
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 52 - 60
May 26-27, 2022 ©2022 Association for Computational Linguistics

Gi2Pi: Rule-based, index-preserving
grapheme-to-phoneme transformations

Aidan Pine1
aidan.pine

Patrick Littell1
patrick.littell

Eric Joanis1
eric.joanis

David Huggins-Daines2
dhdaines@gmail.com

Christopher Cox3
christopher.cox

Fineen Davis4
fineen.davis@gmail.com

Eddie Antonio Santos5
eddie.santos@ucdconnect.ie

Shankhalika Srikanth6
ssrikanth@uvic.ca

Delasie Torkornoo3
delasie.torkornoo

Sabrina Yu7
sab.yu@mail.utoronto.ca

Abstract
This paper describes the motivation and
implementation details for a rule-based, index-
preserving grapheme-to-phoneme engine
‘Gi2Pi’ implemented in pure Python and
released under the open source MIT license8.
The engine and interface have been designed
to prioritize the developer experience of
potential contributors without requiring a
high level of programming knowledge. Gi2Pi
already provides mappings for 30 (mostly
Indigenous) languages, and the package is
accompanied by a web-based interactive
development environment, a RESTful API,
and extensive documentation to encourage the
addition of more mappings in the future. We
also present three downstream applications
of Gi2Pi and show results of a preliminary
evaluation.

1 Introduction and motivation

Gi2Pi is a library9 for grapheme-to-phoneme and
orthographic transformation, with a particular fo-
cus on the needs of digital humanities projects.
While libraries for general-purpose G2P exist, we
found that our downstream projects had special
needs that existing libraries did not entirely meet.
In particular,

1. Subject-matter experts for these languages
are often teachers or linguists without a back-
ground in computer science, who are unfamil-
iar with the conventions of programming and

1National Research Council Canada; @nrc-cnrc.gc.ca
2Independent Researcher
3Carleton University; @carleton.ca
4Wiichihitotaak ILR Inc.
5University College Dublin
6University of Victoria
7University of Toronto
8https://github.com/roedoejet/g2p
9The package is registered on the Python Package Index

as ‘g2p’ - however to disambiguate our package from the
generic NLP task ‘G2P’, we make specific reference to the
index preservation capabilities of our package and refer to the
package as Gi2Pi throughout this paper.

need more intuitive interfaces to convert their
knowledge into executable code (§2.1).

2. Most existing libraries operate on unstruc-
tured text, under the assumption that the orig-
inal document will be discarded after its lin-
guistic information is extracted. Our down-
stream use-cases, however, often involve
the augmentation of the original document
with downstream results (e.g., with pronun-
ciations, alternative orthographies, or time-
aligned highlighting). We need to be able to
trace results backward to their original coun-
terparts (e.g. by using indices as shown in Fig-
ure 1), maintaining this information through
every step of transduction, so that markup,
IDs, punctuation, and other features of the
original document can be preserved (§2.2).

d

e

u

x

d

ø

d

o

ː

D

O

W

Figure 1: Screenshot from G2P Studio of interactive
visualization of the indices preserved when composing
transductions of the French word “deux”, between the
orthographic form, a phonetic representation in the In-
ternational Phonetic Alphabet (IPA), the closest English
phonemes according to PanPhon (Mortensen et al.,
2016), and finally to English ARPABET (see §2.3).

3. Software packages for linguistic transforma-
tion, and their dependencies, can be difficult
to compile and install, or cannot be installed
on all operating systems.

