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Abstract
Templated answers are used extensively in cus-
tomer support scenarios, providing an efficient
way to cover a plethora of topics, with an easily
maintainable collection of templates. However,
the number of templates is often too high for an
agent to manually search. Automatically sug-
gesting the correct template for a given ques-
tion can thus improve the service efficiency,
reducing costs and leading to a better customer
satisfaction. In this work, we propose a dense
retrieval framework for the customer support
scenario, adapting a standard in-batch nega-
tives technique to support unpaired sampling
of queries and templates. We also propose a
novel loss that extends the typical query-centric
similarity, exploiting other similarity relations
in the training data. Experiments show that
our approach achieves considerable improve-
ments, in terms of performance and training
speed, over more standard dense retrieval meth-
ods. This includes methods such as DPR, and
also ablated versions of the proposed approach.

1 Introduction

A very common practice to make customer support
more efficient is the use of templates for replies.
The templates of replies are designed by customer
support administrators to systematise the reply to
frequent requests. Then, given a customer’s request,
an agent can pick a response from within a collec-
tion of predefined templates, this way saving time
when replying to repetitive questions. Besides im-
proving the throughput of human agents, the use of
templates also assures uniformity in the handling of
different customers, as requests with the same un-
derlying problem should be handled with the same
type of reply. However, customer support centers
can have hundreds of templates, and finding the
best template for a question is not an easy task, par-
ticularly for unexperienced agents. Automatically

∗This work was developed at Cleverly and Zendesk, under
the context of Tiago Mesquita’s Master of Science (M.Sc.)
Thesis at IST, University of Lisbon.

q0

q0

q1q1

q2

q2

t0

t1

t2

(a) query-template

q0 q0

q1

q1

q2

q2

t0

t1

t2

(b) query-template, query-
query and template-template

Figure 1: Illustration of 6 query representations
{q0, q0, q1, q1, q2, q2}, together with respective template
representations {t0, t1, t2} with ti answering qi, after
enforcing different similarity relations. The distances
between points represent dissimilarity, and dashed lines
and circumferences represent similarity relations, whilst
the dotted lines represent dissimilarity relations.

sorting and suggesting customer support templates
(Bonatti et al., 2016; Yang and Kwok, 2012; Snei-
ders et al., 2016; Rei, 2019) can facilitate agent’s
work, reducing reply times, accelerating the learn-
ing curve of new agents, helping agents to focus on
more added valued tasks, and overall providing a
better customer support at reduced costs.

The recent advances in large pre-trained lan-
guage models (Devlin et al., 2019; Vaswani
et al., 2017), together with their successful use
in question-answering (Karpukhin et al., 2020; Qu
et al., 2021) and information retrieval (Xiong et al.,
2021; Zhan et al., 2020, 2021; Yates et al., 2021),
motivate the use of dense retrieval for template
selection. Dense retrieval can be used to rank in-
stances from the template collection, facilitating
the selection of the correct template. Still, template
ranking has specific characteristics when compared
with more common retrieval scenarios in the lit-
erature: i) we have a strict many-to-one relation
between queries and templates, in contrast to other
common retrieval tasks (Nguyen et al., 2016); ii)
the collection of templates is relatively small and
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generally in the order of hundreds, although also
dynamically updated over time; iii) the length of
the queries (emails with questions from customers)
tends to be relatively long.

Given real-time and computation constraints in
the template suggestion problem, we focus on bi-
encoder models (Yates et al., 2021), which at pre-
diction time only need to compute dense represen-
tations of queries and make fast comparisons with
pre-computed representations of template candi-
dates. We discard cross-encoder models that, de-
spite often achieving higher retrieval performance
(Yates et al., 2021), can have problems processing
long queries and/or documents, and cannot take
advantage of pre-computed template representa-
tions, involving higher computational costs that
scale with the number of template candidates, and
being often unsuitable for real-time applications.
Still, our contributions are model independent, be-
ing also applicable to cross-encoders. Specifically,
we make the following main research contributions:

• We compare different approaches in the task
of template retrieval in customer support;

• We propose a new in-batch sampling strat-
egy, that preserves the distributions of queries
and templates to better select the information
within batches, while exploring all possible
query-template pairs in a batch;

• We propose a new loss function that exploits
not only query-template similarity relations,
but also query-query and template-template
relations, yielding better representations for
retrieval (see Figure 1).

