam-search decoders.

cleaning and ranking approaches. The AS-
CENT++ KB consists of 2 million English
CSK assertions for the 13 mentioned predi-
cates.

Language models. We consider two autoregres-
sive language models (LMs) that were also used
in the original COMET paper, GPT2-XL (Radford
et al., 2019) and BART (Lewis et al., 2020).

Materialization process. We query the fine-
tuned COMET models for 10,926 subjects in CON-
CEPTNET which have at least two assertions for the
13 CSK predicates. For each subject-predicate pair,
we use beam search to obtain completions, with
different configurations (see Table 1) for BART
and GPT2-XL, following the parameters speci-
fied in the published code repository and models.
We retain the top-10 completions for each subject-
predicate pair, with their beam scores (i.e., sum
of log softmax of all generated tokens) returned
by the generate function3 of the Transformers li-
brary (Wolf et al., 2020).

Output. The resulting resources, CONCEPTNET

(GPT2-XL, BART) and ASCENT++ (GPT2-XL,
BART), contain a total of 976,296 and 1,420,380
and 1,271,295 and 1,420,380 assertions after dedu-
plication, respectively, as well as their correspond-
ing beam scores. All are available for browsing,
as well as for download, at https://ascentpp.
mpi-inf.mpg.de/comet (see screenshot of brows-
ing interface in Figure 2).

4 Analysis

We perform three kind of analyses: (1) a quanti-
tative evaluation of the intrinsic quality of the as-
sertions, based on crowdsourcing, (2) a qualitative

3https://huggingface.co/docs/
transformers/main/en/main_classes/text_
generation#transformers.generation_utils.
GenerationMixin.generate

evaluation that outlines major strengths and weak-
nesses, and (3) an illustration of use cases enabled
by both resources.

4.1 Quantitative evaluation

The original paper (Bosselut et al., 2019) only eval-
uated the top-1 triple per subject-predicate pair.
Furthermore, it solely evaluated triples by plausi-
bility, which is a necessary, but only partly a suffi-
cient criterion for being considered commonsense
(Chalier et al., 2020).

In the following, we evaluate samples from the
generated resources along two precision dimen-
sions, typicality (top-100 assertions per subject)
and saliency (top-10 assertions per subject). We
also evaluate recall, by measuring the degree to
which each resource covers the statements in a
human-generated ground truth.

Precision: Typicality and saliency. Follow-
ing Romero et al. (2019); Nguyen et al. (2021a),
we assess assertions in the CSK resources along
two precision dimensions: typicality and saliency,
which measure the degree of truth and the degree
of relevance of assertions, respectively. We use
the Amazon Mechanical Turk (AMT) platform to
obtain human judgements. Each dimension is eval-
uated based on a 4-point Likert scale and an option
for no judgement if the annotator is not familiar
with the concepts. Assertions are transformed into
human-readable sentences using the templates in-
troduced by Hwang et al. (2021). Each assign-
ment is done by three different workers. Follow-
ing Hwang et al. (2021), any CSK assertion that
receives the two higher scores in the Likert scale
is labelled as Typical or Salient, and the two lower
scores as Untypical or Unsalient. The final judge-
ments is based on majority vote.

In terms of sampling process, for typicality, we
draw 500 assertions from each resource when re-
stricting to top-100 assertions per subject. For
saliency, we pick 500 random samples from the
pool of top-10 assertions per subject.

Results are reported in the left part of Table 2.
We see a significant drop in the quality of asser-
tions in the LM-based generations compared to the
training resources. In terms of the neural mod-
els, for both training CSKBs, the BART mod-
els demonstrate better typicality than the GPT2-
XL ones. Assertions in BART-ASCENT++ also
have significantly better saliency than in GPT2-XL-
ASCENT++. Interestingly, BART-CONCEPTNET
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Figure 1: Resource recall in relation to resource size, at
similarity threshold t = 0.98.

is nearly on par with ASCENT++ on both metrics.

Recall. We reuse the CSLB dataset (Devereux
et al., 2014) that was processed by Nguyen et al.
(2021a) as ground truth for recall evaluation. The
CSLB dataset consists of 22.6K human-written
sentences about property norms of 638 concepts.
To account for minor reformulations, following
Nguyen et al. (2021a), we also use embedding-
based similarity to match ground-truth sentences
with statements in the CSK resources. We specifi-
cally rely on precomputed SentenceTransformers
embeddings (Reimers and Gurevych, 2019). We
also restrict all CSK resources to top-100 assertions
per subject.

The evaluation results are shown in the right
part of Table 2, where we report recall at similarity
thresholds 0.96, 0.98 and 1.0, as well as resource
size. We also plot the recall values at different top-
N assertions per subject in Figure 1 with similarity
threshold t = 0.98. As one can see, ASCENT++
outperforms both COMET models trained on it even
though it is significantly smaller. We see opposite
results with the CONCEPTNET-based resources,
where the COMET models generate resources of
better coverage than its training data. Our presump-
tion is that the LMs profits more from manually
curated resources like CONCEPTNET, but hardly
add values to resources that were extracted from
the web, as LMs have not seen fundamentally dif-
ferent text. Furthermore, in contrast to precision,
GPT2-XL models have better results than BART
models in terms of recall, on both input CSKBs.

4.2 Qualitative observations

LMs have the strength to generate an open-ended
set of objects, even for subjects seen rarely or not

at all in the training data. For example, while
CONCEPTNET stores only one location for rab-
bit: “a meadow”, both BART- and GPT2-XL-
CONCEPTNET can generalize to other correct loca-
tions, such as wilderness, zoo, cage, pet store, etc.
In the recall evaluation, we pointed out that CON-
CEPTNET, a manually-built CSK resource with
relatively small size, considerably benefits from
LMs generations as they improve the coverage of
the resource substantially.

However, as indicated in the precision evalua-
tion, LM generations are generally of lower preci-
sion than those in the training data. Common error
categories we observe are:

• Co-occurrence misreadings: LMs fre-
quently predict values that merely frequently
co-occur, e.g., 〈locomotive, atLocation, bus
stop〉, 〈running, capableOf, put on shoes〉,
〈war, desires, kill people〉, 〈supermarket, ca-
pableOf, buy milk〉.

• Subject-object-copying: LMs too often re-
peat the given subject in predictions. For in-
stance, 45 of 130 objects generated by BART-
CONCEPTNET for the subject chicken also
contain chicken, such as 〈chicken, CapableOf,
kill/eat/cook chicken〉 or 〈chicken, UsedFor,
feed chicken〉.

• Quantity confusion: LMs struggle to distin-
guish quantities. For example, GPT2-XL-
CONCEPTNET generates that bike has four
wheels (top-1 prediction), and then also two
wheels (rank 3), three wheels (rank 4) and
twelve wheels (rank 5). The weakness of deal-
ing with numbers is known as a common is-
sue of embeddings-based approaches (Berg-
Kirkpatrick and Spokoyny, 2020).

• Redundancy: Generated objects often over-
lap, bloating the output with redundan-
cies. Most common are repetitions of sin-
gular/plural nouns, e.g., the top-2 genera-
tions by BART-CONCEPTNET for doctor-
CapableOf : “visit patient” and “visit pa-
tients”. Redundancies also include para-
phrases, e.g., 〈doctor, CapableOf, visit pa-
tients / see patients〉; or 〈doctor, CapableOf,
prescribe medication / prescribe drug / pre-
scribe medicine〉 (GPT2-XL-ASCENT++ gen-
erations). Clustering might alleviate this issue
(Nguyen et al., 2021a).
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Resource Typicality@100 Saliency@10 Recall@100 Size@100

Typical Untypical Salient Unsalient t=0.96 t=0.98 t=1.00 #triples

ASCENT++ 78.4 11.0 62.8 34.6 8.9 7.9 4.6 202,026
GPT2-XL-ASCENT++ 57.2 27.4 37.2 58.4 6.0 4.9 2.6 1,091,662

BART-ASCENT++ 69.8 17.4 50.6 42.6 2.6 1.9 1.0 1,092,600

CONCEPTNET 93.6 3.6 80.0 16.8 2.3 1.7 0.9 164,291
GPT2-XL-CONCEPTNET 66.6 21.4 63.8 32.6 9.0 7.3 3.8 967,343

BART-CONCEPTNET 72.6 17.0 63.4 33.4 5.3 3.7 1.0 1,092,600

Table 2: Intrinsic evaluation (Typicality, Saliency and Recall - %) and size of CSK resources.

