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Abstract

We introduce a constraint-based parser for Min-
imalist Grammars (MG), implemented as a
working computer program, that falls within the
long established “Parsing as Deduction” frame-
work. The parser takes as input an MG lexicon
and a (partially specified) pairing of sound with
meaning – i.e. a word sequence paired with a
semantic representation – and, using an axiom-
atized logic, declaratively deduces syntactic
derivations (i.e. parse trees) that comport with
the specified interface conditions. The parser
is built on the first axiomatization of MGs to
use Satisfiability Modulo Theories (SMT), en-
coding in a constraint-based way the princi-
ples of minimalist syntax. The parser operates
via a novel solution method: it assembles an
SMT model of an MG derivation, translates the
inputs into SMT formulae that constrain the
model, and then solves the model using the Z3
SMT-solver, a high-performance automatic the-
orem prover; as the SMT-model has finite size
(being bounded by the inputs), it is decidable
and thus solvable in finite time. The output
derivation is then recovered from the model so-
lution. To demonstrate this, we run the parser
on several representative inputs and examine
how the output derivations differ when the in-
puts are partially vs. fully specified. We con-
clude by discussing the parser’s extensibility
and how a linguist can use it to automatically
identify: (i) dependencies between input inter-
face conditions and principles of syntax, and
(ii) contradictions or redundancies between the
model axioms encoding principles of syntax.

1 Introduction

Minimalist theories of syntax consider the Human
Language Faculty (HLF) as a computational sys-
tem capable of deriving from a finite lexicon and a
single combinatorial operation, an unbounded set
of hierarchical syntactic structures, pairing sounds
(typically word sequences) with meaning repre-
sentations (Chomsky, 1995). (In more technical

language, the HLF pairs Phonological Forms [PF],
where a PF is an encoding of information relevant
to how a brain-internal structured expression gets
pronounced, signed, etc, with Logical Forms [LF],
where an LF is a structured semantic representation,
e.g. predicate-argument structure.) This study in-
troduces a novel computational model for the HLF,
implemented as a working computer program,1 that
takes the form of a constraint-based parser for Min-
imalist Grammars (MG), grounded in the (first)
axiomatization of minimalist syntax using Satisfi-
ability Modulo Theories (SMT).2 Working within
the “Parsing as Deduction” framework (Pereira
and Warren, 1983), the parser is a logic program
that uses an automatic theorem prover to answer
the question: can a given lexicon yield a syntactic
structure that encodes a given LF and/or PF?

More specifically, the parser takes as input an
MG lexicon and a (partial) specification of LF and
PF interface conditions (i.e. constraints over the
LF and PF encoded in a syntactic structure), and
it outputs the set of MG derivations (i.e. syntac-
tic structures) that the (input) lexicon can gener-
ate and that satisfy the (input) interface conditions.
The parser operates by first constructing an SMT
model of a lexicon and an SMT model of deriva-
tion, with the two models linked by shared free
variables to form an SMT model of a minimal-
ist parser. Next, the parser converts the inputs
into constraints, expressed as SMT-formulae, that
augment the SMT model and serve to constrain
the space of model solutions. Finally, the parser
obtains its output by using the Z3 SMT-solver,3

a (modern) high-performance automatic theorem

1The program’s source code is available at https://
github.com/indurks/mgsmt.

2SMT is a propositional logic that may be extended with
background theories – e.g. the theories of uninterpreted func-
tions, bit-vectors and arithmetic (Dutertre and de Moura, 2006;
Ranise and Tinelli, 2006; Nieuwenhuis and Oliveras, 2006;
Nieuwenhuis et al., 2006; Moura and Bjørner, 2009).

3See (Moura and Bjørner, 2008; Bjørner, 2011).

157

https://github.com/indurks/mgsmt
https://github.com/indurks/mgsmt


prover, to check whether the SMT model is satis-
fiable – if it is, the SMT-solver enumerates valid
model-interpretations from which the parser recov-
ers the (output) set of minimalist derivations.

Notably, this model of HLF is declarative, and
so encompasses both semantic parsing and natural
language generation. E.g. one can use the parser to
generate language by: (i) inputting a lexicon and
LF constraints; (ii) ordering the parser to “solve for
syntax” and recover a derivation from the model-
solution; and (iii) obtaining the (output) generated
PF from the recovered derivation. (Here the inputs
are known quantities and the derivation is an un-
known quantity being solved for.) Moreover, our
model for HLF can be used to run experiments in
which the input interface conditions are partially
specified and the SMT-solver is instructed to iden-
tify dependencies between the principles of syntax
(encoded in the parser) and the features in the input
lexicon – in this way, one can determine whether
(and how) the syntactic principles and the lexicon
do not adequately constrain a derivation to compen-
sate for the absent (LF or PF) interface conditions.

The remainder of this study is organized as fol-
lows. First, §2 reviews key principles of minimalist
syntax and how they are modeled using MGs. Next,
§3 reviews related prior work within the Parsing
as Deduction framework, which this study seeks to
extend, and that motivates our approach. Then, §4,
§5 and §6 present the three key contributions of this
study: §4 details the deductive parsing procedure,
showing how the Z3 SMT-solver can be used to
identify satisfiable interpretations of an SMT model
of a minimalist parser; §5 details the SMT model
of the minimalist parser, its underlying axiomati-
zation of minimalist syntax, and how the model
is constrained by user specified inputs; §6 details
application of the parser to a representative set of
example inputs and analyzes the output derivations,
showing how the parser functions even when the in-
put interface conditions are only partially specified.
Finally, §7 discusses how: (i) the SMT model of the
parser may be extended, and (ii) the parser can help
linguists identify dependencies and contradictions
between the model axioms encoding principles of
syntax and the logical constraints derived from the
input interface conditions.

2 Background: Minimalist Grammars

We opted to model minimalist syntax using the
Minimalist Grammar (MG) formalism (Stabler,

Figure 1: The parser outputs an MG derivation of “What
has the man eaten?” that satisfies the LF & PF interface
conditions in I1 (of Table 2). The derivation was recov-
ered from the model interpretation in Table 3, and each
node is labeled with the index of a row in Table 3. The
depicted structure is a multi-dominance tree, with nodes
{1, 5, 12, 7, 17, 3, 4, 15, 18, 2, 13, 14, 6, 9, 22} making
up the derivation tree from which this multi-dominance
tree was derived. Lexical and derived nodes are de-
noted by regular and rounded rectangles respectively.
Constituents with the same head have the same color.
Dashed and dotted arrows indicate phrasal and head
movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the (raised)
lower structure being copied to the target position.

1996) because MGs have been extensively char-
acterized formally and appear to be sufficiently
expressive for modeling the syntactic structures
prescribed by contemporary theories of minimal-
ist syntax.4 The MG formalism (and minimalist
syntax more generally) centers on: (i) a lexicon con-
sisting of a finite set of lexical items (i.e. syntactic
atoms), each pairing a word with a finite sequence
of syntactic features, and (ii) Merge, a recursive, bi-
nary structure-building operation. Syntactic struc-
tures are derived from a multi-set of lexical items
via repeated application of Merge, which has two
(logically-disjoint) sub-cases, external merge (EM)
and internal merge (IM),5 that serve to model two
basic facts of natural language, combination and
displacement (respectively).6

4See (Michaelis, 1998; Michaelis et al., 2000; Michaelis,
2001; Graf, 2011, 2013; Kobele, 2011).

5EM merges two disjoint structures, whereas IM merges a
structure with one of its sub-structures.