Experiments with real-world customer support
datasets show that both the in-batch sampling strat-
egy and the expanded loss lead to improvements,
in terms of template suggestion and training speed.

2 Related Work

Template retrieval for customer support has seen
limited research in recent times. Most previous
work has addressed the task as template classifi-
cation with simple machine learning approaches
(e.g., support vector machines or naïve Bayes) on
top of representations obtained from bags-of-words
(Bonatti et al., 2016; Yang and Kwok, 2012) or tai-
lored pattern matching (Sneiders et al., 2016). A
combination of retrieval and generative approaches

is explored by Rei (2019), but without taking ad-
vantage of modern Transformer-based pre-trained
language models. To the best of our knowledge,
public literature on the topic has not explored re-
cent advances in dense retrieval.

Most of the recent dense retrieval methods fol-
low a BERT-based dual-encoder architecture and
use a similarity function (e.g., cosine similarity) to
produce ranking scores (Yates et al., 2021). The
simplicity of the similarity function is crucial, al-
lowing efficient retrieval through recent develop-
ments in Approximate Nearest Neighbour (ANN)
search, such as FAISS (Johnson et al., 2019).
These methods enable search speeds comparable
with simpler sparse retrieval methods (e.g., BM25
(Robertson and Zaragoza, 2009)), whilst retaining
better performance in most scenarios. Given the
simplicity of dual-encoder architectures, most re-
search has focused on improving the training pro-
cedure, namely by careful selection of the query-
document pairs. For each query, the model should
maximize similarity with all related documents
(i.e., positives), whilst minimizing it for all unre-
lated documents (i.e., negatives). Most approaches
have focused on the problem of selecting negative
documents, usually falling under one of two cate-
gories: 1) efficient batching techniques, or 2) tech-
niques that prioritize batch generation but generally
sacrifice training efficiency.

In the first category, methods aim to maxi-
mize the amount of negatives available within the
batches. The most efficient way to achieve this
is by sharing negatives between all queries in the
batch, an approach known as in-batch negatives
(Karpukhin et al., 2020). More recent studies
have proposed sharing negatives between multi-
ple GPUs, allowing for massive batch sizes under
parallel model training (Qu et al., 2021).

Although the previous techniques maximize the
number of negatives seen during training, most
of the instances are easily distinguishable, provid-
ing weak contributions to the loss function (i.e.,
easy negatives). Studies under the second cate-
gory focus on the careful selection of negatives per
query, looking for those that are useful for learn-
ing (i.e., hard negatives). The earliest approaches
leveraged other retrieval methods to pool hard neg-
atives, namely BM25 (Robertson and Zaragoza,
2009), picking highly ranked although irrelevant
documents (Karpukhin et al., 2020; Xiong et al.,
2021). Despite being effective at picking static
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hard negatives, these approaches fail to adapt, as
the model learns to rank the instances accordingly.
ANCE (Xiong et al., 2021) addresses this issue
by using the model itself to pool hard negative ex-
amples, dynamically adjusting the selection as the
training progresses. In practice, dynamically gener-
ating and indexing embeddings for large document
collections is costly, requiring separate GPUs to
periodically maintain and refresh the index with
prior checkpoints, whilst training in parallel. LTRe
(Zhan et al., 2020) and later ADORE (Zhan et al.,
2021) further refined these ideas, by freezing the
weights of the document encoder and eliminating
the need to refresh the index.

