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Abstract

The success of scene graphs for visual scene
understanding has brought attention to the ben-
efits of abstracting a visual input (e.g., image)
into a structured representation, where enti-
ties (people and objects) are nodes connected
by edges specifying their relations. Building
these representations, however, requires ex-
pensive manual annotation in the form of im-
ages paired with their scene graphs or frames.
These formalisms remain limited in the na-
ture of entities and relations they can cap-
ture. In this paper, we propose to leverage
a widely-used meaning representation in the
field of natural language processing, the Ab-
stract Meaning Representation (AMR), to ad-
dress these shortcomings. Compared to scene
graphs, which largely emphasize spatial rela-
tionships , our visual AMR graphs are more
linguistically informed, with a focus on higher-
level semantic concepts extrapolated from vi-
sual input. Moreover, they allow us to gen-
erate meta-AMR graphs to unify information
contained in multiple image descriptions under
one representation. Through extensive experi-
mentation and analysis, we demonstrate that
we can re-purpose an existing text-to-AMR
parser to parse images into AMRs. Our find-
ings point to important future research direc-
tions for improved scene understanding.

1 Introduction

The ability to understand and describe a scene
is fundamental for the development of truly in-
telligent systems, including autonomous vehicles,
robots navigating an environment, or even sim-
pler applications such as language-based image
retrieval. Much work in computer vision has fo-
cused on two key aspects of scene understanding,
namely, recognizing entities, including object de-
tection (Liu et al., 2016; Ren et al., 2015; Carion
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et al., 2020; Liu et al., 2020a) and activity recog-
nition (Herath et al., 2017; Kong and Fu, 2022; Li
et al., 2018; Gao et al., 2018), as well as under-
standing how entities are related to each other, e.g.,
human-object interaction (Hou et al., 2020; Zou
et al., 2021) and relation detection (Lu et al., 2016;
Zhang et al., 2017; Zellers et al., 2018).

A natural way of representing scene entities and
their relations is in graph form, so it is perhaps un-
surprising that a lot of work has focused on graph-
based scene representations and especially on scene
graphs (Johnson et al., 2015a). Scene graphs en-
code the salient regions in an image (mainly, ob-
jects) as nodes, and the relations among these
(mostly spatial in nature) as edges, both labelled via
natural language tags; see Fig. 1(b) for an example
scene graph. Along the same lines, Yatskar et al.
(2016) propose to represent a scene as a semantic
role labelled frame, drawn from FrameNet (Rup-
penhofer et al., 2016) — a linguistically-motivated
approach that draws on semantic role labelling lit-
erature.

Scene graphs and situation frames can capture
important aspects of an image, yet they are limited
in important ways. They both require expensive
manual annotation in the form of images paired
with their corresponding scene graphs or frames.
Scene graphs in particular also suffer from being
limited in the nature of entities and relations that
they capture (see Section 2 for a detailed analysis).
Ideally, we would like to capture event-level se-
mantics (same as in situation recognition) but as a
structured graph that captures a diverse set of rela-
tions and goes beyond low-level visual semantics.

Inspired by the linguistically-motivated image
understanding research, we propose to represent
images using a well-known graph formalism for
language understanding, i.e., Abstract Meaning
Representations (AMRs Banarescu et al., 2013).
Similarly to (visual) semantic role labeling, AMRs
also represent “who did what to whom, where,
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Figure 1: An image from MSCOCO and Visual Genome dataset, along with its five human-generated captions,
and: (a) an image-level meta-AMR graph capturing its overall semantics, (b) its human-generated scene graph.

when, and how?” (Marquez et al., 2008), but in
a more structured way via transforming an image
into a graph representation. AMRs not only en-
code the main events, their participants and argu-
ments, as well as their relations (as in semantic
role labelling/situation recognition), but also re-
lations among various other participants and ar-
guments; see Fig. 1(a). Importantly, AMR is a
broadly-adopted and dynamically evolving formal-
ism (e.g., Bonial et al., 2020; Bonn et al., 2020;
Naseem et al., 2021), and AMR parsing is an ac-
tive and successful area of research (e.g., Zhang
et al., 2019b; Bevilacqua et al., 2021; Xia et al.,
2021; Drozdov et al., 2022). Finally, given the high
quality of existing AMR parsers (for language), we
do not need manual AMR annotations for images,
and can rely on existing image—caption datasets to
create high quality silver data for image-to-AMR
parsing. In summary, we make the following con-
tributions:

e We introduce the novel problem of parsing im-
ages into Abstract Meaning Representations, a
widely-adopted linguistically-motivated graph
formalism; and propose the first image-to-AMR
parser model for the task.

e We present a detailed analysis and comparison
between scene graphs and AMRs with respect to
the nature of entities and relations they capture,
results of which further motivates research in the
use of AMRs for better image understanding.

e Inspired by work on multi-sentence AMR, we
propose a graph-to-graph transformation algo-
rithm that combines the meanings of several im-
age caption descriptions into image-level meta-
AMR graphs. The motivation behind generating
the meta-AMRSs is to build a graph that covers

most of entities, predicates, and semantic rela-
tions contained in the individual caption AMRs.