The need for such specialized knowledge
presents a bottleneck in the development of G2P

52



engines, particularly when we venture away from
the NLP space and into the digital humanities
space; experts of a particular language’s sound pat-
terns should not necessarily need experience in
programming and compiling software in order to
translate their knowledge of the language into a
machine-readable format.
Meanwhile, however, the languages that we are

concentrating on (in particular, Indigenous lan-
guages spoken in Canada) do not typically have
extensive, publicly-available corpora of parallel or-
thographic and phonetic renderings, from which
we could learn a weighted FST (Novak et al.,
2016; Deri and Knight, 2016) or neural model
(Rao et al., 2015; Peters et al., 2017). For most
of these languages, rule-based approaches based
on expert knowledge will be the norm for the
foreseeable future. Fortunately, these are mostly
languages with regular, linguistically-informed or-
thographies, such that rule-based approaches are
adequate.
In broad strokes, our library is most similar

to Epitran (Mortensen et al., 2018), which shares
some of these design decisions; it prioritizes ease
of installation and adopts a method for defining
rule-based G2P mappings inspired by phonologi-
cal re-write rule syntax that would be familiar to
linguists. Our work differs by allowing rules to be
written in a spreadsheet format (§2.1), by having
a core engine that preserves the indices between
inputs and output transductions (§2.2), and by pro-
viding a bundled web interface for writing and run-
ning G2P mappings (§2.4) with an accompanying
RESTful API (§2.6.1).

2 Gi2Pi

This section briefly describes the process for writ-
ing rules (§2.1), the motivation and implemen-
tation details for preserving indices between in-
puts and outputs (§2.2), the automatic genera-
tion of cross-linguistic phoneme-to-phoneme map-
pings (§2.3), the ‘G2P Studio’ development envi-
ronment (§2.4), a list of currently supported lan-
guages (§2.5), documentation information (§2.6),
and a description of various applications (§2.7).

2.1 Writing Rules

Rules are written in either a tabular, spreadsheet
format or in JSON (See Figure 2). The core func-
tionality of Gi2Pi is expressible in the spreadsheet
format (CSV), while the JSON format allows for

more functionality. Each mapping is also accom-
panied by a configuration file written in YAML. In
its most basic form, a rule just has an input and an
output, like in Figure 2.

a,b

(a) Minimal CSV Rule

{
"in": "a",
"out" : "b"

}

(b) Minimal JSON Rule

Figure 2: Aminimal rule converting ‘a’ to ‘b’ expressed
in both the CSV syntax (a) and JSON syntax (b)

Context-sensitive rules can also be written
which conditionally apply rules based on whether
a pattern is matched before or after the input as
shown in Figure 3.

{
"in": "a",
"out" : "b",
"context_before": "b",
"context_after": "c"

}

Figure 3: Aminimal context-sensitive rule in JSON for-
mat for converting ‘a’ to ‘b’ only when ‘a’ is preceded
by ‘b’ and followed by ‘c’. The equivalent rule written
in the CSV format is ‘a,b,b,c’.

Under the hood, these rules are compiled into
regular expressions, where the input is the pat-
tern to match, and the ‘context before’ and ‘con-
text after’ values are turned into positive lookbe-
hinds and lookaheads respectively. Lookbehinds
are first converted to be fixed width and several
other preprocessing steps are applied before con-
structing the regular expression. Namely, any ex-
plicit indices (§2.2) are removed, optional case in-
sensitivity flags are applied, Unicode normaliza-
tion (NFC or NFD) is done, and special characters
can be escaped.
A collection of rules with a configuration consti-

tutes a ‘mapping’ which can then be run in the se-
quence the rules are defined or in an automatically
generated order that runs the rules in reverse order
of input length. This mode is intended to help pre-
vent particular rule ‘bleeding’ relationships where
if the input to a hypothetical rule r1 is a substring

53



(1) baata
r2 bæta
r1 bæt@

bæt@

(2) baata
r1 b@@t@
r2

b@@t@

Figure 4: Example of rule ordering relationships in a
made-up language. r1 is the rule a → @, and r2 is the
rule aa→æ. In this made-up language, ‘bæt@’ is the cor-
rect transduced form of ‘baata’, and therefore we want
to order rule r2 before r1, as shown in (1), so that r1
does not bleed the context for r2 to apply, as shown in
(2).

of the input to rule r2 and is ordered to apply first,
it will remove, or ‘bleed’ the context for r2 to ap-
ply, erroneously preventing the application of r2
as shown in example (2) in Figure 4.