Although most approaches generally focus on a
single category, some have tried to leverage tech-
niques from both. DPR (Karpukhin et al., 2020)
was one of the first studies to explore this idea, com-
bining randomly pooled in-batch negatives with
BM25 hard-negatives per query. Recently, STAR
(Zhan et al., 2021) took the idea even further, by
using static hard negatives pooled from the pre-
trained model, but sharing them between all queries
in the batch, similarly to in-batch negatives. Results
showed that the combination provides an effective
tool for stabilizing the biases introduced by the use
of static negatives. Our technique also combines
ideas from both categories, adapting in-batch nega-
tives to the specific scenario of template retrieval,
and performing hard negative sampling from all
the in-batch negative examples.

Most previous studies on dense retrieval have
generally also considered loss functions that en-
force query-centric similarity relations, as these are
explicitly related to the retrieval task. However,
as shown in PAIR (Ren et al., 2021), models may
benefit from exploring passage-centric similarity
relations, potentially improving the representations.
More recently, Li et al. (2021) proposed DANCE,
which showed improvements by considering a loss
function that combines query retrieval and docu-
ment retrieval tasks. In our template retrieval sce-
nario, these ideas are further explored, by taking
into account all four possible relations between
pairs of queries and templates.

3 Simple Dense Template Retrieval

We formally define the problem of template re-
trieval as follows: given a query q, the model must
retrieve, from a collection of templates, the tem-
plate t that better answers the query.

3.1 Architecture
Let us consider the commonly used dual-encoder
architecture, as presented in DPR (Karpukhin et al.,
2020), in which two independent encoders EQ(·)
and ET (·) encode a query q and a template t into
d-dimensional vectors, with different representa-
tion spaces. For ranking the templates, the cosine
similarity between a query q and a template t can
be computed from the respective representations:

s(q, t) = cosine-sim (EQ(q), ET (t)) . (1)

3.2 Loss Function
The loss function for training the encoders should
maximize the similarity between positive query-
template pairs s(q, t+) and minimize the similarity
between negative query-template pairs s(q, t−). A
commonly used loss term for retrieval tasks is the
negative log likelihood, comparing the positive tem-
plate t+ against a set of negative templates T −:

Lq(q, t
+, T −) = − log

(
e
s(q,t+)

es(q,t
+)+

∑
t−∈T − es(q,t

−)

)
. (2)

The final loss is then obtained by averaging the
per-query loss from (2) over all queries (and tem-
plate lists) considered in a batch from the dataset.

3.3 In-batch Negatives
Selecting good negative examples for training
dense retrievers is still an open problem. Simple in-
batch negatives, as described in DPR (Karpukhin
et al., 2020), makes optimal use of the batch space,
by sampling query-passage positive pairs and con-
sidering, for each query, all other passages within
the batch as negatives. However, hidden in its sim-
plicity lie two important assumptions: 1) the in-
batch negatives are in fact negative passages; 2) the
shared negatives provide a good estimation of in-
stances within the full dataset. The weight of both
assumptions is small for large corpora, where each
document has a limited amount of related queries
and vice-versa, making false in-batch negatives un-
likely. Still, for smaller corpora such as those from
customer support with templates, the assumptions
can be problematic, requiring careful selection of
the training pairs.

4 Improved Dense Template Retrieval

To improve on the method outlined in the previous
section, we propose two innovative contributions.
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The first relates to the in-batch sampling strategy,
whilst the second refers to an expanded loss func-
tion that exploits different similarity relations for
queries and templates.

4.1 Batch Generation

Template retrieval relates queries and templates in
a strictly many-to-one correspondence, at the same
time involving a small template collection. More-
over, since templates see different use, the number
of queries per template varies considerably. These
characteristics actively challenge the assumptions
of vanilla in-batch negatives. In order to guarantee
that the in-batch negatives are in fact negative, the
sampled pairs must have different templates. This
condition influences the distribution of training ex-
amples, penalizing frequently used templates and
resulting in a distribution of negatives within the
batch that does not follow the real data distribution.