4.3 Downstream use of materialized
resources

Beyond systematic evaluation, materialized re-
sources enable a wide set of downstream use cases,
for example context-enriched zero-shot question
answering (Petroni et al., 2020), or KB-based com-
monsense explanation (Wang et al., 2020). We ex-
emplarily illustrate four enabled types of basic anal-
yses, (1) frequency aggregation, (2) join queries,
(3) ranking and (4) text search.

Frequency aggregation. Materialized resources
enable to count frequencies. In Table 3, we demon-
strate the three most common objects for each
predicate in the GPT2-XL-CONCEPTNET resource.
Interestingly, the third most common location of
items in the KB is “sock drawer”, which is only
ranked as the 190th most common location in CON-
CEPTNET. Similarly, the top-3 objects for Capa-
bleOf in the generated KB rarely occur the training
data.

Join queries. One level further, materialized
knowledge enables the construction of join queries.
For example, we can formulate conjunctive queries
like:

• Animals that eat themselves include chicken,
flies, grasshopper, mice, penguin, worm.

• The most frequent subevents of subevents are:
breathe, swallow, hold breath, think, smile.

• The most common parts of locations are:
beaches, seeds, lot of trees, peel, more than
one meaning.

Ranking. Since statements in our materialized
resources come with scores, it becomes possible
to locally and globally rank assertions, or to com-
pare statements pairwise. For example, in GPT2-
XL-CONCEPTNET, the triple 〈librarian, AtLoca-
tion, library〉, which is at rank 140, has a score

Predicate Most common objects

AtLocation desk (3210), cabinet (2481), sock drawer (1771)

CapableOf branch out (963), branch off (747), taste good
(556)

Causes death (2504), tears (1290), happiness (1254)

Desires eat (949), have fun (816), sex (742)

HasA more than one meaning (1387), seeds (1316),
peel (1170)

HasPrerequisite metal (1965), plastic (1594), water (1423)

HasProperty good (2615), useful (2585), good for (1746)

HasSubevent breathe (1006), swallow (721), take off shoes
(658)

MadeOf plastic (1427), aluminum (1297), wood (905)

MotivatedByGoal have fun (994), enjoyment (493), succeed (444)

PartOf new testament (914), human experience (683), al-
abama (667)

ReceivesAction found in house (1110), eaten (800), found in hos-
pital (779)

UsedFor cooking (627), decoration (454), transport (448)

Table 3: Most common objects generated by GPT2-
XL-CONCEPTNET. Numbers in parentheses indicate
frequency of the corresponding objects.

of −0.048, which is much higher than that of
〈elephant, CapableOf, climb tree〉 (score =−0.839,
ranked 638,048 globally).

Text search. Finally, we can use materialized re-
sources for text search. For example, we can search
in GPT2-XL-CONCEPTNET for all assertions that
include the term “airplane”, finding expected
matches like 〈airplane, AtLocation, airport〉 and
〈flight attendant, CapableOf, travel on airplane〉,
as well as surprising ones like 〈scrap paper, Used-
For, making paper airplane〉 and 〈traveling, Has-
Subevent, sleeping on airplane〉.

5 Conclusion

We introduced four CSKBs computed using two
COMET models (BART and GPT2-XL) trained on
two existing CSK resources (CONCEPTNET and
ASCENT++). Our findings are:
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1. The COMET methodology produces better re-
sults on modest manually curated resources
(CONCEPTNET) than on larger web-extracted
resources (ASCENT++).

2. COMET’s recall can significantly outper-
form that of modest manually curated ones
(CONCEPTNET), and reach that of large web-
extracted ones (ASCENT++).

3. In terms of precision, a significant gap re-
mains to manual curation, both in typicality
and saliency. To web extraction, a moderate
gap remains in terms of statement typicality.

We also identified common problems of the
COMET generations, such as co-occurrence mis-
readings, subject copying, and redundancies, which
may be subject of further research regarding post-
filtering and clustering.
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Abstract

Previous studies have shown the efficacy of
knowledge augmentation methods in pretrained
language models. However, these methods
behave differently across domains and down-
stream tasks. In this work, we investigate
the augmentation of pretrained language mod-
els with knowledge graph data in the cause-
effect relation classification and commonsense
causal reasoning tasks. After automatically ver-
balizing triples in ATOMIC20

20, a wide cover-
age commonsense reasoning knowledge graph,
we continually pretrain BERT and evaluate
the resulting model on cause-effect pair classi-
fication and answering commonsense causal
reasoning questions. Our results show that
a continually pretrained language model aug-
mented with commonsense reasoning knowl-
edge outperforms our baselines on two com-
monsense causal reasoning benchmarks, COPA
and BCOPA-CE, and a Temporal and Causal
Reasoning (TCR) dataset, without additional
improvement in model architecture or using
quality-enhanced data for fine-tuning.

1 Introduction

Automatic extraction and classification of causal
relations in text has been an important yet challeng-
ing task in natural language understanding. Early
methods in the 80s and 90s (Joskowicz et al., 1989;
Kaplan and Berry-Rogghe, 1991; Garcia et al.,
1997; Khoo et al., 1998) mainly relied on defin-
ing hand-crafted rules to find cause-effect relations.
Starting 2000, machine learning tools were utilized
in building causal relation extraction models (Girju,
2003; Chang and Choi, 2004, 2006; Blanco et al.,
2008; Do et al., 2011; Hashimoto et al., 2012;
Hidey and McKeown, 2016). Word-embeddings
and Pretrained Language Models (PLMs) have also
been leveraged in training models for understand-
ing causality in language in recent years (Dunietz
et al., 2018; Pennington et al., 2014; Dasgupta et al.,
2018; Gao et al., 2019).

Investigating the true capability of pretrained
language models in understanding causality in text
is still an open question. More recently, Knowl-
edge Graphs (KGs) have been used in combination
with pretrained language models to address com-
monsense reasoning. Two examples are Causal-
BERT (Li et al., 2020) for guided generation
of Cause and Effect and the model introduced
by Guan et al. (2020) for commonsense story gen-
eration.

ATOMIC
2020

(Subject, Relation, Target)

KG-To-Text

Grammar Check

Data Preparation

Event

Social

Physical

MLM Pretraining

Triple Template

Relation Categories

Evaluation

COPA BCOPA-CE

BERT

TCR

Figure 1: Overview of our proposed framework to con-
tinually pretrain PLMs with commonsense reasoning
knowledge.

Motivated by the success of continual pre-
training of PLMs for downstream tasks (Gururan-
gan et al., 2020), we explore the impact of common
sense knowledge injection as a form of continual
pretraining for causal reasoning and cause-effect
relation classification. It is worth highlighting that
even though there are studies to show the efficacy
of knowledge injection with continual pretraining
for commonsense reasoning (Guan et al., 2020),
performance of these techniques is very dependent
on the domain and downstream tasks (Gururangan
et al., 2020). And, to the best of our knowledge,
there are limited studies on the effect of common-
sense knowledge injection with knowledge graph
data on cause-effect relation classification (Dalal
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et al., 2021). Our contributions are as follows:

• We study performance of PLMs augmented
with knowledge graph data in the less investi-
gated cause-effect relation classification task.

• We demonstrate that a simple masked lan-
guage modeling framework using automat-
ically verbalized knowledge graph triples,
without any further model improvement (e.g.,
new architecture or loss function) or qual-
ity enhanced data for fine-tuning, can signifi-
cantly boost the performance in cause-effect
pair classification.

• We publicly release our knowledge graph ver-
balization codes and continually pretrained
models.

2 Method

The overview of our method is shown in Figure 1.1

We first convert triples in ATOMIC20
20 (Hwang et al.,

2021) knowledge graph to natural language texts.
Then we continually pretrain BERT using Masked
Language Modeling (MLM) and evaluate perfor-
mance of the resulting model on different bench-
marks. Samples in ATOMIC20

20 are stored as triples
in the form of (head/subject, relation, tail/target)
in three splits including train, development, and
test. ATOMIC20

20 has 23 relation types that are clas-
sified into three categorical types including com-
monsense relations of social interactions, physical-
entity commonsense relations, and event-centric
commonsense relations. In the rest of the paper, we
refer to these three categories as social, physical,
and event, respectively.