2.1.1 Preventing Feeding Relationships
Another type of rule interaction that can be avoided
is a feeding relationship between rules—i.e. where
the output of one rule creates the context for an-
other rule to apply. In some situations this is de-
sired, but it can also create problems in your rules.
To handle this, we allow prevent_feeding to be
declared either for an individual rule in a JSON-
formatted mapping or for each rule in a mapping.
When prevent_feeding is set to true, the out-
put of a rule is replaced with a character from the
Supplementary Private Use Area AUnicode block,
offset by the index of the rule in a given mapping.
Thus, they will never match the input or context of
other rules. After applying all rules in a mapping,
these intermediate representations are transformed
back into the appropriate values.

2.1.2 Composite Transducers
In practice, many real-world transduction tasks
comprise a sequence of simpler transductions. For
example, a G2P transduction used in ReadAlong
Studio (§2.7.3) might start with converting a font-
encoded orthography into a Unicode compliant
form, then replacing confusable characters, con-
verting the orthographic form into IPA, mapping
those characters onto their closest English equiva-
lents, and finally mapping the English IPA charac-
ters into the ARPABET alphabet used by the acous-
tic model.
Gi2Pi is built with this in mind; an arbitrary

number of transducers can be combined, and

chains of transducers can be inferred automatically.
If the user requests a mapping from one language
code10 to another, e.g., from alq (Algonquin) to
eng-arpabet, and that particular mapping does
not exist, the software can search for the short-
est possible chain of transducers with those end-
points, and it will act as if it were an ordinary trans-
ducer (including maintaining indices between the
ultimate inputs and outputs, and all intermediate
forms, as seen in Fig. 1).
Fig. 5 on the following page illustrates the cur-

rent network of transducers possible in Gi2Pi.
This modularity is intended, in part, to help

subject-matter experts contribute their domain
knowledge (e.g., the pronunciation of their lan-
guage’s orthography) without having to under-
stand the other specialized components of the trans-
duction pipeline (e.g., confusable Unicode char-
acters or ARPABET), or even the structure of
the pipeline as a whole. They only have to con-
tribute their particular piece; Gi2Pi can compose
the pipeline as a whole, and even auto-generate cer-
tain kinds of missing pieces (§2.3).

2.1.3 Debugging
Debugging transductions can be a difficult task
when there are multiple mappings involved, each
with possibly dozens of rules. In order to help
ease the burden on developers, multiple debugging
tools have been developed to assist contributors.
In the G2P Studio (§2.4), there is an automatic vi-
sualization mode which allows users to visualize
transductions in an interactive way; Figure 1 is a
screenshot of this visualization.
There are also two alternative options for de-

bugging; the --debugger flag used in either the
CLI or RESTAPI shows each transduction applied
in sequence along with any intermediate steps
(§2.1.1). Additionally, there is a g2p doctor
command in the CLI that checks a specific map-
ping for a list of common errors, such as the dec-
laration of IPA characters not recognized by Pan-
Phon.

2.2 Preserving Indices
The concerns in (§1) are not as pressing when
considering a G2P transformation to create arti-
facts such as training data for a speech recognition

10In Gi2Pi, a mapping is a collection of rules with a defined
input language code and output language code. By “code” we
mean an arbitrary label for the language. By convention we
start with the ISO 639-3 code and add a descriptive suffix (e.g.
-ipa when required.

54



alq-ipa

atj-ipa

ckt-ipa

clc

clc-doulos

crg-ipa
crk-ipa

crl-ipa

crm-ipa

crx-sro

crx-syl

csw-ipa

ctp-ipa

dan-ipa

eng-arpabet

eng-ipa

fn-unicode

fn-unicode-font

fra-ipa

git-ipa

gla-ipa

gwi-ipa

hei

hei-doulos

hei-times-font

iku-ipa
iku-sro-ipa

kkz-ipa

kwk-ipa

kwk-napa-ubc

kwk-napa-ubc-con

kwk-napa-uvic

kwk-napa-uvic-con

lml-ipa

mic-ipa

moh-ipa

nav
nav-times-font

see-ipa

srs-ipa
str-ipa

tau-ipa

tli-ipa
ttm-ipa

und-ipa

Figure 5: Visualization of the network created by G2P. Nodes represent orthographies or phonetic representations.
They are labelled and colour coded according to the associated language’s ISO 639-3 code. Arcs represent map-
pings. Nodes are sized relative to the number of upstream nodes. English (eng) has the largest nodes due to the large
number of generated mappings into English for the purpose of the ReadAlong Studio project (see §2.3, §2.7.3).