4.1.1 Labeled In-batch Negatives
Given that each query has a single related tem-
plate, labelling each text (i.e., query or template)
in a training batch with the corresponding template
identifier provides sufficient information to create
all valid positive and negative pairs. More specif-
ically, let ti be the i-th template and qi,j be the
j-th query from the sub-collection of queries that
is answered by ti. Given a batch of NQ queries
and NT templates, with each text labeled with the
corresponding template index i, we consider for
each query qi,j the template ti as positive, and all
other templates tn within the batch, with n ̸= i, as
negatives. This technique, wich we refer to as la-
beled in-batch negatives, not only prevents in-batch
false negatives, but also eliminates the paired sam-
pling restrictions (i.e., the training examples do not
have to be explicit query-template pairs) imposed
by vanilla in-batch negatives.

4.1.2 A Semi-independent Query-Template
Sampling Strategy

As a general rule, we assume that training instances
should follow 2 principles: 1) uniform sampling of
positive pairs, since these offer explicitly labeled
relevance information that should be uniformly ex-
plored; 2) sampling negatives according to a distri-
bution that is consistent with the corpus. Vanilla
in-batch negatives fails to follow both principles,
as the distribution of negatives within the batch
follows the distribution of templates available in
the positive pairs, and not the real one. With la-

beled in-batch negatives, on the other hand, posi-
tives and negatives are not directly tied, enabling
the consideration of both principles. To respect
them, whilst maximizing the utility of the instances
within the batch, we devised a semi-independent
query-template sampling strategy, according to Al-
gorithm 1 (and illustration in Figure 2).

Algorithm 1 Semi-independent query-template
sampling procedure
Data: Let EQ and ET contain training queries and
templates
Result: batch B, with b queries and b templates

1: Get set T with b templates uniformly selected
from ET

2: Get set QT ∈ EQ with the queries answered
by T

3: Get set Q, by randomly sampling b queries
from QT

4: Compose B, with the queries and templates in
Q and T

Note that unlike standard in-batch negatives,
adapting this algorithm to support batches with
a different number of templates and queries (i.e.,
batches of bq queries and bt templates, with bq ̸=
bt ̸= b) is trivial. Still, we consider bq = bt to be
the most natural way to explore the information
within a batch, as each query has a single posi-
tive template. This also mirrors the setup from the
standard in-batch negatives approach.

4.2 Expanded Loss Function
We also propose a novel loss function that is ex-
panded at the batch level, considering interac-
tions not only between query-template pairs, but
also query-query, template-template, and template-
query pairs (see Figure 1). For that, let us first
notice that each text in a batch (which can be ei-
ther from a query or a template) is given a label
corresponding to the correct template. The loss
function for each batch can be defined with basis
on the following generic loss term that takes two
sets (A and B) of labeled texts (that can be queries
or templates) from a training batch:

L(A,B) =

− 1

|A|
∑

i∈I,ai∈Ai

1

|Bi|
∑
bi∈Bi

log

 es(ai, bi)

es(ai, bi) +
∑

j ̸=i,bj∈Bj

es(ai, bj)

 ,
(3)

where I is the set of all labels in the batch, while
Ai is the set of texts in A that have label i (i.e.,
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Figure 2: An illustrative case for the application of the semi-independent query-template sampling procedure
(Algorithm 1) on an example training dataset. The illustrated collection contains templates ET and queries EQ,
where each query is represented above the template that answers it. Each step of the algorithm is represented with
numbers and rectangles indicating the corresponding sets. The procedure results in the creation of batch B, and it is
followed by the application of the labelled in-batch negatives technique, yielding the matrix of query-template pairs
represented on the right. In the matrix, the positive pairs are shown in green, and the negative ones in red.

those that correspond to template i), and Bi is the
set of texts in B that have label i.