Our analyses suggest that AMRs encode aspects
of an image content that are not captured by the
commonly-used scene graphs. Our initial results
on re-purposing a text-to-AMR parser for image-to-
AMR parsing, as well as on creating image-level
meta-AMRs, point to exciting future research di-
rections for improved scene understanding.

2 Motivation: AMRs vs. Scene Graphs

Scene graphs (SGs) are a widely-adopted graph
formalism for representing the semantic content of
an image. Scene graphs have been shown useful for
various downstream tasks, such as image caption-
ing (Yang et al., 2019; Li and Jiang, 2019; Zhong
et al., 2020), visual question answering (Zhang
et al., 2019a; Hildebrandt et al., 2020; Damodaran
et al., 2021), and image retrieval (Johnson et al.,
2015b; Schuster et al., 2015; Wang et al., 2020;
Schroeder and Tripathi, 2020). However, learning
to automatically generate SGs requires expensive
manual annotations (object bounding boxes and
their relations). SGs were also shown to be highly
biased in the entity and relation types that they
capture. For example, an analysis by Zellers et al.
(2018) reveals that clothing (e.g., dress) and ob-
ject/body parts (e.g., eyes, wheel) make up over
one-third of entity instances in the SGs correspond-
ing to the Visual Genome images (Krishna et al.,
2016), and that more than 90% of all relation in-
stances belong to the two categories of geometric
(e.g., behind) and possessive (e.g., have).

One advantage of AMR graphs is that we can
draw on supervision through captions associated
with images. Nonetheless, the question remains as
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to what types of entities and relations are encoded
by AMR graphs, and how these differ from SGs. To
answer this question, we follow an approach similar
to Zellers et al. (2018), and categorize entities and
relations in SG and AMR graphs corresponding to a
sample of 50K images. We use the same categories
as Zellers et al., but add a few new ones to capture
relation types specific to AMRs, namely, Attribute
(small), Quantifier (few), Event (soccer), and AMR
specific (date-entity). Details of our categorization
process are provided in Appendix A.

Figure 2 shows the distribution of instances for
each Entity and Relation category, compared across
SG and AMR graphs. AMRs tend to encode a
more diverse set of relations, and in particular cap-
ture more of the abstract semantic relations that
are missing from SGs. This is expected because
our caption-generated AMRs by design capture
the essential meaning of the image descriptions
and, as such, encode how people perceive and de-
scribe scenes. In contrast, SGs are designed to
capture the content of an image, including regions
representing objects and (mainly spatial/geometric)
visually-observable relations; see Fig. 1 for SG and
AMR graphs corresponding to an image. In the con-
text of Entities, and a major departure from SGes,
(object/body) parts are less frequently encoded in
AMRs, pointing to the well-known whole-object
bias in how people perceive and describe scenes
(Markman, 1990; Fei-Fei et al., 2007). In contrast,
location is more frequent in AMRs.

The focus of AMRS on abstract content suggests
that they have the potential for improving down-
stream tasks, especially when the task requires an
understanding of the higher level semantics of an
image. Interestingly, a recent study showed that
using AMRs as an intermediate representation for
textual SG parsing helps improve the quality of the
parsed SGs (Choi et al., 2022), even though AMRs
and SGs encode qualitatively different information.
Since AMRs tend to capture higher level semantics,
we propose to use them as the final image represen-
tation. The question remains as to how difficult it is
to directly learn such representations from images.
The rest of the paper focuses on answering this
question.

3 Method

3.1 Parsing Images into AMR Graphs

We develop image-to-AMR parsers based on
a state-of-the-art seq2seq text-to-AMR parser,
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Figure 2: Statistics on a selected set of top-frequency
Entity and Relation categories, extracted from the
AMR and SG graphs corresponding to around 50K im-
ages that appear in both Visual Genome and MSCOCO.

SPRING (Bevilacqua et al., 2021), and a mul-
timodal VL-BART (Cho et al., 2021). Both
are transformer-based architectures with a bi-
directional encoder and an auto-regressive de-
coder. SPRING extends a pre-trained seq2seq
model, BART (Lewis et al., 2020), by fine-tuning it
on AMR parsing and generation. Next, we describe
our models, input representation, and training.