6Combination forms syntactic structures by (recursively)
pairing separate structures; it is used to associate predicates
with their arguments (i.e. the assignment of thematic roles
like “Agent” and “Patient,” also known as θ-roles). Displace-
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To illustrate the MG formalism, let us see how
the MG derivation (i.e. syntactic structure) for the
sentence “What has the man eaten?”, shown in
Fig. 1, is built bottom-up using the lexical items
listed in Table 1. First, the lexical items for the
determiner “the” and the nominal “man” are com-
bined, via the application of external merge, to
form the determiner phrase “the man”; note that
this instance of constituent selection is allowed be-
cause the term “the” has a selector feature, =y,
that matches the selectee feature, ∼y, on the term

“man”.7 Then, the lexical items for the (lexical) verb
“eaten” is first (externally) merged with its comple-
ment, the (internal) argument “what” to form a
VP, which is then (externally) merged with a covert
light-verb, ϵ/v, with the resulting vP then merged
with the external argument,“the man”, to form a
(double) VP-shell structure in accordance with the
Hale-Keyser model of predicate-argument structure
(Hale and Keyser, 1993, 2002). Next, the VP-shell
structure is merged with a tense marker, the auxil-
iary verb “has”, to form a TP. After this, per the
VP Internal Subject Hypothesis (Radford, 2009),
the internal argument, “the man” is moved, via ap-
plication of internal merge, from its initial location
(within the VP-shell) to the subject-position of the
TP; note that this instance of movement is licensed
by the licensor feature, +q, on “has” matching
the licensee feature, −q, on “the man”. The TP
is then (externally) merged with a (covert) com-
plementizer, ϵ/C, to form a CP.8 Finally, the inter-
nal argument “what” is raised (via internal merge)
from the VP-shell to the specifier position of the
CP, at which point the derivation is complete.9

In summary, to parse a sentence, a multi-set of
lexical items is selected from the lexicon and (re-
cursively) merged together to yield a derivation in

ment, driven by syntactic movement, enables a phrase to be
interpreted at both its (final) surfaced position as well as other
positions within a syntactic structure – e.g., given the expres-
sion “You, I love.”, “You” is the object of “love” and normally
appears in Object position, but here it is displaced to the front
of the sentence (where it is pronounced).

7Selector, selectee, licensor and licensee features are des-
ignated by a prefixed =, ∼, +, and − respectively.

8The extended projection, C−T−v−V , forms the spine
of each clause (Grimshaw, 2005; Adger and Svenonius, 2011).

9N.b. head-movement – i.e. the incorporation of a lower
(lexical) head into the head it merges with – is applied when
the completed derivation is sent to the PF-interface for exter-
nalization. Head-movement occurs twice in this derivation:
(i) the V -to-v head-movement utilized in the Hale-Keyser
model of predicate-argument structure; (ii) the T -to-C head-
movement utilized in raising the auxiliary verb (as when form-
ing a polar-interrogative from a declarative).

which the terminal expression has only the special
feature C remaining (because all of the selectional
and licensing features have been consumed); if the
ordering of the phonological forms in the result-
ing structure aligns with the order of the words in
the sentence being parsed,10 then the structure is
considered to be a valid parse of the sentence.11

3 Related Work: Parsing as Deduction

We have developed an MG parser within the Pars-
ing as Deduction framework, which was first de-
scribed by Pereira and Warren (1983), who showed
how an axiomatization of a context-free grammar
could be combined with a logical deduction engine
to formulate a chart parser as a logic program. As
Pereira notes, key advantages of this framework
include: (i) a connection between the deductions
that yield a syntactic structure and the inferences
needed to extract a semantic interpretation from
said structure; (ii) the ability to handle filler-gap
dependencies without altering the basic design of
a chart parser. The Parsing as Deduction frame-
work has since been employed to construct parsers
for a variety of grammatical formalisms, including
lexicalized context-free grammars, tree adjoining
grammars, combinatory categorical grammars, and
dependency grammars.12 Notably, this framework
has been used to develop parsers that model Gov-
ernment and Binding (GB) theory (a predecessor
of minimalist syntax) by encoding principles of
syntax within a system of axioms that mirrors the
modular structure of GB theory (Chomsky, 1981;
Johnson, 1989; Fong, 1991).

Normally, these parsers employ Prolog, the de-
facto language for Constraint Logic Programming
(CLP).13 However, we leverage recent advances in
the performance of automated theorem provers for
SMT, which enhances CLP by enabling us to focus
entirely on formulating (declarative) model axioms
while the computer is free to decide how best to
deduce a model solution (De Moura and Bjørner,

10E.g. using Specifier-Head-Complement linearization to
model Subject-Verb-Object (SVO) ordering (Kayne, 1994).

11See Appendix-B for further commentary on MGs, includ-
ing a presentation of an algebraic formulation of MGs based
on (Stabler and Keenan, 2003).

12See (Shieber et al., 1995; Duchier, 1999; Tang and
Mooney, 2001; Debusmann et al., 2004; Estratat and
Henocque, 2004; Duchier et al., 2010; Lierler and Schüller,
2012; Schüller, 2013). See (Schabes and Waters, 1993; Joshi
and Schabes, 1997; Steedman and Baldridge, 2011) for details
of these grammatical formalisms.

13See (Jaffar and Lassez, 1987; Apt, 1990; Jaffar and Maher,
1994; Koller and Niehren, 2002).
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1. ϵ/CQues. :: <=x, +p, C 19. he :: ∼y, −q
2. has :: =x, +q, ∼x 20. resigned :: ∼x
3. the :: =y, ∼y, −q 21. known :: =y, ∼x
4. man :: ∼y 22. everyone :: ∼y, −q, −p
5. ϵ/v :: <=x, =y, ∼x 23. who :: =x, +p, ∼y
6. eaten :: =y, ∼x 24. loved :: =y, ∼x
7. what :: ∼y, −p 25. ϵ/CDecl. :: =x, C
8. ϵ/v :: <=x, ∼x 26. knows :: =y, ∼x
9. ϵ/CQues. :: <=x, C 27. john :: ∼y, −q
10. was :: =x, +q, ∼x 28. given :: =y, ∼x
11. she :: ∼y, −q 29. ϵ/T :: =x, +q, ∼x
12. given :: =y, =y, ∼x 30. money :: ∼y, −q, −p
13. money :: ∼y 31. that :: =x, +p, ∼y
14. will :: =x, +q, ∼x 32. stolen :: =y, ∼x
15. who :: ∼y, −q, −p 33. fears :: =y, ∼x
16. her :: ∼y 34. money :: ∼y, −q
17. tell :: =y, =y, ∼x 35. ϵ/CQues. :: =x, +p, C
18. that :: =x, ∼y 36. a :: =y, ∼y, −q

Table 1: An MG lexicon that the parser may take as
input. Each lexical item consists of: (i) a phonological
form that is either overt or covert (ϵ); (ii) (optional) a
categorical feature (e.g. entries 1 & 5); (iii) a sequence
of syntactic features. The lexicon includes entries for
auxiliary verbs (e.g. 2, 10 & 14), determiners (e.g. 3),
nominals (e.g. 4, 11, 22, 27 & 30), tense markers (e.g.
2, 14, & 29), complementizers (e.g. 1, 9, 18 & 25),
relative pronouns (e.g. 23), Wh-words (e.g. 7 & 15),
intransitive verbs (e.g. 20), transitive verbs (e.g. 6, 26
& 32), and ditransitive verbs (e.g. 12 & 17).

2011). Hence, we extend prior work within the
Parsing as Deduction framework by: (i) developing
a (declarative) constraint-based minimalist parser,
thereby advancing (linguistically) beyond earlier
GB-based parsers; (ii) formulating an MG parser
as a finite (and thus decidable) SMT-model that is
solved using an SMT-solver (instead of Prolog).14

4 The Parsing Procedure

This section details the parsing procedure and illus-
trates it with a worked out example.