4.2.1 Combining Different Loss Terms
The final loss of a batch is given by a weighted sum
of four terms, each of them computed through (3):

Lbatch = αL(Q, T ) + β L(Q,Q) + γ L(T , T ) + θL(T ,Q), (4)

where α, β, γ, and θ are adjustable hyper-
parameters, and where the different loss terms cor-
respond to different relations as follows:

1. L(Q, T ); A = Q is the set of all queries in
a batch and B = T is the set of all templates.
This term corresponds to averaging the loss of
each query q ∈ Q, using the negative log like-
lihood of the positive template (2) combined
with each possible negative template in the
training batch;

2. L(T , T ); A = T and B = T both corre-
spond to the set of all templates in the batch.
This term enforces the dissimilarity between
distinct templates;

3. L(Q,Q); A = Q and B = Q both corre-
spond to the set of all queries in the batch.
This term enforces the dissimilarity between
query representations from different tem-
plates, and promotes the similarity of repre-
sentations for queries from the same template;

4. L(T ,Q); A = T is the set of all templates in
a batch and B = Q is the set of all queries in
the batch. This term is the transpose of the
first one, having a similar effect but acting on
each template instead of each query;

4.2.2 In-batch Top-k Negatives
Section 2 discussed recent methods that use the
model’s own representations to guide the selec-
tion of hard-negatives (Xiong et al., 2021; Zhan
et al., 2020, 2021). Although potentially effec-
tive, these techniques are computationally more
demanding than the ones we propose, missing our
efficiency goals. Still, inspired by these approaches,
we consider a cheaper alternative of in-batch top-k
negatives, that instead of retrieving the top-k neg-
atives over the entire corpus, retrieves them from
within the batch. By reusing the representations
within a batch, this approach is much cheaper while
also guaranteeing that the representations are syn-
chronous. Unlike ANCE (Xiong et al., 2021) and
the other methods, the value of selecting the in-
batch top-k negatives is not on the selected hard
negatives, since they are already present in the
batch, but in discarding some instances. This de-
lays over-fitting on simpler negatives, allowing the
model to learn the harder ones.

5 Experiments

This section describes the experimental validation
of the proposed contributions.
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dataset
#queries

#t
P80%#tok

lang
train val test q t

CS-1 17858 3127 3918 445 113 396 en
CS-2 1092 187 650 82 111 164 pt

Table 1: Statistics for the two datasets. #t indicates the
number of templates, and #tok indicates the text length
in terms of multilingual DistilBERTbase tokens.

5.1 Datasets and Metrics

We tested our approach on two private anonymized
real-world datasets of email customer support in-
teractions, in English and Portuguese.

The datasets are composed from a collection
of real customer support interactions over email,
where a human agent handpicked a template for
answering a given query. The queries are user sub-
mitted and do not follow any particular formatting
guidelines, ranging from typical emails (composed
by a greeting, a body of text and a sign-off), to
direct free-form questions. Templates of replies
have more structure, following typical email con-
ventions. Typically, these include trouble-shooting
steps, clarifying information, notifications of hand-
offs to other support agents/mediums, or a combi-
nation of these. The intents of the frequent requests
that are answered with templates include login is-
sues, password resets, after sale support, technical
support, clarifications for products or promotions,
complaints, recommendations, and identity verifi-
cation, among others.

We split both datasets into 3 partitions, namely
train, val, and test. The test split is composed of
the most recent customer interactions, simulating
the real temporal evaluation scenario, whilst the
train and val splits are composed of the remaining
examples on a 85/15 stratified split (see Table 1 for
a characterization of the datasets).

The CS-1 and CS-2 datasets consider two dif-
ferent types of real world conditions. CS-1 has a
relatively large size, and a large template collec-
tion, providing better training conditions and more
representative results. On the other hand, CS-2 has
a smaller, more specific, template collection, featur-
ing non-English data (i.e., questions and templates
in Portuguese) and fewer training examples.