Models. We build two variants of our image-to-
AMR parser, as depicted in Fig. 3(a) and (b).

e Our first model, which we refer to as
IMG2 AMRgjpect, modifies SPRING by replac-
ing BART with its vision-and-language coun-
terpart, VL-BART (Cho et al., 2021). VL-
BART extends BART with visual understand-
ing ability through fine-tuning on multiple
vision-and-language tasks. With this modi-
fication, our model can receive visual features
(plus text) as input, and generate linearized
AMR graphs.
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Figure 3: Model architecture for our two image-to-AMR models: (a) IMG2AMRg;rect: A direct model that uses
a single seq2seq encoder—decoder to generate linearlized AMRs from input images; and (b) IMG2AMRstage: A
two-stage model containing two independent seq2seq components. g and r stand for global and region features, g
for tag embeddings, and n for the embeddings of the predicted nodes. The input and output space of the decoders

come from the AMR vocabulary.

e Our second model, inspired by text-to-graph
AMR parsers (e.g., Zhang et al., 2019b; Xia
et al., 2021), generates linearized AMRs in
two stages by first predicting the nodes, and
then the relations. Specifically, we first pre-
dict the nodes of the linearized AMR for a
given image. These predicted nodes are then
fed (along with the image) as input into a sec-
ond seq2seq model that generates a linearized
AMR (effectively adding the relations). We
refer to this model as IMG2AMRogtage.

Input Representation. To represent images, we
follow VL-BART, which takes the output of Faster
R-CNN (Ren et al., 2015) (i.e., region features
and coordinates for 36 regions) and projects them
onto d = 768 dimensional vectors via two separate
fully-connected layers. Faster R-CNN region fea-
tures are obtained via training for visual object and
attribute classification (Anderson et al., 2018) on
Visual Genome. The visual input to our model is
composed of position-aware embeddings for the 36
regions, plus a global image-level feature (r and g
in Fig. 3). To get the position-aware embeddings
for the regions, we add together the projected re-
gion and coordinate embeddings. To get the global
image feature, we use the output of the final hid-
den layer in ResNet-101 (He et al., 2016), which is
passed through the same fully connected layer as
the regions to obtain a 768-dimensional vector.

Training. To benefit from transfer learning, we
initialize the encoder and decoder weights of both
our models from the pre-trained VL-BART. This
is a reasonable initialization strategy, given that
VL-BART has been pre-trained on input similar to
ours. Moreover, a large number of AMR labels are
drawn from the English vocabulary, and thus the

pre-training of VL-BART should also be appropri-
ate for AMR generation. We fine-tune our models
on the task of image-to-AMR generation, using
images paired with their automatically-generated
AMR graphs. We consider two alternative AMR
representations: (a) caption AMRs, created directly
from captions associated with images (see Sec-
tion 4 for details); and (b) image-level meta-AMRs,
constructed through an algorithm we describe be-
low in Section 3.2. We perform experiments with
either caption or meta-AMRs, where we train and
test on the same type of AMRs. For the various
stages of training, we use the cross-entropy loss be-
tween the model predictions and the ground-truth
labels for each token, where the model predictions
are obtained greedily, i.e., choosing the token with
the maximum score at each step of the sequence
generation.

3.2 Learning per-Image meta-AMR Graphs

Recall that, in order to collect a data set of im-
ages paired with their AMR graphs, we rely on
image—caption datasets such as MSCOCO. Specifi-
cally, we use a pre-trained AMR parser to generate
AMR graphs from each caption of an image. Im-
ages can be described in many different ways, e.g.,
each image in MSCOCO comes with five different
human-generated captions. We hypothesize that
these captions collectively represent the content of
the image they are describing, and as such propose
to also combine the caption AMRs into image-level
meta-AMR graphs through a merge and refine pro-
cess that we explain next.

Prior work has used graph-to-graph transfor-
mations for merging sentence-level AMRs into
document-level AMRs for abstractive and multi-
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Algorithm 1 META-AMR Graph Construction

1: Input: k human-generated image descriptions {c¢; }¥_, for
a given image i; a set of pre-defined AMR relation types
R;

2: Output: A meta-AMR graph gmeta;

3: Initialize: Generate AMR graphs {g;} for the k descrip-
tions using a pre-trained AMR semantic parser; Initialize
gm = (N, E) to be the null graph.

4. N = Ui‘v:l./\/-i

S:fori =1~ kdo

6: & = getEdges(g;)

7. for (ns,n¢) :r €& do 1> (ns, ng) is a pair of nodes

connected via an edge labeled as r
8: if (ns,ne) ¢ € keys()
— A (ng,ns) ¢ E.keys()
— Ar € R then
9: E.add({(ns,n¢) : v}) > Add anew edge when
neither (ns,n¢) nor (ng,ns) previously included, and r
belongs to a pre-selected set of AMR relation types R

10: G,, = weaklyConnectedComponents(g,,) > Get all
connected components as gmeta candidates since it should
be a connected graph according to the definition of AMR

11: gmeta = getLargestComponent(G,,) > Get the
candidate with the largest number of nodes as it can cover
most entities and predicates in the image

12: gmeta = refineNodes(gmeta) > Replace node types by
their frequent hypernym if available

13: return gmetq

document summarization (e.g., Liu et al., 2015;
Liao et al., 2018; Naseem et al., 2021). Unlike in
a summarization task, captions do not form a co-
herent document, but instead collectively describe
an image. Inspired by prior work, we propose
our graph-to-graph transformation algorithm that
learns a unified meta-AMR graph from caption
graphs; see Algorithm 1. Specifically, we first
merge the nodes and edges from the original set
of k caption-level AMRs, only including a pre-
defined set of relation/edge labels. We then select
the largest connected component of this merged
graph, which we further refine by replacing non-
predicate nodes by their more frequent hypernyms,
when available. The motivation behind this refine-
ment process is to reduce the complexity of the
meta-AMR graphs (in terms of their size), which
would potentially improve parsing performance.
An example of a meta-AMR graph generated from
caption AMRs is given in Appendix C.