INPUT. The procedure takes as input: (i) an MG
lexicon, L; (ii) a pairing of LF and PF interface con-
ditions, I , to be parsed; (iii) parameters, p, bound-
ing the size of the SMT model (to be built).

INITIALIZATION. The procedure initializes the
SMT-solver with an empty stack of constraints, S .

CONSTRUCTING THE SMT MODEL. The SMT
model of the parser is constructed as follows. First,
the procedure instantiates the SMT model of the
lexicon (detailed in §5) and constrains it with the
input lexicon – this is carried out by:
(a) initializing an SMT model of a lexicon, mL,

with size bound by p, and pushing mL onto S;
14See (Harkema, 2001; Niyogi and Berwick, 2005; Stanoje-

vić, 2016; Torr et al., 2019) for earlier MG (chart) parsers.

(b) constructing an SMT-formula, cl, that restricts
interpretations (i.e. model solutions) of mL to
align with L, and then pushing cl onto S;

Next, the procedure instantiates an SMT model of
a derivation (detailed in §5) and then constrains it
with the (input) interface conditions – this involves:
(a) initializing an SMT model of a derivation, md,

with size bound by p, and pushing md onto S;
(b) translating I into an SMT-formula, cI , that con-

strainsmd (detailed in §5) such that any deriva-
tion recovered from an interpretation of md

must respect I , and pushing cI onto S.
Finally, the procedure “connects” the SMT model
of the derivation to the SMT model of the lexicon –
this is achieved by first creating an SMT-formula,
mb, that connects md with ml by constraining in-
terpretations of the free variables that appear in
both md and ml, and then pushing mb onto the S .

CHECKING THE SMT MODEL. The procedure
uses the SMT-solver’s model-checking routine (i.e.
decision procedure) to determine whether there ex-
ists a satisfiable interpretation of the model (i.e. the
conjunction of the SMT-formulae in S) – if one ex-
ists, the procedure recovers it from the solver, and
then (automatically) reconstructs an MG derivation
from the (recovered) model interpretation. The
procedure then pushes onto S a constraint (i.e. an
SMT-formula) that prohibits the interpretation of
md from being equivalent to any previously re-
covered (satisfiable) model interpretations;15 this
model-checking process is then run again to try and
recover a (new) alternative MG derivation – this
process is repeated until the solver cannot identify
a (new) satisfiable model interpretation (because
all model-solutions have already been identified).

OUTPUT. The procedure outputs the set of MG
derivations that were reconstructed from the re-
covered (satisfiable) model interpretations – each
(output) derivation accords with the (input) inter-
face conditions, I , and can be generated from the
(input) lexicon, L.

Finally, we illustrate the parsing procedure with
a worked out example. Consider the procedure tak-
ing as input the lexicon in Table 1 and the interface
conditions (for the sentence “What has the man
eaten?”) listed in entry I1 of Table 2: after con-
structing the SMT model and constraining it with
the input lexicon and interface conditions (detailed

15This further constrains the SMT model so that the solver
cannot yield a model interpretation that encodes an MG deriva-
tion that the parser has already identified.
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in §5), the procedure invokes the SMT-solver’s
model-checking (i.e. decision) routine to obtain
the satisfiable model-interpretation presented in Ta-
ble 3 (see also Appendix-Table 4); the procedure
then recovers the output derivation shown in Fig. 1,
which accords with I1, from the satisfiable model-
interpretation.

5 Specification of the SMT Model

This section details the SMT models of the MG
derivation and MG lexicon - these models make up
the heart of the parser introduced in this study.16

These models consist of: (i) uninterpreted (i.e. free)
finite sorts that represent model-objects such as
words, syntactic features, categories, nodes in a
derivation tree, etc; (ii) uninterpreted (free) func-
tions that establish relationships between model-
objects by mapping members of one or more sorts
to another sort; (iii) model axioms – i.e. SMT-
formulae – that constrain the valuation an SMT-
solver may assign to each uninterpreted function.17

(See Fig. 2 for a summary of the sorts and functions
that make up the model.) Crucially, since the model
of the parser has finite size (being bounded by the
input parameter, p), we can explicitly quantify all
of the SMT formulae in the model, thereby yielding
a decidable model that is solvable in finite time.

We turn first to the SMT model of the lexicon.
When constructing this model, the parsing proce-
dure scans the input lexicon and instantiates several
finite sorts: Σ, that models the set of PFs; F, that
models the set of feature-labels (e.g. {x, y, p, q});
and the lexicon node sort, Ω, that models the syn-
tactic features appearing in the input lexicon.18 The
lexicon node sort is organized into disjoint subsets
referred to as lexicon node sequences, with each
subset corresponding to one of the distinct lexical
feature sequences appearing in the input lexicon.19

Among the uninterpreted functions in the lexicon
model, one plays an especially critical role: the

16A complete, formal definition of these SMT models, in-
cluding all model axioms, may be found in Ch. 2 of (In-
durkhya, 2021a); see Appendix A for notes on reproducibility.

17All model axioms are written using propositional logic
extended with (quantifier-free) theories of: (i) uninterpreted
functions, (ii) Pseudo-Boolean constraints, and (iii) arithmetic.

18N.b. the sorts modeling the (fixed) sets of syntactic cat-
egories (e.g. N or V ) and feature-types (e.g. + or =) are
pre-defined and do not depend on the input lexicon.

19E.g. the input lexicon in Table 1 has 29 distinct PFs, 4
distinct feature-labels, and 18 distinct lexical feature sequence,
with each sequence having at most 3 features; therefore, the
cardinality of the instantiated sorts Σ, F and Ω is 29, 4 and
18×3 = 54 (respectively).

successor function, ψ, which maps a ∈ Ω to b ∈ Ω,
where a corresponds to a node within a lexicon
node sequence, and b corresponds to the subse-
quent node in that same lexicon node sequence;20

the valuation of ψ is hard-coded by the parsing al-
gorithm after Ω has been divided into lexicon node
sequences.21 The binary (uninterpreted) predicate,
∆Ω, associates each lexical feature sequence with
one or more (overt or covert) PFs, and these associ-
ations are hard-coded by the parsing procedure.22

(E.g. Fig. 3 shows a lexicon node sequence and the
lexical feature sequence it models.)

Next we turn to the SMT model of the deriva-
tion, which is composed of a finite sort, N, that
models the nodes in the derivation. The derivation
takes the form of a multi-dominance tree23 that is
formed by augmenting the derivation tree with ad-
ditional edges corresponding to the movement of
phrases via internal merge (see Fig. 1). Members of
N are sub-divided into derivation node sequences,
with each sequence corresponding to the projection
of a lexical head within the derivation;24 an impor-
tant exception to this is a single member of N, ⊥,
that serves as a null-value target for uninterpreted
functions. The model’s uninterpretable functions
include:
(a) A unary function, p, that maps each node in a

derivation node sequence to its successor node
(in that sequence).

(b) A unary function, h, that maps each x ∈ N to
the head (i.e. beginning) of the derivation node
sequence to which x belongs; a derivation node
x ∈ N is a head if and only if h(h(x)) = h(x).

(c) A binary function, M, that models Merge:
given x, y ∈ N, M(x, y) is the product of

20If a lexicon node x ∈ Ω corresponds to the terminal node
in a lexicon node sequence, then ψ(x) = x.