5.1.1 Evaluation Metrics
We adopted the Recall@k (R@k) and Mean Recip-
rocal Rank (MRR) metrics for comparing models.

MRR calculates the averaged reciprocal rank of the
correct template, while R@k measures the ratio of
queries in which the correct template is within the
top-k. In particular, we track MRR@10 as a gen-
eral indicator of ranking performance, and R@3 for
matching the use-case of showing only the top-3
templates to agents.

Besides retrieval quality metrics, we also
recorded the number of epochs involved in model
fine-tuning, considering a early-stopping criterion
based on MRR@10 over a validation split.

5.2 Experimental Setup
We now describe the approaches under compari-
son. Notice that we focused our analysis on pre-
trained/fine-tuned multilingual models, envisioning
real world scenarios where clients operate with dif-
ferent domains and languages.

5.2.1 Unsupervised Baselines
As a sparse retrieval baseline we consider a tra-
ditional BM25 (Lin et al., 2021) approach. For
a dense retrieval baseline, we tested all multilin-
gual models in Sentence-Transformers (Reimers
and Gurevych, 2020), in a 0-shot manner, and
report results for the best: distiluse-base-
multilingual-cased-v1.

5.2.2 Fine-tuned Models
We tested a baseline approach based on ran-
domly selected negative samples, similar to DPR
(Karpukhin et al., 2020), as well as different ab-
lated versions of our improved dense retrieval
method. Both encoders on the dense retrievers (i.e.,
the query and template encoders) were initialized
with the parameters of the distiluse-base-
multilingual-cased-v1 model from the
Sentence-Transformers library (Reimers and
Gurevych, 2020), as this was the best model in
0-shot retrieval experiments.

In more detail, and besides the complete pro-
posed approach, we considered 5 other dense re-
trieval settings corresponding to the use of the
vanilla loss (L(Q, T )) together with different
mechanisms to construct the negative instances:

• Random negatives: randomly sample N neg-
ative templates for each query-template pair,
as in the random sampling scheme described
in DPR (Karpukhin et al., 2020);

• In-batch negq: sample B templates, weighed
by frequency of positive queries and without
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Methods
CS-1 CS-2

MRR@10 R@3 Epochs MRR@10 R@3 Epochs

Unsupervised Baselines
BM25 8.5 ± 0.0 10.1 ± 0.0 - 13.7 ± 0.0 16.6 ± 0.0 -
SBERT 0-shot 10.2 ± 0.0 12.0 ± 0.0 - 16.2 ± 0.0 20.2 ± 0.0 -

DPR (Karpukhin et al., 2020)
Random negatives 39.4 ± 0.2 45.0 ± 0.4 25.0 ± 1.9 63.5 ± 1.9 73.6 ± 1.6 15.2 ± 2.2

Sampling Ablation
In-batch negq 33.0 ± 0.8 37.9 ± 1.1 18.2 ± 6.0 61.6 ± 1.0 70.7 ± 1.2 20.2 ± 4.9
In-batch negt 38.0 ± 0.2 44.7 ± 0.4 22.2 ± 6.4 64.9 ± 1.6 75.0 ± 1.6 20.2 ± 6.4
Labeled in-batch negq 39.0 ± 0.6 45.2 ± 0.3 3.0 ± 0.7 63.2 ± 1.7 72.2 ± 1.0 10.5 ± 8.4
Labeled in-batch negt,q ‡41.1± 0.9 ‡46.9 ± 0.9 4.5 ± 1.1 †65.2 ± 1.6 †75.4 ± 1.2 5.8 ± 0.8

Proposed approach ‡42.2 ±0.3 ‡48.2 ± 0.3 3.8 ± 0.8 ‡65.4 ± 0.8 †75.7 ± 1.0 8.0 ± 1.6