AMR graphs of the MSCOCO training captions
contain more than 90 types of semantic relations
and more than 21K node types, with long-tailed dis-
tributions; see Fig. 6 in Appendix B. To refine meta-
AMR graphs, we only maintain the top-20 most fre-
quent relation types that include core roles, such as
ARGO, ARG, etc., as well as high-frequency non-
core roles, such as mod and location. To further

refine the graphs, we replace each non-predicate
node (e.g., salmon) with its most frequent hyper-
nym (e.g., fish) according to WordNet (Fellbaum,
1998). This results in just about 30% reduction in
the number of node types (to 15K). The average
complexity of graphs is also reduced from 19 nodes
and 23 relations to 16 and 18, respectively.

4 Experimental Setup

Data. For our task of AMR generation from im-
ages, we use an augmented version of the stan-
dard MSCOCO image—caption dataset, which is
composed of images paired with their captions,
automatically generated caption-level linearized
AMR graphs, and an image-level linearized meta-
AMR graph. We use the splits established in pre-
vious work (Karpathy and Fei-Fei, 2015), contain-
ing 113, 287 training, 5000 VALidation, and 5000
TEST images, where each image is associated with
five manually-annotated captions. Following the
cross-modal retrieval work involving MSCOCO
(e.g., Lee et al., 2018), we use a subset of the
VAL and TEST sets, containing 1000 images each.
AMR graphs of the captions are obtained by run-
ning the SPRING text-to-AMR parser (Bevilacqua
et al., 2021) that is trained on AMR2.0 dataset.!
The meta-AMR graph is created from the individ-
ual AMRs through our merge and refine process
described in Algorithm 1 of Section 3.

Parser implementation details. We initialize
our IMG2AMR models from VL-BART, which is
based on BARTg,.. BART uses a sub-word tok-
enizer with a vocabulary size of 50, 265. Following
SPRING, we expand the vocabulary to include fre-
quent AMR-specific tokens and symbols (e.g., :OP,
ARG, temporal-entity), resulting in a vocabulary
size of 53, 587. The addition of AMR-specific sym-
bols in vocabulary improves efficiency by avoiding
extensive sub-token splitting. The embeddings of
these additional tokens are initialized by taking the
average of the embeddings of their sub-word con-
stituents. The IMG2 AMR girect models are trained
for 60 epochs, while the IMG2 AMR2stage models
are trained for 30 epochs per stage. We use a batch
size of 10 with gradients being accumulated for
10 batches (hence an effective batch size of 100),
the batch size was limited due to the length of
the linearized meta-AMRs. The optimizer used is
RAdam (Liu et al., 2020b), with a learning rate

1https ://catalog.ldc.upenn.edu/LDC2017T10
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Model Train/Test AMRs ‘ SMATCH SEMBLEU-1 SEMBLEU-2
IMG2 AMR gjrect meta-AMRSs ‘ 377+ 02  32.64+0.8 152 +£0.5
IMG2AMR2tage meta-AMRs ‘ 38603 309404 15.6 £ 0.3
IMG2 AMR gjrect caption AMRs ‘ 5234+04 68.6+£04 38.4 4+ 0.8

Table 1: TEST results, averaged over 3 runs, for our IMG2AMR models that follow the best setting, when trained

and tested on either meta-AMRs or caption AMRs.

of 107°, and a dropout rate of 0.25. Each experi-
ment is run on one Nvidia V100-32G GPU. Model
selection is done based on the best SEMBLEU-1.

5 Results

5.1 Image-to-AMR Parsing Performance

We use the standard measures of SMATCH (Cai and
Knight, 2013) and SEMBLEU (Song and Gildea,
2019) to evaluate our various image-to-AMR mod-
els. SMATCH compares two AMR graphs by cal-
culating the F1-score between the nodes and edges
of these two graphs. This score is calculated after
applying a one-to-one mapping of the two AMRs
based on their nodes. This mapping is chosen so
that it maximizes the F1-score between the two
graphs. However, since finding the best exact map-
ping is NP-complete, a greedy hill-climbing algo-
rithm with multiple random initializations is used
to obtain this best mapping. SEMBLEU extends
the BLEU (Papineni et al., 2002) metric to AMR
graphs, where each AMR node is considered a uni-
gram (used in SEMBLEU-1), and each pair of con-
nected nodes along with their connecting edge is
considered a bigram (used in SEMBLEU-2). These
metrics are calculated between the model predic-
tions and the noisy AMR ground-truth.