model. There, once the necessary information has
been extracted from the document, features in the
original document like punctuation can be ignored,
as only the transformed version is used.
However, consider how the project needs differ

when force-aligning a storybook with an accompa-
nying recording, such that a beginner reader can
see words highlighted when they are read, click to
hear words in isolation, etc. If our transformation
pipeline has thrown out all non-speech features of
the document on the way to the ARPABET needed
by the decoder, we are left with timestamps that
correspond only to a text document with an unclear
relationship with the original structured data. This
would be fine if the storybook were only to be used
as training data, but if wewant to re-associate those
timestamps with the original document, we would
have an additional problem of re-alignment.
We could potentially try to learn an alignment

model between the output and the original docu-
ment, but data is extremely scarce in most of our
target languages, and in any case these alignments
are something that the model itself could have
maintained. Therefore, we designed the Gi2Pi li-
brary to maintain index alignments throughout the

process, even when transformations are composed.
This is also true below the level of the word.

Many of our target languages are very morpho-
logically complex and long words are the norm.
Therefore, educational material in these languages
often has subword highlighting. For example,
educational material from the Onkwawenna Ken-
tyohkwa immersion school for the Kanyen’kéha
(Mohawk) language has a systematic association
with particular kinds of morphemes with colors.
Another example is when the downstream project
involves subword phenomena: a bouncing-ball
sing-along video requires syllable-level alignment
to get the bounce at the correct place and time.
However, in both of these examples, the unit of

transformation is still the word; the word is the
domain over which most phonological transforma-
tions apply. Splitting the original word into sub-
word units before processing will not necessarily
produce correct results, as this would introduce
new “word” boundaries. Therefore, we must also
keep and compose indices below the level of the
word, so that evenwhen transformingwhole words
we can associate the resulting pronunciations, time-
stamps, etc. with subword markup in the original

55



(a) ab→ abc (b) abc→ ab (c) a{1}b{2}→ ab{2}c{1}

Figure 6: Examples of various strategies for assigning indices between inputs and outputs; default assignment of
indices is shown in 6a and 6b and explicit assignment of indices is shown in 6c.

document.
Maintaining these indices is also useful for a

debugging visualization in the bundled develop-
ment environment (§2.4), making clear in com-
posed transductions how inputs, intermediate, and
output forms correspond to each other (Fig. 1).

2.2.1 Default and Explicit Indexing
The default interpretation of rules is to assign in-
dices evenly between inputs and outputs; if there is
a mismatch in length between inputs and outputs,
excess characters are assigned the index of the last
character of the shorter string, as seen in Figures
6a and 6b.
However, Gi2Pi also allows a more explicit syn-

tax for defining indexing relationships between in-
puts and outputs: rules can be marked up with
curly braces to indicate a specific indexing of char-
acters between inputs and outputs as seen in Figure
6c.

2.3 Automatic Phoneme-to-Phoneme
Mappings

Another use of the Gi2Pi library, beyond
grapheme-to-phoneme transformation or ortho-
graphic transliteration, is to map the sounds of
one language onto the sounds of another, for
cross-linguistic comparison. This is used, for
example, in ReadAlong Studio (§2.7.3) to align
text and speech in an arbitrary language using
only an English-language acoustic model.
While these mappings can be written by hand,

it is somewhat of a specialized art, typically per-
formed by speech technology specialists. There-
fore, the Gi2Pi library also includes functional-
ity to automatically generate phone-to-phone map-
pings, by leveraging the phone-to-phone distance
metrics included in PanPhon (Mortensen et al.,