2.1 Filtering Triples

We remove all duplicates and ignore all triples
in which the target value is none. Moreover,
we ignore all triples that include a blank. Since
in masked language modeling we need to know
the gold value of masked tokens, a triple that al-
ready has a blank (masked token/word) in it may
not help our pretraining. For instance, in the
triple: [PersonX affords another ___,
xAttr, useful] it is hard to know why or un-
derstand what it means for a person to be useful
without knowing what they afforded. This prepro-
cessing step yields in 782,848 triples with 121,681,

1Codes and models are publicly available at https://
github.com/phosseini/causal-reasoning.

177,706, and 483,461 from event, physical, and so-
cial categories, respectively. Distribution of these
relations is shown in Figure 2.
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Figure 2: Distribution of relation types in ATOMIC20
20.

PersonX accidentally fell xEffect PersonX breaks an arm
RelationSubject Target

Tracy accidentally fell. As a result, Tracy breaks an arm

PersonX creates an app xIntent To do something creative
RelationSubject Target

Tracy creates an app because Tracy wanted to do something creative

Relation Human readable template

xEffect As a result

xIntent Because PersonX wanted
PersonX Tracy

Replace by

We verbalize ATOMIC2020 knowledge graph

Figure 3: Examples of converting two triples in
ATOMIC20

20 to natural language text using human read-
able templates. Following Sap et al. (2019), we replace
PersonX with a name.

2.2 Converting Triples

Each relation in ATOMIC20
20 is associated with a

human-readable template. For example, xEffect’s
and HasPrerequisite’s templates are as a result,
PersonX will and to do this, one requires, respec-
tively. We use these templates to convert triples
in ATOMIC20

20 to sentences in natural language by
concatenating the subject, relation template, and
target. Examples of converting triples to text are
shown in Figure 3.

2.3 Checking Grammar

When we convert triples to natural language text,
ideally we want to have grammatically correct sen-
tences. Human readable templates provided by
ATOMIC20

20 are not necessarily rendered in a way
to form error-free sentences when concatenated
with subject and target in a triple. To address this
issue, we use an open-source grammar and spell

44



checker, LanguageTool,2 to double-check our con-
verted triples to ensure they do not contain obvious
grammatical mistakes or spelling errors. Similar
approaches that include deterministic grammati-
cal transformations were also previously used to
convert KG triples to coherent sentences (Davison
et al., 2019). It is worth pointing out that the Data-
To-Text generation (KG verbalization) for itself is a
separate task and there have been efforts to address
this task (Agarwal et al., 2021). We leave investi-
gating the effects of using other Data-To-Text and
grammar-checking methods to future research.

2.4 Continual Pretraining

As mentioned earlier, we use MLM to continually
pretrain our PLM, BERT-large-cased (Devlin et al.,
2018). We follow the same procedure as BERT to
create the input data to our pretraining (e.g., num-
ber of tokens to mask in input examples). We run
the pretraining using ATOMIC20

20’s train and devel-
opment splits as our training and evaluation sets,
respectively, for 10 epochs on Google Colab TPU
v2 using PyTorch/XLA package with a maximum
sequence length of 30 and batch size of 128.3 To
avoid overfitting, we use early stopping with the
patience of 3 on evaluation loss. We select the best
model based on the lowest evaluation loss at the
end of training.4

3 Experiments

3.1 Benchmarks

We chose multiple benchmarks of commonsense
causal reasoning and cause-effect relation classi-
fication to ensure we thoroughly test the effects
of our newly trained models. These benchmarks
include: 1) Temporal and Causal Reasoning (TCR)
dataset (Ning et al., 2018), a benchmark for joint
reasoning of temporal and causal relations; 2)
Choice Of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) dataset which is a widely used
and notable benchmark (Rogers et al., 2021) for
commonsense causal reasoning; And 3) BCOPA-
CE (Han and Wang, 2021), a new benchmark
inspired by COPA, that contains unbiased token
distributions which makes it a more challenging
benchmark. For COPA-related experiments, since
COPA does not have a training set, we use COPA’s

2https://tinyurl.com/yc77k3fb
3%99.99 of ATOMIC20

20 instances have 30 tokens or less.
4We use Huggingface’s BertForMaskedLM implementa-

tion.

development set for fine-tuning our models and
testing them on COPA’s test set (COPA-test) and
BCOPA-CE. For hyperparameter tuning, we ran-
domly split COPA’s development set into train
(%90) and dev (%10) and find the best learning rate,
batch size, and number of train epochs based on the
evaluation accuracy on the development set. Then
using COPA’s original development set and best set
of hyperparameters, we fine-tune our models and
evaluate them on the test set. In all experiments,
we report the average performance of models using
four different random seeds. For TCR, we fine-tune
and evaluate our models on train and test splits, re-
spectively.

3.2 Models and Baseline

We use bert-large-cased pre-trained model in all ex-
periments as our baseline. For COPA and BCOPA-
CE, we convert all instances to a SWAG-formatted
data (Zellers et al., 2018) and use Huggingface’s
BertForMultipleChoice –a BERT model with a
multiple-choice classification head on top. And for
TCR, we convert every instance by adding special
tokens to input sequences as event boundaries and
use the R-BERT 5 model (Wu and He, 2019). We
chose R-BERT for our relation classification since
it not only leverages the pretrained embeddings but
also transfers information of target entities (e.g.,
events in a relation) through model’s architecture
and incorporates encodings of the targets entities.
Examples of COPA and TCR are shown in Figure 4.
BCOPA-CE has the same format as COPA.

𝑃: The computer crashed. 𝐻!: I backed up my files.
asks-for=”cause"

𝐻": I downloaded a virus.

C
O
PA

TC
R

The death toll <e1> climbed </e1> to 99 on Sunday after a 
suicide car bomb <e2> exploded </e2> Friday in the middle 
of a group of men playing volleyball in northwest Pakistan, 
police said. Cause-Effect(e1,e2)

[CLS] The computer crashed. [SEP] I backed up my files. [SEP]
[CLS] The computer crashed. [SEP] I downloaded a virus. [SEP]

Figure 4: COPA and TCR examples. The COPA in-
stance is converted to Multiple Choice format.

4 Results and Discussion

Results of our experiments on TCR are shown in
Table 1. As can be seen, our model significantly
outperforms both our baseline and the joint infer-

5We use the following implementation of R-BERT:
https://github.com/monologg/R-BERT
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ence framework by Ning et al. (2018) formulated
as an integer linear programming (ILP) problem.

Model Acc (%)
Joint system (Ning et al., 2018) 77.3
BERT-large (baseline) ❈ 75.0
ATOMIC-BERT-largeMLM ❈ 91.0

Table 1: TCR Accuracy results. ❈ Our models

Results of experiments on COPA-test are shown
in Table 2. We initially observed that a continually
pretrained model using all three types of relations
has a lower performance than our baseline. By
taking a closer look at each relation type, we de-
cided to train another model, this time only using
the event relations. The reason is that event-centric
relations in ATOMIC20

20 specifically contain com-
monsense knowledge about event interaction for
understating likely causal relations between events
in the world (Hwang et al., 2021). In addition,
event relations have a relatively longer context (#
of tokens) than the average of all three relation
types combined which means more context for a
model to learn from. Our new pretrained model out-
performed the baseline by nearly %5 which shows
the effect of augmented pretrained language model
with commonsense reasoning knowledge.

Model Acc (%)
PMI (Roemmele et al., 2011) 58.8
b-l-reg (Han and Wang, 2021) 71.1
Google T5-base (Raffel et al., 2019) 71.2
BERT-large (Kavumba et al., 2019) 76.5
CausalBERT (Li et al., 2020) 78.6
BERT-SocialIQA (Sap et al., 2019)∗ 80.1
BERT-large (baseline) ❈ 74.4
ATOMIC-BERT-largeMLM ❈

- Event only 79.2
Google T5-11B (Raffel et al., 2019) 94.8
DeBERTa-1.5B (He et al., 2020) 96.8

Table 2: COPA-test Accuracy results. ❈ Our models.
∗ For a fair comparison, we report BERT-SocialIQA’s
average performance.