21E.g. if, as in Fig. 3, L9, L14, L0, L5 ∈ Ω forms a lexicon
node sequence that models the lexical feature sequence for
entry 3 in Table 1, [the :: =y, ∼y, −q], then the following
constraint would be added to the SMT model of the lexicon:
(ψ(L9)=L14) ∧ (ψ(L14)=L0) ∧ (ψ(L0)=L5).

22Encoding the SMT model of the lexicon with a repre-
sentation that factors apart PFs and lexical feature sequences
reduces the size of the model because lexical feature sequences
are not duplicated, which in turn improves the performance of
the SMT-solver. (E.g. in Table 1, the PFs for entries 24 and
28 will both map to the same lexicon node sequence.)

23Multi-dominance and derived trees are closely related
(Kobele et al., 2007; Morawietz, 2008; Graf, 2013). Appendix-
C details, and Appendix-Fig. 6 shows, how the derivation node
sequences are organized so as to form a multi-dominance tree.

24Derivation node sequences are inspired by the closely
related notion of “slices” (of a derivation tree) employed in
Graf (2013). See Appendix-Fig. 6 for an illustration of how N
is organized into derivation node sequences.
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Figure 2: Arrangement of the uninterpreted functions and (finite) sorts that make up, and connect together, the SMT
model of a derivation and the SMT model of a lexicon.

Figure 3: Model diagram showing how uninterpreted
functions form commutative diagrams that connect the
SMT model of the derivation to the SMT model of the
lexicon – here they connect one of the derivation node
sequences (from Fig. 1) to one of the lexicon node se-
quences (for entries 3 & 36 in Table 1). N.b. the lexicon
node sequence maps to two PFs, and the derivation node
sequence corresponds to one of those two PFs.

merging x with y.25

(d) A unary function, P , that models the move-
ment of phrases by mapping a node in the
derivation tree to the location it is raised to.

(e) A unary function, H, that models head-
movement by mapping a lexical head to the
lexical head that it incorporates with.

(f) Two binary predicates, d and d⋆, that encode
the dominance relations making up the deriva-
tion (a multi-dominance tree), with d encoding
dominance as imposed by p, and d⋆ encoding
the dominance relations in the derived tree – i.e.
the tree produced after all syntactic movement
is completed (see Appendix-C for details).

25If x and y are not externally merged, then M(x, y) = ⊥;
this illustrates one of the ways in which ⊥ is utilized.

(g) A unary function, βN, that associates each term
in the derivation with a category (in C).

(h) A binary function, L, encoding (linear) prece-
dence (in accordance with the derived tree).

We restrict (satisfiable) interpretations of the SMT
model by constraining it with additional axioms
that encode various principles of minimalist syn-
tax,26 including axioms requiring:
(a) ∀x, y ∈ N,M(x, y) =M(y, x) (symmetry).
(b) no self-merging: ∀x ∈ N,M(x, x) = ⊥.
(c) no term is the target of multiple merges:
∀x, y, z ∈ N, z ̸= y →M(x, y) ̸=M(x, z).

(d) every non-lexical (i.e. non-leaf) node in the
derivation tree is in the range ofM.

(e) ∀x ∈ N, h(P(x)) = h(x).
(f) ∀x, y ∈ N, if x and y are lexical heads related

by head-movement (i.e. (h(x) = x)∧ (h(y) =
y)∧(H(x) = y)), then the maximal projection
of x is merged with y (via EM) - i.e. ∃z ∈ N s.t.
(h(z) = x)∧d(z, x)∧ (h(M(H(x), z)) = y).

(g) the root node of the derivation tree is a (maxi-
mal) projection of a complementizer head (C),
and the functional heads in a clause are orga-
nized as an extended projection of the form
C←T←v←V (Adger and Svenonius, 2011).

(h) if a phrase, x ∈ N, undergoes IM with a (lower)
phrase, y ∈ N, so that P(y) is the sister of x
(i.e. M(P(x), y) ̸= ⊥), thenM(x,P(y)) =
p(x) and h(M(x,P(y))) = h(x) ̸= h(y).

Notably, the expressive power of SMT, particularly
the composition of uninterpretable functions, al-
lows the model to consist of a few dozen axioms,
which we found to be manageable to reason about.

26E.g. the Theory of Bare-Phrase Structure (Chomsky,
1995), the Inclusivess Principle (Chomsky, 2001), the No
Tampering Condition (Chomsky, 2005, 2013), the Projection
Principle (Chomsky, 1986) and the Principle of Economy of
Derivation (Collins, 2001).
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Next the parsing procedure translates each of
the (input) interface conditions (ICs) into SMT-
formulae that constrain the SMT model of the
derivation. LF ICs stipulating (subject-predicate)
agreement and the assignment of θ-roles (i.e. se-
mantic roles) to arguments are translated into
model constraints (i.e. SMT-formulae) that require
specific local hierarchical relations be established
by Merge,27 and the sentence type (i.e. declara-
tive vs. interrogative) is translated into model con-
straints that dictate which type of complementizer,
Cques. or Cdecl., heads the sentence. PF ICs are
translated into constraints that require the Subject-
Verb-Object (SVO) ordering of the derived tree, in
which all phrasal-movement and head-movement
has taken place, match the linear order of words in
the input sentence.28 Notably, the SMT-formulae
encoding LF constraints are entirely separate from
the SMT-formulae encoding PF constraints.

Finally, the SMT models of the lexicon and the
derivation are connected by an uninterpreted func-
tion, µ, that maps each derivation node sequence to
a lexicon node sequence, subject to the constraints:
(i) µ ◦ p = ψ ◦µ, which lines up each projection in
the derivation with a lexical feature sequences (for
a lexical entry) in the lexicon; (ii) βΩ ◦ µ = βN,
which ensures that each lexical head in a derivation
has the same category as the lexical entry it orig-
inates from. (Fig. 3 depicts these constraints and
others as commutative diagrams.) There are also
model-axioms that further restrict µ by requiring
that pairs of nodes merged via EM or IM map to
selectional or licensing features (respectively).

6 Parsing with Partially Specified Inputs

We validated the parsing procedure, and in partic-
ular the SMT-models it constructs, by using it to
parse each pair of interface conditions in Table 2
using the lexicon in Table 1. Notably, this lexi-
con was designed so that, for each (LF, PF) pairing
of interface conditions in Table 2, the lexicon can
yield a derivation that satisfies the (input) interface

27Specifically, per the Uniformity of θ-Assignment Hypoth-
esis (Baker, 1988; Adger, 2003), internal (object or oblique)
arguments are assigned a θ-role by establishing a local rela-
tionship (via EM) with the projection of a lexical verb, while
external arguments are assigned a θ-role (e.g. AGENT) by
establishing a local relationship with the light-verb within a
VP-shell structure. Likewise, subject-predicate agreement
requires a local relationship (established via IM) between a
raised subject and the tense marker it agrees with.

28Following (Kayne, 1994), SVO ordering of the derived
tree is obtained by requiring that specifiers precede their head,
and that heads precede their complement.

Ii Interface Conditions

I1 PF: what has the man/N eaten/V?
LF: θeaten[s : the man, o : what], Ahas[s : the man]

I2 PF: was she/N given/V money/N?
LF: θgiven[o : money, i : she], Awas[s : she]

I3 PF: who will tell/V her/N that he/N has resigned/V?
LF: θtell[s : who, o : that he has resigned, i : her],

Awill[s : who], θresigned[s : he], Ahas[s : he]
I4 PF: she/N has known/V everyone/N who was loved/V.

LF: θknown[s : she, o : everyone who was loved],
Ahas[s : she], θloved[o : everyone], Awas[s : everyone]

I5 PF: she/N knows/V that john/N has given/V money/N.
LF: θknows[s : she, o : that john has given money],

θgiven[s : john, o : money], Ahas[s : john]
I6 PF: john/N has given/V money/N that was stolen/V.