2016) to serve as “glue” in a composite transducer
(§2.1.2).
For composing a mapping A with a mapping B,

where both the output vocabulary of A and in the
input vocabulary B represent IPA characters (but
not necessarily the same inventory of IPA charac-
ters), the Gi2Pi library can generate a mapping in
which each character in the output of A is mapped
to its nearest neighbor in the input of B, according
to the PanPhon’s calculated phone-to-phone dis-
tance between the characters’ phonological feature
vector representations. PanPhon allows for a vari-
ety of distance metrics between IPA characters; by
default we use PanPhon’s Hamming distance met-
ric between IPA phonological feature vector rep-
resentations. This allows non-specialist users to
generate cross-linguistic transductions of the sort
used in cross-lingual speech synthesis (§2.7.2) or
ReadAlong Studio (§2.7.3), without necessarily
having to be a linguist familiar with the IPA.

2.4 G2P Studio
In addition to developing rules locally as described
in §2.1, writing and running mappings can be per-
formed in aweb interface called ‘G2P Studio’. The
G2P Studio is written using a vanilla JavaScript
front-end with Skeleton CSS11 and a Python back-
endwritten in Flaskwith low-latency, bidirectional
communication handled through WebSockets.
The G2P Studio is hosted at https://bit.ly/

g2p-studio but can also be deployed in a dis-
tributed fashion, as the lightweight server/app code
is bundled in the Python package.

2.4.1 Visual Programming Rule Creator
In addition to creating rules in spreadsheets or
JSON files, G2P Studio includes a visual program-

11http://getskeleton.com/

56



Figure 7: Screenshot of the “Rule Creator” interface
in G2P Studio showing a toy set of rules being made
that take each vowel in the Vowels variable (declared
elsewhere in G2P Studio) as input and return the same
vowel prefixed by ‘t’ as output.

ming interface for authoring rules (Figure 7). This
visual programming interface was created with
Blockly12 (Fraser, 2015; Pasternak et al., 2017).

2.5 Supported Languages
At the time of writing, 30 languages are sup-
ported: Anishinàbemiwin (alq), Atikamekw (atj),
Michif (crg), Southern & Northern East Cree (crj),
Plains Cree (crk), Moose Cree (crm), Swampy
Cree (csw), Western Highland Chatino (ctp), Dan-
ish (dan), French (fra), Gitksan (git), Scottish
Gaelic (gla), Gwich’in (gwi), Hän (haa), Inuinnaq-
tun (ikt), Inuktitut (iku), Kaska (kkz), Kwak’wala
(kwk), Raga (lml), Mi’kmaq (mic), Kanien’kéha
(moh), Anishinaabemowin (oji), Seneca (see),
Tsuut’ina (srs), SENĆOŦEN (str), Upper Tanana
(tau), Southern Tutchone (tce), Northern Tutchone
(ttm), Tagish (tgx), Tlingit (tli). Gi2Pi is also
bundled with other mappings, such as mappings
from font-encoded writing systems in Heiltsuk,
Tsilqot’in, and Navajo to Unicode-compliant ver-
sions as well a mapping from English IPA to En-
glish ARPABET.

2.6 Documentation
Documentation on primary use cases and edge
cases is an important part of the Gi2Pi project.
Without contributions to the mappings, the project
will be less accessible, and more difficult to main-
tain. Technical documentation is therefore pro-
vided through ReadTheDocs13 as well as a 7-part

12https://developers.google.com/blockly
13https://g2p.readthedocs.io/

Figure 8: Screenshot of Convertextract GUI for macOS

blog series14 written for a more general audience.

2.6.1 RESTful API documentation
The core functionality of Gi2Pi is also exposed
through a RESTful API. The API and its documen-
tation are generated dynamically using Swagger15
to provide up-to-date, interactive documentation16.
The documentation allows users to interactively
make requests to the API, see available mappings,
and copy the related Curl commands along with
other information like the Request URLs, and Re-
sponse body and headers from their requests.