We further experiment on the Easy and Hard
question splits in COPA-test separated by Kavumba
et al. (2019) to see how our best model performs
on harder questions that do not contain superficial
cues. Results are shown in Table 3. As can be
seen, our ATOMIC-BERT model significantly out-
performs both the baseline and former models on
Hard and Easy questions.

Model Easy ↑ Hard ↑
(Han and Wang, 2021) - 69.7
(Kavumba et al., 2019) 83.9 71.9

BERT-large (baseline) ❈ 83.0 69.2
ATOMIC-BERT-large ❈ 88.9 73.1

Table 3: COPA-test Accuracy results on Easy and Hard
question subsets. ❈ Our models.

It is worth mentioning three points here. First,
our model, BERT-large, has a significantly lower
number of parameters than state-of-the-art models,
Google T5-11B (∼32x) and DeBERTa-1.5B (∼4x)
and it shows how smaller models can be compet-
itive and benefit from continual pretraining. Sec-
ond, we have not yet applied any model improve-
ment methods such as using a margin-based loss
introduced by Li et al. (2019) and used in Causal-
BERT (Li et al., 2020), an extra regularization loss
proposed by Han and Wang (2021), or fine-tuning
with quality-enhanced training data, BCOPA, intro-
duced by Kavumba et al. (2019). As a result, there
is still great room to improve current models that
can be a proper next step. Third, we achieved a per-
formance on par with BERT-SocialIQA (Sap et al.,
2019) 6 while we did not use crowdsourcing or any
manual re-writing/correction, which is expensive,
for verbalizing KG triples to create our pretraining
data.

Model Acc (%)
b-l-aug (Han and Wang, 2021) 51.1
b-l-reg (Han and Wang, 2021) 64.1
BERT-large (baseline) ❈ 55.8
ATOMIC-BERT-largeMLM ❈

- Event only 58.1

Table 4: BCOPA-CE Accuracy results. ❈ Our models.
∗ Base model in b-l-* is BERT-large.

4.1 BCOPA-CE: Prompt vs. No Prompt

Results of experiments on BCOPA-CE are shown
in Table 4. As expected based on the results also
reported by Han and Wang (2021), we initially ob-
served that our models are performing nearly as
random baseline. Since we do not use the type
of question when encoding input sequences, we
decided to see whether adding question type as a
prompt to input sequences will improve the perfor-
mance. We added It is because and As a

6Our best random seed run achieved %81.4 accuracy.
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result, as prompt for asks-for="cause"
and asks-for="effect", respectively. Inter-
estingly, the new model outperforms the baseline
and Han and Wang (2021)’s b-l-aug model that is
fine-tuned with the same data as ours, when ques-
tion types are added as prompts to input sequences
of correct and incorrect answers in the test set. We
also ran a similar experiment on COPA-test (Ta-
ble 5) in which adding prompt did not help with
performance improvement.

Train / Test ✗ Prompt ✓ Prompt

✗ Prompt 79.2 76.4
✓ Prompt 75.5 77.9

Table 5: COPA-test Accuracy ablation study results for
prompt vs. no prompt.

5 Conclusion

We introduced a simple framework for augmenting
PLMs with commonsense knowledge created by
automatically verbalizing ATOMIC20

20. Our results
show that commonsense knowledge-augmented
PLMs outperform the original PLMs on cause-
effect pair classification and answering common-
sense causal reasoning questions. As the next
step, it would be interesting to see how the pre-
viously proposed model improvement methods
or using unbiased fine-tuning datasets can poten-
tially enhance the performance of our knowledge-
augmented models.
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Abstract

Predicting the effects of unexpected situations
is an important reasoning task, e.g., would
cloudy skies help or hinder plant growth?
Given a context, the goal of such situational
reasoning is to elicit the consequences of a
new situation (st) that arises in that context.
We propose CURIE, a method to iteratively
build a graph of relevant consequences explic-
itly in a structured situational graph (st graph)
using natural language queries over a fine-
tuned language model. Across multiple do-
mains, CURIE generates st graphs that humans
find relevant and meaningful in eliciting the
consequences of a new situation (75% of the
graphs were judged correct by humans). We
present a case study of a situation reasoning
end task (WIQA-QA), where simply augment-
ing their input with st graphs improves accu-
racy by 3 points. We show that these improve-
ments mainly come from a hard subset of the
data, that requires background knowledge and
multi-hop reasoning.

1 Introduction

A long-standing challenge in reasoning is to model
the consequences of an unseen situation in a con-
text. In the real world unexpected situations are
common. Machines capable of situational reason-
ing are crucial because they are expected to grace-
fully handle such unexpected situations. For exam-
ple, when eating leftover food, would it be more
safer from virus if we microwave the food? - an-
swering this requires understanding the complex
events virus contamination and effect of heat on
virus. Much of this information remains implicit
(by Grice’s maxim of quantity (Grice, 1975)), thus
requiring inference.

Recently, NLP literature has shown renewed in-
terest in situational reasoning with applications
in qualitative reasoning (Tandon et al., 2019;

∗ authors contributed equally to this work. Ordering
determined by dice rolling.

QA pairs: 
Q1: What helps st imminently?  
A1 : bright skies 
Q2: What hurts st imminently?  
A2: cloudy skies 
Q3: What’s helped eventually ? 
A3: taller plants

bright 
skies

more 
sunlight

cloudy 
skies

taller 
plants

Context : 
Sunlight strikes 
chlorophyll.  
Sunlight trapped  … 

Situation (st) : 
more sunlight

RQ1. St-Graph Generation :

RQ2. Example QA End-Task :

Context Situation [c] = storm End [e]= smaller rocks
c’s influence 

on e?  
accelerates 

(helps)

Figure 1: RQ1: CURIE generates situational graphs
by iteratively querying a model, making explicit the
model’s knowledge of effects of influences (+ve / -ve).
RQ2: Situational graphs improve situational reasoning
QA when appended to the question context.

Tafjord et al., 2019), physical commonsense reason-
ing (Sap et al., 2019; Bisk et al., 2020), and defea-
sible inference (Rudinger et al., 2020). These tasks
take as input a context providing background infor-
mation, a situation (st), and an ending, and predict
the reachability from st to that ending. However,
these systems have three limitations: (i) systems
trained on these tasks are often domain specific, (ii)
these tasks do not require a supporting structure
that elicits the dynamics of the reasoning process,
and (iii) these tasks are addressed as a classification
problem restricting to a closed vocabulary setting.

To address these limitations, we propose CURIE-
a system to iteratively query pretrained language
models to generate an explicit structured graph of
consequences, that we call a situational reasoning
graph (st-graph). The task is illustrated in Figure 1:
given some context and situation st (short phrase),
our system generates a st-graph based on the con-
textual knowledge. CURIE supports the following
kinds of reasoning:

• If a situation st occurs, which event is
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more/less likely to happen imminently/ even-
tually?

• Which event will support/ prevent situation st
from happening imminently/ eventually?

As shown in Figure 1, our approach to this task
is to iteratively compile the answers to questions
1 and 2 to construct the st-graph where immi-
nent/eventual capture multihop reasoning questions.
Compared to a free-form text output obtained from
an out-of-the-box sequence-to-sequence model, our
approach gives more control and flexibility over the
graph generation process, including arbitrarily rea-
soning for any particular node in the graph. The
generated st-graphs are of high quality as judged by
humans for correctness. In addition to human eval-
uation, we also show that a downstream task that
requires reasoning about situations can compose
natural language queries to construct a st-reasoning
graph via CURIE. The resulting st-graph can be
simply augmented to their input to achieve per-
formance gains, specifically on the subset of hard
questions that require background knowledge and
multihop reasoning. In summary, this paper ad-
dresses the following research questions:

RQ1: Given a context and a situation, how can we
generate a situational reasoning (st) graph?
To answer RQ1, we present CURIE, the first
domain-agnostic situational reasoning system
that takes as input a context and a situation
st and iteratively generates a situational rea-
soning graph (§2). Our system is effective at
situational reasoning across three datasets as
validated by human evaluation and automated
metrics.

RQ2: Can the st-graphs generated by CURIE im-
prove performance of a downstream task? To
answer RQ2, we show that st graphs gener-
ated by CURIE improve a st-reasoning task
(WIQA-QA) by 3 points on accuracy by sim-
ply augmenting their input with our generated
situational graphs, especially for a hard sub-
set that requires background knowledge and
multi-hop reasoning (§4).