LF: θgiven[s : john, o : money that was stolen], Ahas[s : john],
θstolen[o : money], Awas[s : money]

I7 PF: john/N fears/V everyone/N who knows/V her/N.
LF: θfears[s : john, o : everyone who knows her],

θknows[s : everyone, o : her]
I8 PF: john/N fears/V that money/N was stolen/V.

LF: θfears[s : john, o : that money was stolen],
θstolen[o : money], Awas[s : money]

Table 2: Corpus of Paired (LF and PF) Interface Con-
ditions (ICs). PF ICs provide surface order data, and
some words are associated with a specified category
(denoted by a slash followed by the category). LF ICs
include relations for agreement (A), predicate-argument
structure (θ), and sentence-type (either declarative or
interrogative as denoted by end-punctuation). N.b. LF
ICs only encode hierarchical/structural relations – i.e.
the values filling the slots consist of sets of tokens, not
sequences of tokens. A predicate associates with one
or more arguments: “s:” denotes an external argument,
and “o:” and “i:” denote an internal argument serving
as a direct or indirect object (respectively). Entries with
an embedded clause – e.g. I3 & I8 – can have (separate)
LF ICs stipulated for each clause.

conditions (ICs) and that matches the derivation
prescribed by contemporary theories of minimalist
syntax29 – among these are derivations (in both
active and passive voice) for declaratives, polar-
interrogatives, wh-questions, relative clauses, and
embedded sentences. Moreover, the (prescribed)
derivations involve covert complementizers (C),
tense-markers (T ), and light-verbs (v), as well as
various forms of movement including: wh-raising,
subject-raising, T -to-C head-movement, and V -to-
v head-movement (in VP-shells). The validation
process succeeded, demonstrating that the parser,
using the lexicon in Table 1, can yield (and in-
ternally model) the prescribed derivation for each
entry in Table 2. E.g. see Fig. 7 & 8 for derivations,
output by the parser, with an embedded sentence
(for I5) and a relative clause (for I7), respectively.

We also measured, for each IC in Table 2, the

29See (Adger, 2003; Hornstein et al., 2005; Hornstein and
Pietroski, 2009; Collins and Stabler, 2016; Radford, 2016).
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Node βN h p P H µ (ψ ◦ µ) ∆N

D0 D0 D0 D0 D0 L5 L5

D1 D D1 D12 D19 D0 L37 L3 what
D2 T D2 D14 D0 D6 L32 L36 has
D3 D D3 D15 D0 D0 L9 L14 the
D4 N D4 D15 D0 D0 L8 L5 man
D5 V D5 D12 D0 D7 L6 L33 eaten
D6 Cques. D6 D9 D0 D0 L23 L7 ϵ
D7 v D7 D17 D0 D0 L17 L4 ϵ
D8 D0 D0 D0 D0 L5 L5

D9 Cques D6 D22 D0 D0 L7 L27

D10 D0 D0 D0 D0 L5 L5

D11 D0 D0 D0 D0 L5 L5

D12 V D5 D17 D0 D0 L33 L5

D13 T D2 D9 D0 D0 L24 L5

D14 T D2 D13 D0 D0 L36 L24

D15 D D3 D18 D21 D0 L14 L0

D16 D0 D0 D0 D0 L5 L5

D17 v D7 D18 D0 D0 L4 L35

D18 v D7 D14 D0 D0 L35 L5

D19 D D1 D22 D0 D0 L3 L5

D20 D0 D0 D0 D0 L5 L5

D21 D D3 D13 D0 D0 L0 L5

D22 Cques. D6 D0 D0 D0 L27 L5

Table 3: Model interpretation for the derivation in Fig. 1.
Each Di is a member of the derivation node sort, N.
Valuations, recovered from the model interpretation, are
listed for several of the uninterpreted functions (e.g.
h(D15)=D3 and p(D9)=D22) that make up: (i) the
derivation model – i.e. h (head), p (parent), P (phrasal
movement), H (head movement), ∆N, and βN; (ii) the
lexicon model – i.e. ψ (successor) and µ (bus). Not all
members of N are used in the derivation (e.g. D11); the
bottom nodes, D0∈N and L0∈Ω, serve as target nodes
reserved for uninterpreted functions to map unused Di

to – e.g. h(D11)=p(D11)=D0, and µ(D11)=L0.

runtime of the parser - i.e. the time the Z3 SMT-
solver takes to check (i.e. solve) the constructed
SMT model.30 We found that I1 and I2 each took
less than 12 seconds to parse, I3-I6 each took be-
tween 3 and 6 minutes to parse, and I7 and I8 took
31 and 41 minutes to parse (respectively). These
differences in runtime are not unexpected when we
observe that: (i) I1 and I2 have fewer tokens and no
embedding structure (as compared to I3-I8); (ii) I7
and I8 require more instances of head-movement,
empty categories and phrasal movement, so that the
checked model is (substantively) larger than those
of I1-I6. Moreover, we found in practice that there
is a tradeoff between: (i) writing succinct, compre-
hensible model-axioms that make extensive use of
compositions of uninterpretable functions, and (ii)
the runtime of the Z3 SMT-solver. We believe navi-
gating this tradeoff is an important avenue of future
work for this parser, and that it is worth exploring
the use of other higher-order theories supported
by Z3, such as the theory of algebraic datatypes

30See Table 5 in the appendix for detailed results.

(Bjørner and Nachmanson, 2020), for modeling
minimalist derivations and lexicons.

We next applied the parser to inputs in which
either the LF or PF interface conditions are spec-
ified (but not both). We did this for each entry in
Table 2, and present the analysis for I1 below.

If the input is limited to the PF ICs in I1, the
parser can output a derivation (see Fig. 4) in which

“the man” is the internal argument (as it merges
with “eaten”) and “what” is the external argument
(as it merges with the light-verb, v). This alter-
native derivation is possible because the external
and internal arguments are selected using the same
feature, =y, and swapping where the two argu-
ments merge into the VP-shell structure compels
the axiom encoding the Uniformity of θ-Assignment
Hypothesis to assign semantic roles (to the argu-
ments) that yield an incorrect reading of “What
has the man eaten?” One solution is to refine the
(selection) labels of nominal phrases (NP) to en-
code θ-roles; however, the model must be updated
to propagate NP-labels to determiners (and com-
plementizers and relative pronouns), or else the
lexicon will grow untenably by multiplying out the
determiners for each distinct selection label.

Conversely, if the input is instead limited to the
LF ICs in I1, then the parser can output a deriva-
tion (see Fig. 5) where the auxiliary verb “has” is
not raised because T -to-C head-movement is com-
pelled by PF ICs (and not by LF ICs); consequently,
the surfaced form, “What the man has eaten?”, is
ungrammatical. One solution is to add axioms that
model Economy Conditions (Collins, 2001), so that
T -to-C head-movement may be omitted if doing
so leaves the surfaced form unchanged.

7 Conclusion

We have introduced an MG parser that is a com-
putational model of HLF and is grounded in an
SMT-model encoding a novel axiomatization of
minimalist syntax. The parser uses the Z3 SMT-
solver, an automatic theorem prover, to answer the
question: can the input lexicon yield a derivation
that satisfies the input LF and PF interface con-
ditions? In this way, parsing is translated into an
(SMT) decision problem, with model solutions cor-
responding to the derivations output by the parser.