We report results on generating caption AMRs
(when the models are trained and tested on these
AMRs), as well as meta-AMRs. When evaluating
on caption AMR generation, we compare the model
output to the five reference AMRs, and report the
maximum of these five scores. The intuition is to
compare the predicted AMR to the most similar
AMR from the five references. Table 1 (top two
rows) shows the performance of the models on the
task of generating meta-AMRs from TEST images.
We perform ablations of the model input combina-
tions on VAL set (see Section D below), and report
TEST results for the best setting, which uses all the
input features for both models. The 2stage model
does slightly better on this task, when looking at

the SMATCH and SEMBLEU-2 metrics that take the
structure of AMRs into account. Note that SEM-
BLUE-1 only compares the nodes of the predicted
and ground-truth graphs.

Meta-AMR graphs tend to, on average, be longer
than individual caption AMRs (~34 vs ~12 nodes
and relations). We thus expect the generation
of meta-AMRs to be harder than that of caption
AMRs. Moreover, although we hypothesize that
meta-AMRs capture a holistic meaning for an im-
age, the caption AMRs still capture some (possibly
salient) aspect of an image content, and as such are
useful to predict, especially if they can be generated
with higher accuracy. We thus report the perfor-
mance of our direct model on generating caption
AMRs (when trained on caption AMR graphs); see
the final row of Table 1. We can see that, as ex-
pected, performance is much higher on generating
caption AMRs vs. meta-AMRs.

Given that AMRs and natural language are by de-
sign closer in the semantic space, unlike for AMRs
and images, it is not unexpected that the results
for our image-to-AMR task are not comparable
with those of SoTA text-to-AMR parsers, includ-
ing SPRING. Our results highlight the challenges
similar to those of general image-to-graph parsing
techniques, including visual scene graph genera-
tion (Zhu et al., 2022), where there still exists a
large gap in predictive model performance.

5.2 Image-to-AMR for Caption Generation

To better understand the quality of our generated
AMRs, we use them to automatically generate
sentences from caption AMRSs (using an existing
AMR-to-text model), and evaluate the quality of
these generated sentences against the reference
captions of their corresponding images. Specif-
ically, we use the SPRING AMR-to-text model
that we train from scratch on a dataset composed
of AMR2.0, plus the training MSCOCO captions
paired with their (automatically-generated) AMRs.
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Model \ BLEU-4 CIDEr METEOR SPICE
IMG2 AMRgirect + AMR2TXT 31.7 111.7 26.8 20.4
VL-BART* 35.1 116.6 28.7 21.5

Table 2: Image captioning results on TEST set, compared with the best reported captioning results for VL-BART.

We evaluate the quality of our AMR-generated cap-
tions using standard metrics commonly used in the
image captioning community, i.e., CIDEr (Vedan-
tam et al., 2015), METEOR (Denkowski and
Lavie, 2014), BLEU-4 (Papineni et al., 2002), and
SPICE (Anderson et al., 2016), and compare against
VL-BART’s best captioning performance as re-
ported in the original paper (Cho et al., 2021). Re-
ported in Table 2, the results clearly show that the
quality of the generated AMRs are such that rea-
sonably good captions can be generated from them,
suggesting that AMRs can be used as intermediate
representations for such downstream tasks. Future
work will need to explore the possibility of further
adapting the AMR formalism to the visual domain,
as well as the possibility of enriching image AMRs
via incorporating additional linguistic or common-
sense knowledge, that could potentially result in
better quality captions.

5.3 Performance per Concept Category

The analysis presented in Section 2 suggests many
concepts in AMR graphs tend to be on the more
abstract (less perceptual) side. We thus ask the fol-
lowing question: What are some of the categories
that are harder to predict? To answer this question,
we look into the node prediction performance of
our two-stage model for the different entity and
relation categories of Section 2. Note that this cat-
egorization is available for a subset of nodes only.
To get the per-category recall and precision val-
ues, we take the node predictions of the first stage
of the IMG2AMRgtag. model (trained to predict
meta-AMR nodes) on the VAL set. For each VAL
image 7, we have a set of predicted nodes, which
we compare to the set of nodes in the ground-truth
meta-AMR associated with the image. When calcu-
lating per-category recall/precision values, we only
consider nodes that belong to that category. We cal-
culate per-image true positive, true negative, and
false positive counts, which are used to obtain the
recall and precision using micro-averaging. Fig. 4
presents the per-category (as well as overall) recall
and precision values over the VAL set.
Interestingly, events (e.g., festival, baseball, ten-

nis) have the highest precision and recall. These
are abstract concepts that are largely absent from
SGs, suggesting that relying on a linguistically-
motivated formalism is beneficial in capturing such
abstract aspects of an image content. The event
category contains 14 different types, many refer-
ring to sports that have a very distinctive setup, e.g.,
people wearing specific clothes, holding specific
objects, etc. The possibility of encoding such ab-
stract concepts in the training AMRs (generated
from human-written descriptions likely to mention
the event) helps the model learn to generate them
for the relevant images during inference. The next
group with high precision and recall are entities
(which are likely to be more closely tied to the im-
age regions), and possessives (containing a small
number of high-frequency relations, e.g., have and
wear). Semantic relations have a decent perfor-
mance, but contain a diverse number of types, and
need to be further analyzed to disentangle the effect
of category vs. frequency.