2 CURIE for Situational Reasoning

CURIE provides both a general framework for situ-
ational reasoning and a method for constructing st-
reasoning graphs from pretrained language models.

M

st tasks model st-graph

Figure 2: CURIE framework consists of two compo-
nents: (i) a formulation that adapts datasets that al-
low st-reasoning for pretraining (ii) a method to itera-
tively build structured st-graphs using natural language
queries over a fine-tuned language model (M).

Figure 2 shows the overall architecture of CURIE.
CURIE framework consists of two components: (i)
st-reasoning task formulation : a formulation that
adapts datasets that allow situational reasoning (ii)
st-graph construction : a method to fine-tune lan-
guage modelM to generate the consequences of
a situation and iteratively construct structured sit-
uational graphs (shown in Figure 1). In this sec-
tion, we present (i) our task formulation (§2.1), (ii)
adapting existing datasets for CURIE task formula-
tion (§2.2), (iii) the learning procedure (§2.3), and
(iv) the st-graph generation process (§2.4).

2.1 Task Formulation

We describe the general task formulation for adapt-
ing pretraining language models to the st-reasoning
task. Given a context T = {s1, s2, . . . , sN} com-
prising of N sentences, and a situation st, our goal
is to generate an st-graphG that captures the effects
of situation st.

An st-graph G(V,E) is an unweighted directed
acyclic graph. A vertex v ∈ V is an event or a
state that describes a change to the original condi-
tions in T . Each edge eij ∈ E is labeled with a
relationship rij , that indicates whether vi positively
or negatively influences vj . Positive influences are
represented via green edges comprising one of {en-
tails, strengthens, helps} and negative influences
represented via red edges that depict one of {contra-
dicts, weakens, hurts}. Our relation set is general
and can accommodate various st-reasoning tasks.
Given two nodes vi, vk ∈ V , if a path from vi to
vk has more than one edge, we describe the effect
c as eventual and a direct effect as imminent.

We derive the training data by transforming a
repository of (context T , st-graph G) tuples into a
set of question-answer pairs. Each pair of vertices
vs, vt ∈ G that are connected by a path contribute
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Dataset Original formulation Original st graph Iterative formulation (st)

WIQA

context: Wind creates waves..
Waves wash on beaches...
ques: If there is storm, how
will it affect bigger waves?
explanation: storm→ stronger
wind→ bigger waves
answer: helps bigger waves

storm

stronger 
wind

big 
waves

Given context and
st: there is a storm
Q1: What does st help imminently ?
A1: stronger wind
Q2: What does st help eventually ?
A2: bigger waves

QUAREL

context: Car rolls further on
wood than on thick carpet
ques: what has more resistance?
(a) wood (b) the carpet
simplified logical form of
context, ques:
distance is higher on wood→
(a) friction is higher in carpet (or)
(b) friction is higher in wood
answer: (b) the carpet

high dist 
on wood

low 
friction on 

wood

friction 
low on 
carpet

wood 
resistance 

is more

Given context and
st: distance is higher on wood
Q1: What does st entail imminently ?
A1: friction is lower in wood
Q2: What does st contradict imminently ?
A2: friction is lower in carpet
Q3: What does st entail eventually ?
A3: wood has more resistance

DEFEAS

context: Two men and a dog are
standing among the green hills.
hypothesis: The men are farmers.
update1: The dog is a sheep dog
strengthens hypothesis
update2: Men with tour map
weakens hypothesis

sheep 
dog

men're 
farmer

men 
w/ tour 

map

Given context and
st: dog is a sheep dog
Q1: What does st strengthen imminently ?
A1: The men are farmers
st: men are studying tour maps
Q2: What does st weaken imminently?
A2: The men are farmers

Table 1: The datasets used by CURIE and how we re-purpose them for st reasoning graph generation task. As
explained in §2.1, the green edges set depicts relation (r) (entail, strengthen, helps) and red edges depict one of
(contradict, weaken, hurts). The { imminent, eventual } effects (c) are used to support multihop reasoning. DEFEAS
= DEFEASIBLE, chain refers to reasoning chain. Some examples are cut to fit. The key insight is that an st-graph
can be decomposed into a series of QA pairs, enabling us to leverage seq-to-seq approaches for st-reasoning.

one question-answer pair to the training data for
CURIE, such that every question comprises of: i)
context T , ii) a st-vertex vs, iii) a relation r, and
iv) the nature of the effect c and the answer is the
target node vt. An example is shown in Figure
1. Compared to an end-to-end approach to graph
generation, our approach gives more flexibility over
the generation process, enabling reasoning for any
chosen node in the graph. Thus the training data
consists of tuples (xi,yi), with xi = (T, vs, r, c)i
and yi is the target situation vt.

2.2 Generalizing Existing Datasets

Despite theoretical advances, lack of a large-scale
general situational reasoning dataset presents a
challenge to train seq-to-seq language models.
We describe how we generalize existing diverse
datasets towards st-reasoning towards finetuning a
language modelM. If a reasoning dataset contains

a context, a st-situation and can describe the influ-
ence of st in terms of green and/or red edges, it can
be seamlessly adapted to CURIE framework. Due
to the lack of existing datasets that directly support
our task formulation, we adapt the following three
diverse datasets - WIQA, QUAREL and DEFEASIBLE

for CURIE (dataset statistics in Table 3).

WIQA: WIQA task studies the effect of a perturba-
tion in a procedural text (Tandon et al., 2019). The
context T is a procedural text describing a physical
process, and st is a perturbation i.e., an external
situation deviating from T , and the effect of st is
either helps or hurts. See Table 1 for examples.

QUAREL: QUAREL dataset (Tafjord et al., 2019)
contains qualitative story questions where T is a
narrative, and st is a qualitative statement. T and st
are also expressed in a simpler, logical form, which
we use as it highlights the reasoning challenge. The
effect of st is entails or contradicts (see Table 1).
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Research question Training dataset Test dataset Task Metrics
Can we generate WIQA-st WIQA-st generation ROUGE, BLEU
good st graphs? (§3) QUAREL-st QUAREL-st generation ROUGE, BLEU

DEFEASIBLE-st DEFEASIBLE-st generation ROUGE, BLEU

Can we improve WIQA-st, WIQA-QA WIQA-QA finetuned QA accuracy
downstream tasks? (§4.1)

Table 2: Overview of experiments

Dataset train dev test

WIQA 119.2k 34.8k 34.8k
QUAREL 4.6k 1.3k 652
DEFEASIBLE 200k 14.9k 15.4k

Table 3: Dataset wise statistics, we maintain the splits

DEFEASIBLE: The DEFEASIBLE reasoning task
(Rudinger et al., 2020) studies inference in the pres-
ence of a counterfactual. The context T is a premise
describing an everyday context, and the situation st
is an observed evidence which either strengthens
or weakens the hypothesis. We adapt the original
abductive setup as shown in Table 1. In addition
to commonsense situations, DEFEASIBLE-st also
comprises of social situations, thereby contributing
to the diversity of our datasets.

2.3 Learning to Generate st-graphs

To reiterate our task formulation (§2.1), for a given
context and st, we first specify a set of questions
and the resulting outputs for the questions is then
compiled to form a st-graph.

The training data consists of tuples (xi,yi), with
xi = (T, st , r, c)i where T denotes the context, st
the situation, r is the edge (green or red), c indicates
the nature of the effect (imminent or eventual), and
yi is the output (a short sentence or a phrase depict-
ing the effect). The output of NQ such questions is
compiled into a graph G = {yi}1:NQ

(Fig. 1).
We use a pretrained language modelM to es-

timate the probability of generating an answer yi
for an input xi. We first transform the tuple xi =
〈x1i , x2i , . . . , xNi 〉 into a single query sequence of
tokens by concatenating its components i.e. xi =
concat(T, st , r, c), where concat is string con-
catenation. Let the sequence of tokens representing
the target event be yi = 〈y1i , y2i , . . . , yMi 〉, where
N and M are the lengths of the query and the tar-
get event sequences. We model the conditional

Algorithm 1: ITERATIVEGRAPHGEN

(IGEN): generating st graphs with CURIE

Given: CURIE language modelM.
Given: Context T , situation st, a set R =

{(ri, ci)}NQ

i=1 of NQ (r, c) tuples.
Result: st graph G: ith node is generated

with relation ri, effect type ci.
Init: G← ∅
for i← 1, 2, . . . , NQ do

/* Create a query */

xi = concat(T, st, ri, ci);
/* Sample a node from M */

yi ∼M(xi);
/* Add sampled node, edge */

G = G ∪ (ri, ci,yi);
end
return G

probability pθ(yi | xi) as a series of conditional
next token distributions parameterized by θ: as
pθ(yi | xi) =

∏M
k=1 pθ(y

k
i | xi, y1i , .., yk−1i ).