We demonstrated that the parser, implemented
within the Parsing as Deduction framework, can op-
erate on partially specified interface conditions.31

31More generally, we note that the flexibility of the parser’s
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Figure 4: A derivation yielded by the parser, using the
lexicon in Table 1, when only the PF interface condi-
tions in entry I1 (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation has the originating locations of the two
arguments of the (lexical) verb “eaten” swapped; hence,
although this derivation will be (correctly) externalized
as “What has the man eaten?”, the derivation encodes
an (incorrect) semantic interpretation in which the pred-
icate “eaten” takes “the man” as its internal (object)
argument, and “what” as its external (subject) argument
(akin to the expression “What has eaten the man?”).

This flexibility of the parser can be leveraged to
observe when: (i) output derivations do not accord
with the prescriptions of modern theories of min-
imalist syntax – inspecting these derivations can
yield clues about how interface conditions and lin-
guistic constraints cooperate to rule out derivations
prohibited by the theory; (ii) the parser fails to
output any derivation despite the theory prescrib-

design enables it to operate on partially specified inputs, with
the SMT-solver in effect solving for the unspecified inputs (in
addition to the derivation itself). E.g. if we specify the LF and
PF interface conditions, but not the lexicon, then the parser
will constrain the SMT model of the derivation using the in-
terface conditions, but will not constrain the SMT model of
the lexicon since no input lexicon was specified – then when
the SMT-solver obtains a satisfiable interpretation of the SMT
model of the parser, we can (automatically) recover from the
interpretation of the lexicon model an MG lexicon that yields
a derivation that satisfies the specified interface conditions.
Moreover, if we augment the parser by connecting multiple
SMT models of derivations, each constrained by a different
pairing of interface conditions, to a single SMT model of a
lexicon, then the composite SMT model can be used to infer
an MG that can, for each pair of interface conditions, yield a
derivation that satisfies that pairing – notably, this approach
aligns with earlier work that used logic grammars to infer a
lexicon (Rayner et al., 1988). See (Indurkhya, 2020) and (In-
durkhya, 2022) for detailed discussions of how augmenting the
parser in this manner can yield instantaneous and incremental
(respectively) computational models of language acquisition.

Figure 5: A derivation yielded by the parser, using the
lexicon in Table 1, when only the LF interface condi-
tions in entry I1 (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation does not raise the auxiliary verb, “has”,
via T-to-C head-movement; consequently, although this
derivation accords with the LF interface conditions stip-
ulated in I1 (as it uses entry 36 in Table 1, which codes
for an interrogative), it is externalized (i.e. surfaced)
as the (un-grammatical) expression “What the man has
eaten?”

ing a licit derivation – then the SMT-solver can
identify the minimal subset of model-axioms that
are mutually incompatible (Lynce and Silva, 2004;
Guthmann et al., 2016), thus identifying conflicts
between the axioms of minimalist syntax and the
constraints derived from the interface conditions.

Finally, a key advantage of this parser is that
it enables a division of labor: the SMT-solver is
tasked with carrying out the logical deductions
needed to find a model solution, leaving the lin-
guist free to: (i) extend the parser, with the modu-
lar design of the SMT-model enabling related sets
of axioms to be modified without impacting the
remainder of the model;32 (ii) investigate how prin-
ciples of syntax cooperate to constrain the space of
derivations, and identify redundant principles that
may be dropped to yield a simpler theory of syntax.
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A Reproducibility

We ran the computer programs detailed in this
study on a MacBook Pro (Retina, 15-inch, Late
2013) with a 2.3 GHz Intel Core i7 processor,
and 16GB of 1600MHz DDR3 RAM. We used
Python v3.7.9 and v4.8.6 of the Z3 SMT-solver.
The complete program source code for the parser,
including the (python) source code for the SMT
models, is available at https://github.com/
indurks/mgsmt.

B Minimalist Grammar

This section provides additional details about the
Minimalist Grammar formalism used in the present
study. Notably, MGs are mildly-context sensitive
(Michaelis, 1998) and are sufficiently expressive
for modeling natural language in so far as they
can model the syntactic constraints that appear
in contemporary syntax (e.g. they can produce
structures encoding cross-serial dependencies) –
specifically, the syntactic constraints underlying
HLF can be modeled by Monadic Second Order
(MSO) logic (Rogers and Nordlinger, 1998), and
MSO-expressible constraints over an MG deriva-
tion tree can be encoded within an MG lexicon
(Graf, 2013).33

We now turn to reviewing the algebraic formu-
lation of MGs presented in Stabler and Keenan
(2003) – we encourage the reader to consult Fig. 1
and Table 1 to ground this formal presentation.
A minimalist grammar, G, is defined by a tu-
ple, (Σ, Sel, Lic, Lex,M), and we will now de-
fine each member of this tuple in turn. First, Σ is
a finite, non-empty set of phonological forms – a
phonological form is either overt (i.e. a pronounced
word) or covert (i.e. unpronounced), and we let ϵ
denote a covert phonological form. Next, Sel and

33Notably, MGs are sufficiently expressive for modeling
syntactic derivations that are systematically related by struc-
tural transformations. E.g. a declarative is (structurally) re-
lated to its corresponding polar-interrogative by way of the
rule for aux-raising (i.e. T-to-C movement as modeled in
contemporary minimalist syntax) in which the top most (i.e.
root) complementizer triggers head-movement of the (hierar-
chically) closest tense-marker – we would thus expect that the
syntactic structure assigned (by an MG parser) to a declarative
could be transformed into a polar-interrogative by replacing
lexical item 25 with lexical item 9 (in Table 1), and would also
expect that running an MG parser on the polar-interrogative
would yield the same derivation as obtained by applying aux-
raising to the derivation of the declarative. This capability
of MGs and their parsers stands in contrast with state-of-the-
art UD parsers that have difficulty acquiring and encoding
knowledge of the aux-raising rule (Indurkhya and Berwick,
2021).

Lic are defined as non-empty (disjoint) finite sets
of feature labels for selection and licensing respec-
tively.34 We then define F , the set of syntactic
features, as the union of:

(i) the singleton set containing the special fea-
ture C, which marks the end of the derivation
process;

(ii) the set of selectional features, formed by pre-
fixing members of Sel with = or ∼ to indi-
cate if the feature is a selector or a selectee
(respectively); furthermore, a< or> prefixed
before a selector prefix – i.e. “<=” or “>=” –
indicates that the selector triggers left or right
head-movement respectively.35

(iii) the set of licensing features, formed by prefix-
ing members of Lic with + or − to indicate
if the feature is a licensor or a licensee (re-
spectively).

Turning to the lexicon, Lex, we first define the
set of chains as H = Σ∗ × Types × F ∗, where
the set Types = {::, :} designates whether a chain
is lexical or derived (from lexical chains) respec-
tively.36 We can then define Lex as a non-empty
finite set of lexical chains. Finally, the set of ex-
pressions, E = H+, may be recursively combined
together via the binary structure building operation
Merge, denoted by M, to produce another expres-
sion. Merge has two disjoint subcases:

(i) external merge (EM), which models combi-
nation, requires that both arguments of merge
are disjoint from one another;

(ii) internal merge (IM), which models displace-
ment, requires that one of the arguments is a
constituent of the other.

Both sub-cases of Merge are driven by feature-
checking, with M determining whether two ex-
pressions may be paired together based on their
features; note that the syntactic features are unin-
terpretable, and Merge deletes the pairs of features
that check one another.

Let us now formally detail the subcases of M .

34The feature system used here is based on checking theory
as detailed in Chomsky (1995).

35Instances of head-movement include: (i) the V-to-v head-
movement utilized in the Hale-Keyser model of predicate-
argument structure (Hale and Keyser, 1993, 2002); (ii) T-to-C
head-movement (Pesetsky and Torrego, 2001) that is utilized
in fronting an auxiliary verb (e.g. when forming a polar-
interrogative from a declarative).