2.7 Applications
Grapheme-to-phoneme transformations are used
in a wide variety of natural language processing
tasks, and so Gi2Pi can be used for any such use
case. Below, we briefly discuss three projects that
are implemented using Gi2Pi.

2.7.1 Convertextract
Convertextract (Pine and Turin, 2018), is a tool
that performs find/replace operations onMicrosoft
Office documents while preserving the original for-
matting of the file. Convertextract is available for
the command line and with a macOS GUI (Fig-
ure 8). Integration is fully automated between the
libraries—whenever a new version of Gi2Pi is re-
leased, it triggers a new build and release of conver-
textract which is able to perform any conversion
between any of the mappings defined in Gi2Pi.

2.7.2 Speech Synthesis Front End
We have built speech synthesis models for
SENĆOŦEN, Kanyen’kéha, and Gitksan using

14https://blog.mothertongues.org/
g2p-background/

15https://swagger.io/
16https://bit.ly/g2p-api-docs

57



mappings developed with Gi2Pi (Pine et al., 2022).
Part of the pipeline for these models involves trans-
forming the orthographic form of utterances to a
phonetic representation. This is necessary for the
pre-processing step of forced alignment and the
phonetic representation of the text is used as in-
put to the feature prediction network in the speech
synthesis pipeline. The phonetic form is repre-
sented either as one-hot encodings or as multi-
hot phonological feature vectors derived from Pan-
Phon. This is another use case for generated map-
pings (§2.3); a mapping between the IPA symbols
of a target language could be mapped on to the IPA
symbols of one or more languages in a pre-trained
model using Gi2Pi to facilitate fine-tuning on a
language that was not present in the pre-trained
model. This method allows for a principled rule-
based method for mapping between symbol spaces
in cross-lingual speech synthesis without the use of
a learned phonetic transformation network like the
one described by Tu et al. (2019).

2.7.3 ReadAlong Studio
ReadAlong Studio17 is a library for the creation of
time-aligned “read-along” audiobooks, intended to
make text/speech alignment easy for non-specialist
users. It utilizes a zero-shot speech alignment
paradigm in which target-language text is con-
verted to English-language phonemes, and then
force-aligned using the default English-language
acoustic model from PocketSphinx (Huggins-
Daines et al., 2006).
By its nature, this text conversion is a com-

posite transduction (§2.1.2) – first converting the
target-language text to target-language phonemes,
then converting the target-language phonemes into
similar English-language phonemes (§2.3), and fi-
nally converting the English-language phonemes
into the ARPABET symbols that the aligner ex-
pects as shown previously in Figure 1.
While none of these steps is, in itself, difficult

to specify by hand, in combination they require
a relatively rare expertise: (1) understanding of
a specific language’s orthography, (2) understand-
ing how sounds map to each other between lan-
guages, and (3) familiarity with the ARPABET
conventions and the specific phone vocabulary of
the English-language acoustic model used.
By automating the second and third steps, and

automating their composition, the Gi2Pi library

17https://github.com/ReadAlongs/Studio

only requires the user to be able to do the
first, putting it within reach of a linguistically-
informed teacher or other knowledge worker. It
does require knowledge of the IPA, but this
is relatively widespread knowledge, and IPA-
equivalence charts for many languages are easy to
come by in books and online.

3 Evaluation

As mentioned previously, this paper shares many
similarities with Epitran, however we cannot eval-
uate our system using the same method. Epitran
leverages baseline data available in some of the lan-
guages it supports to evaluate the system indirectly
using the downstream task of developing ASR sys-
tems. The word error rates (WER) of ASR sys-
tems created using letter-to-sound rules from Epi-
tran are then compared against those created us-
ing the available baseline. The primary focus for
this library is on extremely low resource languages,
and we do not possess baseline data to recreate the
evaluation procedure implemented by Epitran.
As a crude replacement, we evaluate two of our