2.4 Inference to Decode st-graphs

The auto-regressive factorization of the language
model pθ allows us to efficiently generate target
event influences for a given test input xj . The
process of decoding begins by sampling the first
token y1j ∼ pθ(y | xj). The next token is then
drawn by sampling y2j ∼ pθ(y | xj , y1j ). The pro-
cess is repeated until a specified end-symbol token
is drawn at the Kth step. We use nucleus sam-
pling (Holtzman et al., 2019) in practice. The
tokens 〈y1j , y2j , . . . , yK−1j 〉 are then returned as
the generated answer. To generate the final st-
reasoning graph G, we combine all the generated
answers {yi}1:NQ

that had the same context and st
pair (T, st ) over all (r, c) combinations. We can
then use generated answer st ′ ∈ {yi}1:NQ

, as a
new input toM as (T, st ′) to recursively expand
the st-graph to arbitrary depth and structures (Al-
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gorithm 1). One such instance of using CURIE st
graphs for a downstream QA task is shown in §4.

3 RQ1: Establishing Baselines for
st-graph Generation

This section reports on the quality of the generated
st reasoning graphs and establishes strong baseline
scores for st-graph generation. We use the datasets
described in section §2.2 for our experiments.

Model (M) BLEU ROUGE
WIQA-st

LSTM Seq-to-Seq 7.51 18.71
GPT ∼(w/o T ) 7.82 19.30
GPT-2 ∼(w/o T ) 10.01 20.93
GPT 9.95 19.64
GPT-2 16.23 29.65

QUAREL-st
LSTM Seq-to-Seq 13.05 24.76
GPT ∼(w/o T ) 20.20 36.64
GPT-2 ∼(w/o T ) 26.98 41.14
GPT 25.48 42.87
GPT-2 35.20 50.57

DEFEASIBLE-st
LSTM Seq-to-Seq 7.84 17.50
GPT ∼(w/o T ) 9.91 20.63
GPT-2 ∼(w/o T ) 9.17 9.43
GPT 10.49 21.79
GPT-2 10.52 21.19

Table 4: Generation results for CURIE with baselines
for language modelM. We find that context is essen-
tial for performance (w/o T ). We provide these base-
line scores as a reference for future research.

3.1 Baseline Language Models
To reiterate, CURIE is composed of (i) task formu-
lation component and (ii) graph construction com-
ponent, that uses a language modelM to construct
the st-graph. We want to emphasize that any lan-
guage model architecture can be a candidate forM.
Since our st-task formulation is novel, we establish
strong baselines over the three datasets. Our experi-
ments include large-scale language models (LSTM
and pretrained transformer) with varying parame-
ter sizes and pre-training, and the corresponding
ablation studies. Our choices forM are:

LSTM Seq-to-Seq: We train an LSTM (Hochre-
iter and Schmidhuber, 1997) based sequence to se-
quence model (Bahdanau et al., 2015) which uses
global attention described in (Luong et al., 2015).

We initialize the embedding layer with pre-trained
300 dimensional Glove (Pennington et al., 2014)1.
We use 2 layers of LSTM encoder and decoder with
a hidden size of 500. The encoder is bidirectional.

GPT: We use the original design of GPT (Radford
et al., 2018) with 12 layers, 768-dimensional hid-
den states, and 12 attention heads.

GPT-2: We use the medium (355M) variant of GPT-
2 (Radford et al., 2019) with 24 layers, 1024 hidden
size, 16 attention heads. For both GPT and GPT-2,
we initialize the model with the pre-trained weights
and use the implementation provided by Wolf et al.
(2019).

We use Adam (Kingma and Ba, 2014) for op-
timization with a learning rate of 5e − 05. All
the dropouts (Srivastava et al., 2014) were set to
0.1. We found the best hyperparameter settings by
searching the space using the following hyperpa-
rameters.

1. embedding dropout = {0.1, 0.2, 0.3}

2. learning rate = {1e-05, 2e-05, 5e-05, 1e-06}

We compare the st-graphs generated by various
language models with the gold-standard reference
graphs. To compare the two graphs, we first flat-
ten both the reference graph and the st-graph as
text sequences and then compute the overlap be-
tween them. Due to a lack of strong automated met-
rics, we use the commonly used evaluation metrics
for generation BLEU (Papineni et al., 2002), and
ROUGE (Lin, 2004) 2. Our results shown in Table 4
indicate that the task of st generation is challeng-
ing, and suggests that incorporating st-reasoning
specific inductive biases might be beneficial. At the
same time, Table 4 shows that even strong models
like GPT-2 achieve low BLEU and ROUGE scores
(specifically on WIQA and DEFEASIBLE), leaving a
lot of room for model improvements in the future.

We also show ablation results for the model with
respect to the context T (§2.1), by fine-tuning with-
out the context. We find that context is essential
for performance for both GPT and GPT-2 (indi-
cated with w/o T in Table 4). Further, we note that
the gains achieved by adding context are higher
for GPT-2, hinting that larger models can more
effectively utilize the context3.

1https://github.com/OpenNMT/OpenNMT-py
2https://github.com/Maluuba/nlg-eval
3More qualitative examples shown in appendix B
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Error category % Example question Reference Predicted

Polarity 7% What does ‘oil fields over-used’ there is not more oil
help eventually ? oil refined is refined

Linguistic 27% What does ‘rabbits will not more more
Variability become pregnant’ hurt imminently ? rabbits babies

Related 23% What does ‘inhaling more air there will be you develop
Event from the outside’ hurt imminently ? less oxygen more blood clo-

in your blood -ts in your veins

Wrong 40% What does ‘nutrients are unavailable for more more wine
plants’ hurt eventually ? plants being produced

Erroneous 3% What does ‘rabbit are not less more
Reference mating’ hurt imminently? rabbits babies

Table 5: Canonical examples per error category. Error analysis is only shown for the incorrect outputs. For polarity
errors, we use guidelines shown in appendix A.1

3.2 Human Evaluation
N-gram metrics such as BLEU and ROUGE are
known to be limited, specifically for reasoning
tasks. Further, we observe from Table 4 that con-
text is crucial for generation quality. To better un-
derstand this effect, we perform human evaluation
on a random sample from the dev set to compare
GPT-2- w/o T and GPT-2 models. Our goal is to
assess quality of generations, and the importance
of grounding generations in context. Four human
judges annotated 100 unique samples for correct-
ness, relevance and reference, described next.

Correctness: We conducted a human evaluation
to evaluate the correctness of the generated graphs
where we aggregated nodes for a given st. The user
interface for the annotation (shown in Figure 3) dis-
played the context T and the corresponding graph
G generated by GPT-2 using Algorithm 1. The
human judges were asked to annotate the nodes,
edges, and the overall graph for correctness. A
graph was labeled as correct if either a) all the
nodes and edges were correct, or b) the graph had a
minor issue that the judges deem not detrimental to
the overall correctness. The inter-annotator agree-
ment on graph correctness was substantial with a
Fleiss’ Kappa score (Fleiss and Cohen, 1973) of
0.69. Table 6 shows that human judges rated>75%
of the graphs to be correct given the context, show-
ing that CURIE generates high-quality graphs for a
diverse set of contexts.

Relevance: The annotators are provided with the
context T , the situation st, and the relational ques-

Attribute Node Edge Graph

% Correct 79.71 77.78 75.36

Table 6: Human Analysis of Graph Correctness. About
75% of the graphs were deemed as correct.

tions. The annotators were asked, “Which system
(A or B) is more accurate relative to the background
information given in the context?” They could
also pick option C (no preference). The order of
the references was randomized. Table 7 (row 1)
shows that GPT-2 outperforms GPT-2 (w/o T ),
confirming our hypothesis that context is important
as GPT-2 generates target events that are grounded
in the passage and source events.