36Lexical chains serve to track the sequence of movement
operations that the (maximal) projection (of a lexical head)
may undergo in the course of a derivation; in particular, they
track terms in the derivation that have not yet finished moving
(and thus need to be accessible to the Internal Merge operation.
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Let s, t ∈ Σ∗, f ∈ Sel, g ∈ Lic, γ ∈ F ∗ and
δ ∈ F+. Furthermore, let α1, ..., αk ∈ H for
0 ≤ k, and let ι1, ..., ιl ∈ H for 0 ≤ l. We then
define EM as the union of the following three (dis-
joint) functions, {EM1, EM2, EM3}, that involve
feature selection:

[s :: =f , γ] [t · ∼f ], ι1...ιl EM1[st : γ], ι1...ιl

[s : =f , γ], α1...αk [t · ∼f ], ι1...ιl EM2[ts : γ], α1...αk, ι1...ιl

[s ·=f , γ], α1...αk [t · ∼f , δ], ι1...ιl EM3[s : γ], α1...αk, [t : δ], ι1...ιl
The separation of the phonological form and the
syntactic features by the symbol · designates that
the chain could either be lexical or derived. IM is
defined as the union of the two disjoint functions,
{IM1, IM2}, that employ feature licensing:

[s : +g, γ], α1...αi−1, [t : −g], αi+1...αk IM1[ts : γ], α1...αi−1, αi+1...αk

[s : +g, γ], α1...αi−1, [t : −g, δ], αi+1...αk IM2[s : γ], α1...αi−1, [t : δ], αi+1...αk

Furthermore, IM1 and IM2 are restricted by the
Shortest Move Constraint (SMC): if a licensor, α,
binds to a licensee, β, it must be the case that β is
the only licensee to which α can bind. The SMC
ensures that the licensor will always select the (hi-
erarchically) nearest licensee, as at every step in the
derivation, there can only be one possible licensee
that can be licensed; this has the consequence of
making IM deterministic (with respect to which
licensee a licensor will license), so that a deriva-
tion can be determined entirely from knowledge of
the order in which the various lexical heads (and
projections thereof) are externally merged with one
another.

Finally, we define a derivation as a sequence of
expressions produced by recursively applying M to
a group of chains; a derivation is deemed to be com-
plete if there remains a single expression that has no
chains and that has one feature, C (which serves to
indicate the termination point of the derivation).37

37As defined here, an MG either can or cannot generate a
given derivation. However, we can compute a relative like-
lihood for a given derivation to be generated by an MG by
determining for each of the merge operations involving (con-
stituent) selection (i.e. the c-selection that drives external
merge), the degree to which the heads of the two merged
projections tend to associate with one another – this pair-
wise associativity between phonological forms (correspond-
ing to the two heads) can be computed by various methods,
e.g. using a similarity metric to compute distance between
the word embedding vectors for the two phonological forms,
or using model-based collaborative filtering may be used to
compute the associativity between predicates and arguments
(Indurkhya, 2021b).
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D8 · · · · · · · · · · · · · · · · · · · · · · ·
D9 · ⃝⃝⃝⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · · · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
D10 · · · · · · · · · · · · · · · · · · · · · · ·
D11 · · · · · · · · · · · · · · · · · · · · · · ·
D12 · ⃝⃝⃝ · · · ⊕⊕⊕ · · · · · · · · · · · · · · · · ·
D13 · ⃝⃝⃝⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
D14 · ⃝⃝⃝⊕⊕⊕⃝⃝⃝⃝⃝⃝⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ⃝⃝⃝ · ⊕⊕⊕⊕⊕⊕ · · · ·
D15 · · · ⊕⊕⊕⊕⊕⊕ · · · · · · · · · · · · · · · · · ·
D16 · · · · · · · · · · · · · · · · · · · · · · ·
D17 · ⃝⃝⃝ · · · ⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · · · · · · · · ·
D18 · ⃝⃝⃝ · ⃝⃝⃝⃝⃝⃝⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ⃝⃝⃝ · ⊕⊕⊕ · · · · ·
D19 · +++ · · · · · · · · · · · · · · · · · · · · ·
D20 · · · · · · · · · · · · · · · · · · · · · · ·
D21 · · · ++++++ · · · · · · · · · · +++ · · · · · · ·
D22 · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ ·

Table 4: Model interpretation of two binary uninter-
preted functions, d and d⋆, for the derivation in Fig. 1.
Given an entry at row Di and column Dj : +++ indicates
that the node Di dominates the node Dj with respect to
the derived tree but not the derivation tree;⃝⃝⃝ indicates
that Di dominates Dj with respect to the derivation tree
but not the derived tree;⊕⊕⊕ indicates that Di dominates
Dj with respect to both the derivation tree and the de-
rived tree; and · indicates that Di does not dominate
Dj (with respect to either the derivation tree or the de-
rived tree). E.g. D18 dominates D15 with respect to the
derivation tree but not the derived tree: notice in Table 3
that while p(D15) = D18, there is no k ∈ [0, 22] such
that P(Dk) = D18. Conversely, D21 dominates D15

with respect to the derived tree but not the derivation
tree: notice in Table 3 that P(D15) = D21, but there is
no k ∈ [0, 22] such that p(Dk) = D21. The derivation’s
root node, D22, dominates each of the other nodes in
the derivation with respect to both the derivation tree
and the derived tree. Finally, D1, D2, . . . , D7, which
are leaf nodes (i.e. lexical heads) in the derivation, do
not dominate any other nodes in the derivation, and for
that reason rows D1 . . . D7 are not shown as they would
be entirely filled by · .

Assuming a Subject-Verb-Object word-ordering,
the surface form associated with a complete deriva-
tion may be read out by recursively applying (top-
down) a Specifier-Head-Complement linearization
of each projection.38

C Multi-dominance and Derived Trees

This section details how a minimalist derivation
takes the form of a multi-dominance tree – i.e. the
(bare) phrase structures that linguists are familiar

38In a projection of a lexical head, the complement is the
first term the lexical head merges with, and the specifier is
the subsequent term that the projection (of the head) merges
with – e.g. in XBar-theoretic terms, given the two rules:
XP → Spec,X ′, andX ′ → X,Comp, the projection of the
lexical head X will be linearized so that the surface ordering
is Spec,X,Comp.
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Figure 6: An illustration of how the members of the derivation node sort, N, are arranged into derivation node
sequences, with each sequence being associated with either an overt or covert phonological form. Each derivation
node sequence is depicted as a column, with the first node in the sequence at the bottom and the last node in the
sequence at the top. Note that the derivation node sequences shown here may be arranged so as to form the derivation
(tree) shown in Fig. 1. Nodes that actively play a role in the derivation are depicted as white boxes, and active nodes
that are in the same column have the same (lexical) head - e.g. the root node is D22, and since D22 has the same
head as D9 and D6, it is displayed here above the covert node-sequence associated with the (covert) phonological
form ϵCques.