Quantifiers (many of which are related to count-
ing), geometric relations, and attributes seem to
be particularly hard to predict. Counting is known
to be hard for deep learning models. Geometric
relations are much less frequent in AMRs, com-
pared to SGs. Perhaps, we do need to rely on
special features (e.g., relative position of bounding
boxes) to improve performance on these relations.
Attributes (such as young, old, small) require the
model to learn subtle visual cues. In addition to un-
derstanding what input features may help improve
performance on these categories, we need to further
adapt the AMR formalism to the visual domain.

5.4 Qualitative Samples: Generating
Descriptive Captions from meta-AMRs

In Section 5.2, we showed that caption AMRSs pro-
duced by our IMG2AMR model can be used to
generate reasonably good quality captions via an
AMR-to-text model. Here, we provide samples of
how meta-AMRs can be used as rich intermediate
representations for generating descriptive captions;
see Fig. 5 and Section E. To get these captions, we
apply the same AMR-to-text model that we trained
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Figure 4: Node prediction performance on VAL, for the
two-stage model, broken down by category.

as described in Section 5.2 to the meta-AMRs pre-
dicted by our IMG2 AMRgjrect model. Captions
generated from meta-AMRS tend to be longer than
the original human-generated captions, and contain
much more details about the scene. These captions,
however, sometimes contain repetitions of the same
underlying concept/relation (though using different
wordings), e.g., caption (a) contains both in grass
and in a grassy area. We also see that our hyper-
nym replacement sometimes results in using a more
general term in place of a more specific but more
appropriate term, e.g., woman instead of girl in (d).
Nonetheless, these results generally point to the
usefulness of AMRs and especially meta-AMRs
for scene representation and caption generation.

6 Discussion and Outlook

In this paper, we proposed to use a well-known
linguistic semantic formalism, i.e., Abstract Mean-
ing Representation (AMR) for scene understand-
ing. We showed through extensive analysis the
advantages of AMR vs. the commonly-used visual
scene graphs, and proposed to re-purpose existing
text-to-AMR parsers for image-to-AMR parsing.
Additionally we proposed a graph transformation
algorithm that merges several caption-level AMR
graphs into a more descriptive meta-AMR graph.
Our quantitative (intrinsic and extrinsic) and qual-
itative evaluations demonstrate the usefulness of

(meta-)AMRs as a scene representation formalism.

Our findings point to a few exciting future re-
search directions. Our image-to-AMR parsers can
be improved by incorporating richer visual features,
a better understanding of the entity and relation cat-
egories that are particularly hard to predict for our
current models, as well as drawing on methods
used for scene graph generation (e.g., Zellers et al.,
2018; Zhu et al., 2022). Our meta-AMR generation
algorithm can be further tuned to capture visually-
salient information (e.g., quantifiers are too hard
to learn from images, and perhaps can be dropped
from a visual AMR formalism).

Our qualitative samples of captions generated
from meta-AMRs show their potential for gener-
ating descriptive and/or controlled captions. Con-
trollable image captioning has received a great deal
of attention lately (e.g., Cornia et al., 2019; Chen
et al., 2020, 2021). It focuses on the use of sub-
jective control, including personalization and style-
focused caption generation, as well as objective
control on content (controlling what the caption is
about, e.g., focused on a set of regions), or on the
structure of the output sentence (e.g., controlling
sentence length). We believe that by using AMRs
as intermediate scene representations, we can bring
together the work on these various types of control,
as well as draw on the literature on controllable
natural language generation (Zhang et al., 2022)
for advancing research on rich caption generation.
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A AMR vs. SG: Entity and Relation
Categorization Details

The analysis provided in Section 2 requires us
to annotate the entities and relations of a sample
of AMRs and SGs into a pre-defined set of cate-
gories. We first select all images that appear in both
MSCOCO (Lin et al., 2014) and Visual Genome,
so we have access to ground-truth scene graphs,
as well as captions from which we can generate
AMR graphs for the same set of images. We use a
single AMR per image, generated from the longest
caption, but include all SGs associated with an
image in our analysis. For each SG and AMR
graph, we consider the entities and relations cor-
responding to ~900 most frequent types (around
1.3M entity and 1M relation instances for SGs; and
around 130K entity and 150K relation instances for
AMRs). We annotate these into a pre-defined set
of entity and relation categories, including those
defined by (Zellers et al., 2018) plus a few we add
to cover new AMR relations. Table 5 provides a
breakdown of the categories, as well as examples
of word types we considered to belong to each
category. The table also provides the total num-
ber of word types per category and percentages of
instances across all types for each category.