Task GPT-2 (w/o T ) GPT-2 No Preference

Relevance 23.05 46.11 30.83
Reference 11.67 31.94 56.39

Table 7: Results of human evaluation. The numbers
show the percentage(%) of times a particular option
was selected for each metric.

Reference: We measure how accurately each
system-generated event reflects the reference (true)
event. Here, the annotators saw only the reference
sentence and the outputs of two systems (A and B)
in a randomized order. We asked the annotators,
“Which system’s output is closest in meaning to the
reference?” The annotators could pick the options
A, B, or C (no preference). Table 7 (row 2) illus-
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Figure 3: User interface for graph correctness evaluation. The human judges were asked to rate the if the the
generated nodes, edges, and the overall graph are correct for the given context. The paragraph for this example
was: Grass and small plants grow in an area. These plants die. The soil gains organic material. The soil becomes
more fertile. Larger plants are able to be supported. Trees eventually grow.

trates that the output generated by GPT-2 is closer
in meaning to the reference compared to GPT-2
(w/o T ) reinforcing the importance of context.

Both the models (with and without context) pro-
duced similarly grammatically fluent outputs.

3.3 Error Analysis

The reference and relevance task scores together
show that GPT-2 does not generate target events
that are exactly similar to the reference target
events, but are correct in the context of the passage
and source event. To investigate this, we analyze a
random sample of 100 points from the dev set. Out
of the erroneous samples, we observe the following
error categories (shown in Table 5):

• Polarity (7%): Predicted polarity was wrong
but the event was correct.

• Linguistic Variability (27%): Output was a
linguistic variant of the reference.

• Related event (23%): Output was related but
different reference expected.

• Wrong (40%): Output was fully unrelated.

• Erroneous reference (3%): Gold annota-
tions themselves were erroneous.

3.4 Consistency Analysis

Finally, we measure if the generated st-graphs are
consistent. Consider a path of length two in the gen-
erated st-graph (say, A → B → C). A consistent
graph would have identical answers to what does
A help eventually i.e., “C”, and what does B help
imminently i.e., “C”. To analyze consistency, we

manually evaluated 50 random generated length-
two paths, selected from WIQA-st dev set. We ob-
serve that 58% samples had consistent output w.r.t
the generated output. We also measure consistency
w.r.t. the gold standard (the true outputs in the dev
set), and observe that the system output is ≈48%
consistent. Despite being trained on independent
samples, st-graphs show reasonable consistency
and improving consistency further is an interesting
future research direction.

3.5 Discussion
In summary, CURIE allows adapting pretrained lan-
guage models to generate st-graphs that humans
meaningful and relevant with a high degree of cor-
rectness. We also perform an in-depth analysis of
the errors of CURIE. We establish multiple base-
lines with diverse language models to guide future
research. We show that context is more important
than model size for st-reasoning tasks.

4 RQ2: CURIE for Downstream Tasks

In this section, we describe the approach for aug-
menting st graphs for downstream reasoning tasks.
We first identify the choice of tasks (st-tasks) for do-
main adaptive pretraining (Gururangan et al., 2020)
and obtain CURIE language modelM (based on
GPT-2). The downstream task then provides input
context, st and (relation, type) tuples of interest,
and obtains the st-graphs (see Algorithm 1) from
CURIE. We describe one such instantiation in §4.1.

4.1 CURIE augmented WIQA-QA

We examine the utility of CURIE-generated graphs
in the WIQA-QA (Tandon et al., 2019) downstream
question answering benchmark. Input to this task
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is a context supplied in form of a passage T , a
starting event c, an ending event e, and the output
is a label {helps, hurts, or no_effect} depicting how
the ending e is influenced by the event c.

We hypothesize that CURIE can augment c and e
with their influences, giving a more comprehensive
scenario than the context alone. We use CURIE

trained on WIQA-st to augment the event influences
in each sample in the QA task as additional context.
We obtain the influence graphs for c and e by defin-
ing Rfwd = {(helps, imminent), (hurts, imminent)
} and Rrev = { (helped by, imminent), (hurt by,
imminent)}, and using algorithm 1 as follows:

G(c) = IGEN(T, c,Rfwd)

G(e) = IGEN(T, e,Rrev)

We hypothesize that WIQA-st graphs are able to
generate reasoning chains that connect c to e, even
if e is not an immediate consequence of c. Fol-
lowing Tandon et al. (2019), we encode the input
sequence concat(T, c, e) using the BERT encoder
E (Devlin et al., 2019), and use the [CLS] token
representation (ĥi) as our sequence representation.

We then use the same encoder E to encode the
generated effects concat(G(c), G(e)), and use
the [CLS] token to get a representation for aug-
mented c and e (ĥa). Following the encoded inputs,
we compute the final loss as: li = MLP1(ĥi), and
la = MLP1(ĥa) and L = α×Li + β ×La, where
li, la represent the logits from ĥi and ĥa respec-
tively, and Li and La are their corresponding cross-
entropy losses. α and β are hyperparameters that
decide the contribution of the generated influence
graphs and the procedural text to the loss. We set
α = 1 and β = 0.9 across experiments.

QA Evaluation Results Table 8 shows the ac-
curacy of our method vs. the vanilla WIQA-BERT

model by question type and number of hops be-
tween c and e. We also observe from Table 8 that
augmenting the context with generated influences
from CURIE leads to considerable gains over WIQA-
BERT based model, with the largest improvement
seen in 3-hop questions (questions where the e and
c are at a distance of three reasoning hops in the
influence graphs). The strong performance on the
3-hop question supports our hypothesis that gener-
ated influences might be able to connect two event
influences that are farther apart in the reasoning
chain. We also show in Table 8 that augmenting
with CURIE improves performance on the difficult

Query WIQA-BERT + WIQA-BERT

Type CURIE

1-hop 78.78 71.60
2-hop 63.49 62.50
3-hop 68.28 59.50

Out-of-para 64.04 56.13
In-para 73.58 79.68

No effect 90.84 89.38

Overall 76.92 73.80

Table 8: QA accuracy by number of hops, and question
type. WIQA-BERT refers to the original WIQA-BERT re-
sults reported in Tandon et al. (2019), and WIQA-BERT
+ CURIE are the results obtained by augmenting the QA
dataset with the influences generated by CURIE.

Out-of-para category of questions, which requires
background knowledge.

Source of improved performance: st graphs?
Since CURIE uses GPT-2 model to generate the
graphs, we perform an additional experiment to
verify whether simply using GPT-2 classifier for
WIQA would achieve the same performance gains.
To establish this, we train a GPT-2 classifier, and
augment it with CURIE graphs to compare their
relative performances on WIQA. Table 9 shows
that augmenting CURIE graphs to both WIQA-BERT

and GPT-2 classifiers provides consistent gains,
suggesting the effectiveness of CURIE graphs.

Model Accuracy

WIQA-BERT 73.80
WIQA-BERT + CURIE 76.92∗

GPT-2 72.70
GPT-2 + CURIE 74.33∗

Table 9: WIQA-QA results for both WIQA-BERT and
GPT-2 augmented with CURIE graphs. Across both
classifiers, augmenting CURIE graphs shows perfor-
mance gains. ∗-indicates statistical significance

WIQA-BERT scores are slightly lower than the
GPT-2 scores for WIQA classification despite hav-
ing similar parameter size. We hypothesize that
this is due to the pretrained classification token
([CLS]) in WIQA-BERT, while GPT-2 uses the
pooling operation over the sequence for classifi-
cation. In summary, the evaluation highlights the
value of CURIE as a framework for improving per-
formance on downstream tasks that require coun-
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terfactual reasoning and serves as an evaluation of
the ability of CURIE to reason about st-scenarios.

4.2 Discussion
In summary, we show substantial gains when a
generated st-graph is fed as an additional input to
the QA model. Our approach forces the model to
reason about influences within a context, and then
answer the question, which proves to be better than
answering the questions directly.