. (Note that the root node is not a member of any derivation node sequence, and is treated as a special
case in the axioms.) Boxes with dashed boundaries correspond to inactive members of N that do not participate
in the derivation (i.e. they do not appear in the derivation in Fig. 1). Boxes with solid boundaries are projections,
whereas greyed out boxes are part of a lexical chain (i.e. the sequence of movement operations that a maximal
projection may participate in). Importantly, the derivation node sequences together form an index over N, and this
index enables us to write model axioms that can explicitly reference the members of a derivation node sequence –
i.e. the axioms that constrain uninterpreted functions operating over N can explicitly reference each individual step
in the projection (and potential subsequent chain) of the lexical head associated with a given phonological form.

with.39

A multi-dominance tree is a super-position of
the derivation tree – i.e. the tree made up of the
external and internal merge operations that work to-
gether to combine a multi-set of lexical items drawn
from the lexicon – and the derived tree, which is
the tree that remains after a minimalist derivation
has been generated and all movement operations
have been applied. Each MG derivation tree is as-
sociated with a multi-dominance tree, which can
be generated from the derivation tree by appending,
for each occurrence of IM in the derivation tree, a
node at the destination of the movement operation,
and then establishing a dominance relation (via d⋆)
between the destination node and the node at the
source of movement.40

39Relatedly, see Pgs. 12-24 of Graf (2013) for a discussion
of “augmented derivation trees.”

40This is closely related to the two-step approach that in-
volves first lifting information implicitly encoded within a
derivation tree (i.e. the information encoded in the structure
of the multi-dominance tree) so as to to make the information
explicit, and then reconstructing the (derived) phrase structure
tree that linguists are more familiar with. See Pgs. 35-50 of
Graf (2013) for a discussion of the two-step approach of (i)

We observe that, for both the derivation and
multi-dominance trees, each node is associated
with a (lexical) head; then, since two nodes that
are merged together cannot have the same head,
we can identify which of two merged constituents
projects by examining the head of the node that
corresponds to the product of merge.41

• The derivation tree can be recovered from the
multi-dominance tree by deleting each occur-
rence of movement (i.e. deleting the node at
the raised location).

• The derived tree may be recovered from the
multi-dominance tree by removing, for each
node x in the multi-dominance tree that serves
as a source of movement, the dominance rela-
tion (with respect to the derived tree) between

lifting an MG derivation to its associated the multi-dominance
tree and then (ii) reconstructing the ”derived tree”; see also
(Kobele et al., 2007). See Morawietz (2008) (Pgs. 131-182)
for a review of the two-step approach as applied to multiple
context-free grammars (MCFGs), and note that MGs may be
translated into MCFGs (Michaelis et al., 2000).

41N.b. the derivation and multi-dominance trees do not
explicitly encode (linear) precedence relations between the
lexical heads entering into the derivation.
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x and its parent – i.e.:

d⋆(p(x), x) = False

Importantly, the multi-dominance tree can be
viewed as a super-position of the derivation tree
and the derived tree, and it is the multi-dominance
tree associated with an MG derivation that serves
as the domain of discourse in the SMT model of
the derivation. Hence, whenever the present study
refers to a derivation tree or a derived tree, the
reader should understand that they are components
of a multi-dominance tree.

Each lexical item that appears in a derivation
has a (bottom-up) trajectory through the associated
multi-dominance tree:

(i) the lexical item, starting as a lexical head,
is first projected zero or more times – this
process is driven by either external merge via
(c-)selection or internal merge via licensing;

(ii) the (maximal) projection of the lexical item is
then either the terminal point of the derivation
(marked by the presence of the special symbol
C) or is selected by some other lexical head
(this is driven by the presence of a selectee
feature);

(iii) finally, the lexical item is raised, via inter-
nal merge, zero or more times to form a
movement-chain, with each movement op-
eration forming a link in the chain.

Importantly, there are two key points to take away
from this observation:
(a) Each node in the multi-dominance tree asso-

ciates with a lexical item in the derivation (i.e.
the lexical item that is the head of that node)
and the nodes associated with a lexical head
may be arranged as a sequence in the order
in which they appear in the multi-dominance
tree (starting from the bottom); for this reason,
we refer to such a sequence as a “derivation
node sequence” and observe that the multi-
dominance tree associated with an MG deriva-
tion is a structural arrangement of derivation
node sequences (Stabler, 2013).

(b) Given the multi-dominance tree that is associ-
ated with an MG derivation, we can recover
the multiset of lexical items from which the
multi-domimance tree is derived (except for
the labels of the syntactic features); this can be
seen by observing that each node in a deriva-
tion node sequence is associated with exactly
one type of syntactic feature – i.e. selector,

IC Trial 1 Trial 2 Trial 3 Median

I1 11.7 10.5 13.9 11.7
I2 3.2 3.3 4.0 3.3
I3 323.8 208.9 346.0 323.8
I4 267.1 296.2 281.1 281.1
I5 222.6 225.5 178.5 222.6
I6 261.8 312.0 261.4 261.8
I7 1213.3 2065.6 1857.2 1857.2
I8 2445.1 1851.7 3275.9 2445.1

Table 5: Runtime performance, measured in seconds,
of the parser (i.e. the time Z3 takes to check the con-
structed SMT-model of the parser).

selectee, licensor, licensee, or the special sym-
bol C – and noting that the feature-type of
a node can be determined by the position of
that node within the multi-domimance tree, so
that given a derivation node sequence associ-
ated with a lexical entry, the corresponding
sequence of syntactic feature-types (present in
that lexical entry) can be obtained the path that
the derivation node sequence takes through the
multi-dominance tree.

(See Fig. 6 for an illustration of the derivation node
sequences that are assembled to form the derivation
presented in Fig. 1.) Consequently, an SMT model
of a minimalist derivation can be constructed by:
(i) modeling the derivation node sequences that
form the associated multi-dominance tree, and (ii)
constraining the topology of the multi-domimance
tree by using the model axioms to restrict how
the derivation node sequences may be assembled
together.

D Limitations

This section briefly comments on two limitations
of the parser introduced in this study.

One limitation of the parser is that it has only
been tested on (Modern Standard) English, which
has Subject-Verb-Object (SVO) ordering; however,
we believe that the parser can be readily adapted to
languages with Subject-Object-Verb (SOV) order-
ing (e.g. French or Japanese) by replacing a small
number of the constraints (derived from PF inter-
face conditions) that encode SVO-ordering by ap-
plying Specifier-Head-Complement linearization to
the derived tree: namely, these constraints for SVO-
ordering could be replaced with constraints that
enforce SOV-ordering based on applying Specifier-
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Complement-Head linearization (see the relevant
footnote in §7). Moreover, it would be interest-
ing to investigate whether the SMT model of the
parser could be augmented with a (boolean) vari-
able that serves as a switch, controlling whether
the constraints for SVO or SOV are used; notably,
such a switch could either be hard-coded by the
user (to enforce which ordering the parser should
use), or left un-valued, in which case the parser
could use either (SVO or SOV) ordering, so long as
the surfaced word-sequence (yielded by the output
derivation) aligns with the input word-sequence (so
that the input PF interface conditions are satisfied).

Another limitation of the parser is that it is pri-
marily focused on modeling syntax, and does not
explicitly model morphological inflection. We be-
lieve that, in future work, this limitation could be
overcome (in part) by: (i) augmenting the SMT
model of the lexicon to store the root of each (overt)
phonological form and encoding morphological at-
tributes within the labels of the syntactic features;
(ii) updating the constraints (i.e. SMT-formulae)
derived from the PF interface conditions to inflect
each root form when comparing it against the rel-
evant surface form (i.e. the inflected word listed
in the input PF interface conditions) - this inflec-
tion would be realized by the constraints inspecting
the morphological attributes encoded in the feature
label associated with that root form.

We believe that both of these (current) limita-
tions point to productive avenues for further re-
search involving extending the parser presented in
this study.

173



Figure 7: A derivation for the sentence: “She knows that John has given money.” This derivation was output by the
parser when it was applied to entry I5 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with an
embedded sentence – i.e. “John has given money”.
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Figure 8: A derivation for the sentence: “John fears everyone who knows her.” This derivation was output by the
parser when it was applied to entry I7 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with a
relative clause – i.e. “everyone who knows her”.
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