mappings by reporting the accuracy of a down-
stream forced alignment task using ReadAlong
Studio (§2.7.3). We manually annotated data from
SENĆOŦEN and Kanyen’kéha with word-level
alignments in Praat. Given the time-consuming
nature of manual alignment, we were limited
to a single document from each language; the
SENĆOŦEN document is 5:47 long and contains
417 words and the Kanyen’kéha document is 5:07
long and contains 249 words. Both documents
are private materials owned by the language com-
munities and shared with us by linguist Timothy
Montler and Kanyen’kéha educator Owennatekha
Brian Maracle respectively.
We evaluate our hand-written mappings against

a baseline zero-shot G2P method. The baseline
we use is ReadAlong Studio’s fallback method for
‘und’ (ISO 639-3 for ‘undetermined’) text. This
fallback method uses the text-unidecode18 pack-
age to convert all characters to ASCII equivalents,
and then uses a rule-based mapping from ASCII
to IPA. For our hand-written SENĆOŦEN and
Kanyen’kéha mappings, we use Gi2Pi’s built-in
automatic mapping functionality to map the IPA
inventories to the closest English IPA equivalents
(§2.3). All methods are then mapped from IPA to
the ARPABET vocabulary used by the decoder.

18https://pypi.org/project/text-unidecode/

58



Mapping Lang. Tolerance (ms)
<10 <25 <50 <100

Handmade moh 0.24 0.43 0.68 0.84
str 0.24 0.49 0.69 0.88

Und moh 0.24 0.46 0.72 0.86
str 0.15 0.34 0.49 0.62

Table 1: Results for Kanyen’kéha (moh) and
SENĆOŦEN (str) downstream forced alignment task
showing alignment accuracy with varying amounts
of tolerance for word boundaries for alignments
created from handmade Gi2Pi mappings and mappings
based on text unidecode (‘Und’), measured against
hand-labelled alignments.

Similar to McAuliffe et al. (2017), we evaluate
the system by reporting the accuracy of the word
boundaries predicted by the aligner within thresh-
olds of < 10, < 25, < 50, and < 100 millisec-
onds; for example, a result of 0.88 with a threshold
of <100ms means that 88% of system boundaries
were within 100ms of the reference boundaries.
As shown in Table 1, the results for

SENĆOŦEN and Kanyen’kéha are not the
same. While alignment created from handmade
mappings for SENĆOŦEN outperforms the base-
line by 26% with a 100ms tolerance threshold,
the results from Kanyen’kéha are less clear, and
do not show an improvement over the baseline.
We suspect this is in part because while the
Kanyen’kéha orthography is quite consistent with
other Latin-based orthographies, the SENĆOŦEN
orthography is considerably different (for example
Ć corresponds to the sound /Ù/), which would af-
fect the text-unidecode library’s ability to predict
reasonable ASCII equivalents. These results could
point to a finding that for simpler19 orthographies
that are strongly aligned with English, the text
unidecode technique could be sufficient; however,
caution should be applied in interpreting these
preliminary results and further evaluation with
additional languages, data, and downstream tasks
would be needed.

4 Conclusion

In this paper we presented Gi2Pi along with its mo-
tivations, and some descriptions of its use cases.
The library is written in pure Python to support
(relatively) easy installation, with support for 30
different languages, index preservation between in-

19Kanyen’kéha contains fewer than half asmany segmental
phonemes as SENĆOŦEN

puts and outputs, an accompanying graphical web
interface, a RESTful API, and extensive documen-
tation to encourage the development of mappings
for more languages in the future.
We recognize that language experts are the best

people suited to write mappings between a lan-
guage’s orthography and the IPA, and we hope that
through a variety of features that such a contributor
would “get for free” by contributing, that Gi2Pi is
an attractive option for rule-based G2P. To summa-
rize, by contributing a mapping, a contributor will
acquire the following:

• Integration into the broader Gi2Pi trans-
duction network for cross-lingual purposes
(§2.1.2)

• Debugging tools (§2.1.3)

• Index preservation for transductions (§2.2)

• A graphical interface (§2.4)

• A RESTful API (§2.6.1)

• Automatic downstream support in Convertex-
tract (§2.7.1) and ReadAlong Studio (§2.7.3)

Each time a mapping is added to Gi2Pi it be-
comes more useful software, so we have priori-
tized the developer experience of contributing a
mapping through documentation, debugging tools
and the features described above. We hope that
these measures will make using and contributing
to Gi2Pi more accessible and we will measure the
success of the project by the number of collabora-
tor contributions of mappings.