Next, we describe our annotation process. SG
nodes (entities) come with their most common
WordNet sense annotations, which we use to iden-
tify their categories. For SG relations, we manually
annotate their categories. To annotate AMR enti-
ties and relations, we follow a similar procedure,
by automatically finding the most common Word-
Net sense for non-predicate AMR nodes (assuming
most of these will be entities) and correcting them if
needed. For example, the automatically-identified
most common sense of mouse is the Animal sense,
whereas in our captions, almost all instances of
the word point to the computer mouse (Artifact).
For any remaining concepts, including predicate
nodes (e.g., eat, stand) and entities for which a cat-
egory cannot be assigned automatically, we manu-
ally identify their categories.

B Distribution of AMR Node Types

Fig. 6 shows the distribution of the 90 AMR
role/edge types in our training data. As we can
see, keeping the top-20 types is justified given the
skewed distribution of the types. Future work will
need to examine the nature of the less frequent rela-
tions, and the implications of removing them from

AMR graphs.
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Figure 6: Frequency of the 90 AMR role/edge types
prior to the refinement process, which exhibits the char-
acteristics of a long-tail distribution.

C Meta-AMR Construction Example

Fig. 7 shows an example of how a meta-AMR is
constructed from five caption-level AMRs. The
corresponding captions are provided in red, and the
AMR graphs are given in PENMAN notation.

D Ablations

Effect of input on node prediction performance.
Table 3 presents performance of meta-AMR node
prediction (first stage of IMG2 AMR2gtage) With dif-
ferent input combinations, in terms of Precision
and Recall (when predicted and ground-truth nodes
are taken as sets), and BLEU-1 (when the order
of nodes in the final linearized AMR is taken into
consideration). These results suggest that an over-
all best performance is achieved by using all input
features, namely regions, tags and global image
feature.

{r} {q} {g} | Recall Precision BLEU-1
v - - 34.5 47.1 33.1

- v - 30.4 42.8 29.7

- - v 30.6 39.9 29.1
voov - | 358 490 343
v - v 35.1 47.5 339

- v v 329 46.5 32.1
VooV v | 367 484 356

Table 3: VAL performance of meta-AMR node predic-
tion (first stage of IMG2AMRggtage) With different in-
put combinations.

Effect of input on parsing performance. We
train our IMG2 AMR models with different inputs to
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the encoders, and evaluate on VAL set. Specifically,
the input to the model may contain the global image
feature g, region embeddings r, tag embeddings
q (for the first encoder), and node embeddings n
(for the second encoder of IMG2AMRogtage). Ta-
ble 4 reports the VAL results of our two models
(trained and tested with meta-AMRSs) with differ-
ent input combinations (region embeddings, tag
embeddings, global image features) for the direct
model, and (node embeddings, global image fea-
tures, region embeddings) for the second encoder
of the 2stage model. For IMG2 AMRs¢age, We fix
the input of the first encoder to the best combina-
tion according to Table 3 above, and ablate over
the input of the second encoder. Both models are
trained and tested with meta-AMRS. As we can see,
richer input generally results in better performance.
We can also see a big drop in the performance of
IMG2 AMRgjrect When only region features are used
as input, suggesting that tags can help associate
mappings between regions and AMR concepts.

Model Input | SMATCH SEMBLEU-1  SEMBLEU-2

IMG2 AMRgirect

{r} 30.3 18.6 5.4

{r,q} 39.1 329 16.2

{r,q,8} 39.0 33.7 16.4
IMG2AMR2stage

{n} 39.3 313 16.1

{n,g} 39.6 31.9 16.3

{n,g,r} 40.4 32.6 16.9

Table 4: Ablation over model inputs on VAL, for both
IMG2AMR models. For IMG2AMRoga5e We use all
features {r, q, g} as the 1st encoder input.
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|  #Types %Tokens
Cateogry Example Types per Category ‘ AMR SG AMR SG
ENTITIES
Artifact clock, umbrella, bottle 128 128 22.7 24.4
Part eyes, finger, wing 21 44 3.1 13.1
Location beach, mountain, kitchen 86 52 20.7 11.2
Person man, women, speaker 30 19 17.9 11
Flora/Nature ocean, tree, flower 20 34 6.1 10.2
Clothing dress, scarf, suit 11 31 1.1 7.7
Food orange, donut, bread 52 23 8 2.8
Animal horse, bird, cat 16 20 6.4 4.7
Vehicle car, motorcycle, bicycle 18 17 6.1 4.5
Furniture table, chair, couch 9 10 4.0 29
Structure window, tower, circle 13 18 2.1 5.4
Building brick, house, cement 6 6 1.8 2.1
RELATIONS

Geometric down, edge, between 48 122 124  56.6
Possessive have, wear, contain 5 42 59 30.6
Semantic attempt, carry, eat 183 275 383 11.6
Attribute Color  color, white, blue 13 8 5.6 0.1
Attribute young, small, colorful 82 - 12.8 -
AMR specific and, or, date-entity 8 - 11.1 -
Quantifier more, both, few 31 1 9.3 0.1
Event soccer, party, festival 14 - 34 -
Misc they, something, you 6 13 1.1 1.0

Table 5: The list of AMR and SG entity and relation categories, as well as examples of word types, number of

types, and percentage of tokens per category.