5 Related Work

Language Models for Knowledge Generation:
Using large scale neural networks to generate
knowledge has been studied under various task
settings (Sap et al., 2019; Bosselut et al., 2019;
Shwartz et al., 2020; Bosselut et al., 2021;
Malaviya et al., 2019). Another line of querying
language models (LMs) aims to understand the
type of knowledge LMs contain. Davison et al.
(2019) explore whether BERT prefers true or fic-
titious statements over ConceptNet (Speer et al.,
2017). Logan et al. (2019) observe that the LM

over-generalize to produce wrong facts, while Kass-
ner and Schütze (2019) show that negated facts are
also considered valid in an LM.

Our work closely aligns with Tandon et al.
(2019), Bosselut et al. (2019), and Bosselut et al.
(2021). Compared to Bosselut et al. (2019), CURIE

gives a method that can naturally incorporate con-
text and reason about situation via hops and na-
ture of the influence. Additionally, any node can
be arbitrarily expanded via the iterative procedure,
producing complete graphs for situations. We re-
formulate the task of studying event influence from
a QA task (Tandon et al., 2019) to a generation
task. Our framework is similar in spirit to Bosselut
et al. (2019), but extend it for situational reasoning
with LMs. Bosselut et al. (2021) aim to generate
events that can aid commonsense tasks. In contrast,
our focus is context-grounded st graph generation.
To this end, our formulation includes multiple for-
ward/backward reactions, imminent and eventual
edges, and an algorithm to compile the individual
nodes to a complete graph (Algorithm 1).

Situational reasoning : There has been im-
mense interest in extracting event chains (as causal
graphs) in stories and news corpora in both unsu-
pervised (Chambers and Jurafsky, 2008) and su-
pervised (Rudinger et al., 2015; Liu et al., 2018;
Asghar, 2016; Dunietz et al., 2017; Nordon et al.,

2019; Zhao et al., 2017) settings. Such approaches
often depend on events that are explicitly men-
tioned in the input text, thereby unable to generate
events beyond the input text.

Recently, there has been interest in st reasoning
from a retrieval setting (Lin et al., 2019) and also
generation setting, attributed partially to the rise
of neural generation models (Yangfeng Ji and Ce-
likyilmaz, 2020) as knowledge bases (Petroni et al.,
2019; Roberts et al., 2020; Talmor et al., 2020;
Shwartz et al., 2020; Sap et al., 2019). Qin et al.
(2019) present generation models to generate the
path from a counterfactual to an ending in a story.
Current systems make some simplifying assump-
tions, e.g. that the ending is known. Multiple st
(e.g., more sunlight, more pollution) can happen at
the same time, and these systems can only handle
one situation at a time. All of these systems assume
that st happens once in a context. Our framework
strengthens this line of work by not assuming that
the ending is given during deductive st reasoning.

6 Conclusion

We present CURIE, a situational reasoning that:
(i) is effective at generating st-reasoning graphs,
validated by automated metrics and human eval-
uations, (ii) improves performance on two down-
stream tasks by simply augmenting their input with
the generated st graphs. Further, our framework
supports recursively querying for any node in the
st-graph. Our future work is to design models that
seek consistency, and study recursive st-reasoning
as a bridge between dialog and reasoning.
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A Appendix

A.1 Polarity Words
To compute polarity for error analysis, we use the
following words as guidelines.

Increasing words helps, more, higher, increase,
increases, stronger, faster, greater, longer, larger,
helping

Decreasing words hurts, less, lower, decrease,
decreases, weaker, slower, smaller, hurting, softer,
fewer

B Examples from CURIE

In table 12, we show some qualitative QA examples
from CURIE. Here, Topic Matches signifies whether
the generated answers is relevant to the context.

60



Path
Length Question Answer Predicted Answer Topic

Matches

2
hurts more magma
is released

LESS igneous rock forming
LESS or SMALLER
eruptions.

Yes

2
hurts more water
in solid or
liquid phase

MORE evaporation? LESS vapor being made. Yes

2
hurts less flowers
for bees to visit

MORE flowers being
pollinated?

a LARGER cake?. No

1
helps changes in the
atmosphere

if the moon orbits slower
MORE/LARGER
solar power
being generated?.

No

2 helps less time goes by there are fewer fissures
LESS or SMALLER
eruptions.

Yes

3
hurts there is less
water in the lakes

a MORE INTENSE
water cycle?

MORE salt being
removed
from the water.

No

2
helps tectonic plates
rub less

SMALLER mountains
LESS or SMALLER
eruptions.

Yes

1 hurts Better crop watering LESS crops LESS vegetables. Yes

3
hurts weather is
accommodating for frogs

LESS frogs LESS or SMALLER Frogs. Yes

1
helps there will be
more eggs

MORE fish? MORE birds. No

3
helps Urine levels
increase

LESS waste being removed
from the body

MORE waste
being removed
from the body.

Yes

3
helps Having normal body
functions

HURTING the DNA to
replicate properly

MORE cells being
damaged.

Yes

2
helps not having a water
source nearby

vines will grow faster
LESS or SMALLER
grapes.

Yes

1
hurts bees may
become extinct

more bees are collecting
pollen

LESS butterflies. Yes

3
hurts more bees fly
around

LESS flowers being
pollinated

a SMALLER flowers. Yes

2
hurts the earths core
gets warmer

less volcanic mountains
are formed

LESS or SMALLER
valleys
being formed.

Yes

3
hurts more land
available

LESS igneous rock
forming

less magma cools. Yes

3
hurts there is less water
on the ground

a MORE INTENSE
water cycle

MORE salt being
removed
from the water.

No

Table 10: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. (section 3). Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects.

61



Path
Length Question Answer Predicted Answer Topic

Matches

3
hurts more conservation
achieved

LESS flowers being
pollinated

less nectar available. Yes

2
hurts the eggs become
food for
other fish

MORE fish Less larvae eat and grow. Yes

2
helps more magma inside
volcano

more magma changes
in pressure

MORE/GREATER
eruptions?.

Yes

2
helps less commercial
fishing

more fry emerge LESS damage by acid rain.

2
hurts more stormy
weather occurs

less plant growth occurs MORE vegetables. Yes

2
helps more pumpkin
seeds planted

MORE or LARGER
pumpkins

more water used for
more flowers.

No

2
hurts more Global
warming causes
extreme temperatures

Rains are plentiful and
more regular

MORE vegetables?. Yes

2
helps warmer weather
evaporates
more water

a MORE INTENSE
water cycle

MORE/STRONGER
storms?.

Yes

2
helps dry hot environment
evaporates water

LESS frogs MORE or LARGER frogs. Yes

3
helps stronger
heat source

MORE evaporation
more heat causes
the molecules
to increase in energy.

Yes

2
helps living in a
rain forest

more water collects in
the bodies of water

MORE salt being removed
from the water.

No

2
hurts there is no tadpole
from the egg

MORE frogs
MORE ELABORATE
swimming.

No

1
helps more pulling and
stretching
of tetonic plates

more cracks in earths
crust

MORE or STRONGER
earthquakes.

Yes

2
hurts less animals that
hunt frogs

less tadpoles loses their
tails

more fish grow bigger. No

2
hurts both kidneys are
present and
functioning

less waste is removed
from the blood

less waste is removed
in the blood.

Yes

Table 11: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. (section 3). Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects.
(section 3).
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Path
Length Question Answer Predicted Answer Topic

Matches

2
helps the bees have a very
hairy leg gene

the bees would carry
more pollen
away from the flower

a LARGER nectar star. Yes

2
hurts If more eggs
are layed

MORE frogs
the mouth will grow
smaller.

No

1 hurts bees are imported
fewer bees land on
flowers

a SMALLER hive. No

1
hurts more adolescent fish
grow to adulthood

fewer fish can lay
more eggs

LESS damage by
acid rain.

No

2 helps the heat rises
greater precipitations
will happen

MORE/STRONGER
.

Yes

2
helps All the eggs
were eaten

There were few eggs
laid

less eggs are laid.. Yes

1
hurts plates move away
from each other

edges of plates crumple
more

MORE or GREATER
eruptions.

Yes

1
hurts more proteins
available

less help occurs
less endowment of
nucleotides.

Yes

Table 12: Sample Generations. Topic matches captures whether the topic of the generated event matches with the
context. Path length = 1 refers to the immediate effects, and Path length > 1 refers to eventual effects. (section 3).
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