Acknowledgements

We would like to acknowledge the Yukon Native
Language Centre and the W

¯
SÁNEĆ School Board

for extremely helpful contributions in providing al-
phabet charts, sample text and other materials that
aided in the development of some of the mappings
described in §2.5. We would also like to thank
Bradley Ellert for his contributions in helping de-
veloping mappings.

References
Aliya Deri and Kevin Knight. 2016. Grapheme-to-

phoneme models for (almost) any language. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 399–408.

59



Neil Fraser. 2015. Ten things we’ve learned from
Blockly. In 2015 IEEE Blocks and Beyond Work-
shop, pages 49–50.

David Huggins-Daines, Mohit Kumar, Arthur Chan,
Alan W Black, Mosur Ravishankar, and Alexander I
Rudnicky. 2006. Pocketsphinx: A free, real-time
continuous speech recognition system for hand-held
devices. In 2006 IEEE International Conference
on Acoustics Speech and Signal Processing Proceed-
ings, volume 1, pages I–I. IEEE.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal forced aligner: Trainable text-speech align-
ment using kaldi. In Interspeech, volume 2017,
pages 498–502.

David R.Mortensen, Siddharth Dalmia, and Patrick Lit-
tell. 2018. Epitran: Precision G2P for many lan-
guages. InProceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Paris, France. European Language Re-
sources Association.

David R. Mortensen, Patrick Littell, Akash Bharad-
waj, Kartik Goyal, Chris Dyer, and Lori S. Levin.
2016. Panphon: A resource for mapping IPA seg-
ments to articulatory feature vectors. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 3475–3484. Association for Computa-
tional Linguistics.

Josef Robert Novak, NobuakiMinematsu, and Keikichi
Hirose. 2016. Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in
the wfst framework. Natural Language Engineering,
22(6):907–938.

Eric Pasternak, Rachel Fenichel, and Andrew N. Mar-
shall. 2017. Tips for creating a block language with
Blockly. In 2017 IEEE Blocks and Beyond Work-
shop, pages 21–24.

Ben Peters, Jon Dehdari, and Josef van Genabith.
2017. Massively Multilingual Neural Grapheme-to-
Phoneme Conversion. In Proceedings of the First
Workshop on Building Linguistically Generalizable
NLP Systems, pages 19–26, Copenhagen, Denmark.
Association for Computational Linguistics.

Aidan Pine and Mark Turin. 2018. Seeing the Heiltsuk
orthography from font encoding through to Unicode:
A case study using convertextract. In Claudia So-
ria, Laurent Besacier, and Laurette Pretorius, editors,
Proceedings of the LREC 2018 Workshop “CCURL
2018 – Sustaining knowledge diversity in the digital
age”, pages 27–30. European Language Resources
Association.

Aidan Pine, Dan Wells, Nathan Thanyehténhas Brin-
klow, Patrick Littell, and Korin Richmond. 2022.
Requirements and Motivations for Low Resource
Speech Synthesis. In Proceedings of ACL 2022,

Dublin, Ireland. Association for Computational Lin-
guistics.

Kanishka Rao, Fuchun Peng, Haşim Sak, and Françoise
Beaufays. 2015. Grapheme-to-phoneme conversion
using long short-term memory recurrent neural net-
works. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4225–4229.

Tao Tu, Yuan-Jui Chen, Cheng-chieh Yeh, and Hung-
yi Lee. 2019. End-to-end Text-to-speech for
Low-resource Languages by Cross-Lingual Transfer
Learning. In Interspeech 2019, pages 2075–2079.

60