(z0 / bicycle
:ARG1-of (z1 / park-01
:ARG2 (z2 / kitchen
:ARGO-of (z3 / have-03
:ARG1 (z4 / and
:op1 (z5 / stove)
:0p2 (26 / cabinet))))))

A bicycle parked in a kitchen with a stove and cabinets

(20 / bicycle

:ARG1-of (z1 / park-01
:ARG2 (22 / room
:ARGO-of (23 / have-03
:ARG1 (24 / and))
:part (z6 / cabinet
:location (z12 / inside))

:mod (210 / small)
:ARG1-of (211 / white-03)

:location z5)
:ARG1 z4)
:ARG1-of (z7 / black-04)
:ARG1-of (28 / lean-01
:ARG2 (29 / against)

:ARG2 (25 / stove)))

(z0 / kitchen
:mod (z1 / small)
:ARG1-of (22 / white-03)
:ARGO-of (z3 / park-01
:ARGL1 (z4 / and
:op1 (z5 / bike)
:0p2 (26 /
backpack))
:ARG2 20))

Small white kitchen with a bike and
backpack parked in it

(20 / bicycle
:ARG1-of (z1 / park-01
:ARG2 (22 / kitchen
:location (z3 /
stove))))

A bicycle parked in a kitchen by the stove .

—

(20 / bicycle
:ARG1-of (z1 / black-04)
:ARG1-of (22 / lean-01
:ARG2 (23 / against
:opl (z4 / cabinet
:part-of (25 / kitchen)))))

A black bicycle leaning against the kitchen cabinets .

(z0 / and
:op1 (z1 / bicycle
:ARG1-of (z2 / lean-01
:ARG2 (23 / stove)))
:0p2 (z4 / cabinet
:location (25 / inside
:op1 (z6 / kitchen))))

A bicycle leaning on the stove and cabinets
located inside the kitchen .

Figure 7: An example of five caption AMRs and their corresponding meta-AMR. Captions are marked as red.
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E Generated AMRs for the Qualitative Samples

25/beach

(c) A large long passenger train going across a wooden beach plate, traveling and passing by water.

Figure 8: Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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ARGO-of :
time .
:ARGO-of

(c) A group of people sitting around at a dining table with water posing for a picture.

Figure 9: (cont) Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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ARGI
ARG1

ARG2
part-of
ARGO-of dircetion @ 0
ocat M
mod

quant

ARGO mod

(a) A person in a red jacket cross country skiing down a snow covered ski slope with a couple of people riding skis and walking
on the side of the snowy mountain.

ARGO-of

211/building

stime
z8/have-06

accompanier

:consist-of

(b) A person in black shirt sitting at a table in a building with a plate of food with and smiling while having meal.

Figure 10: (cont) Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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Images used in this section (and the rest of the paper) are under a Creative Commons Attribution

License 2.0.
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They are available at (by the order of their appearance in this section):

//farm6.staticflickr.com/5299/5465041730_3fel246cae_z.jpg
//cocodataset.org/#explore?id=505440

//farm6.staticflickr.com/5294/5461489420_1e4141517b_z. jpg
//cocodataset.org/#explore?id=332654

//farmd.staticflickr.com/3719/9115013219_344ad42ced7_z.jpg
//cocodataset.org/#explore?id=329486

//farmd.staticflickr.com/3091/3187069218_162b55b720_z. jpg
//cocodataset.org/#explore?id=569839

//farm3.staticflickr.com/2020/1932016761_934411lacl6_z.Jjpg
//cocodataset.org/#explore?id=5754

and

and

and

and

and

//farmd.staticflickr.com/3703/10047186866_e6b43fbd32_z. jpg and

//cocodataset.org/#explore?id=298443

//farm8.staticflickr.com/7170/6795850593_435a36bcd9_z. jpg
//cocodataset.org/#explore?id=239235

//farmd.staticflickr.com/3786/9676804086_dbb624af5c_z.jpg
//cocodataset.org/#explore?id=386559
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http://farm3.staticflickr.com/2020/1932016761_934411ac16_z.jpg
http://cocodataset.org/#explore?id=5754
http://farm4.staticflickr.com/3703/10047186866_e6b43fbd32_z.jpg
http://cocodataset.org/#explore?id=298443
http://farm8.staticflickr.com/7170/6795850593_435a36bcd9_z.jpg
http://cocodataset.org/#explore?id=239235
http://farm4.staticflickr.com/3786/9676804086_dbb624af5c_z.jpg
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