Table 2: Results for both datasets, including mean and variance from 4 runs per model with different seeds. † and ‡

indicate significant improvements over the random negatives baseline, with p-values of 0.05 and 0.01, respectively,
using the permutation test from Bassani (2022).

repetition, and a positive query for each of the
sampled templates;

• In-batch negt: sample B templates, uni-
formly and without repetition, along with a
positive query for each;

• Labeled in-batch negq: sample B queries,
uniformly and without repetition, along with
each respective template. If this produces re-
peated templates, we swap them with uniform
samples not present in the batch;

• Labeled in-batch negt,q: corresponds to the
complete version of the proposed sampling
technique, as described in Section 4;

On what regards the hyper-parameters consid-
ered for model training, we used a batch-size
B = 32 in all experiments with in-batch nega-
tives, and B = 8 for the experiment with random
negatives, with N = 4 negatives for each instance
(i.e., sharing the negatives can improve space effi-
ciency, and the choice of batch-size depended on
the maximum capacity of the GPU used for the ex-
periments, namely a NVIDIA Tesla T4 with 16GB
of RAM). We used linear learning-rate scheduling
with 500 warmup steps, and the ADAM optimizer
(Kingma and Ba, 2015) with a learning-rate of 3e-5.
We considered a maximum 30 epochs for the linear
scheduler, stopping earlier if MRR@10 over the
validation set stopped improving.

5.3 Experimental Results

Table 2 presents the obtained results, from which
we can infer the following main conclusions:

1. The proposed sampling technique not only
significantly outperforms all the alternative
methods in both datasets, but it does so with
considerably less training epochs. This result
confirms the intuition that the common sam-
pling strategies for IR fail to correctly model
the one-to-many relation between user ques-
tions and templates.

2. The proposed loss, that also considers
template-template and query-query similarity
relations, improves the model further, yielding
significant gains in terms of both the average
performance and the corresponding variance.
This result suggests that exploring semantic
relations beyond the main ranking task is bene-
ficial, likely being a result of learning more ro-
bust representations with better generalization
capabilities, along with more stable training.

3. The poor performance of BM25 exposes the
difficulty of the template retrieval task. Since
each template covers a range of queries, the
text is generally unspecific, resulting in re-
duced term overlap between templates and
queries. Trained dense retrievers, on the other
hand, were able to achieve good performance,
showing that semantic relations are effectively
superior to simple term matching.
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Figure 3: Comparison between the real and observed distributions, for the probability of occurrence of template
identifiers in association to instances, obtained with different sampling techniques during model training, for queries
(LEFT) and templates (RIGHT) on CS-1. The template identifiers associated to queries and templates are ordered
by the real distribution and we plot the mean over bins of 10 identifiers, to reduce the number of data points and
generate smoother lines that are easier to interpret.

4. The good results of the proposed techniques
on CS-2 further validate our ideas, by proving
the robustness to training conditions involv-
ing less data. It also validates the applicabil-
ity of the proposed architecture in other lan-
guages. This is expected, as the approach sim-
ply refines the representation space of the base
model. Given the multilingual pre-training,
the approach is effectively able to transfer mul-
tilingual knowledge.

5.3.1 Analysis on the Sampling Techniques
The experiments reported in Table 2 also compared
the different sampling techniques. To provide bet-
ter insights over the practical differences between
each method, we plotted the distributions of tem-
plates and queries, throughout training, for each
technique. In order to do this, we recorded the
template identifiers of the sampled queries and tem-
plates, at each step, for a total of 10 epochs in CS-1.
The result is presented in Figure 3, which confirms
the intuitions behind the design of the proposed
sampling technique.

As expected, with vanilla in-batch negatives,
queries and templates follow the same distribu-
tions, as they are sampled in pairs. This results
in techniques that are only capable of optimizing
the distribution of templates (i.e., in-batch negt)
or queries (in-batch negq), but not both, result-
ing in sub-optimal performance. Labeled in-batch
negatives are effectively able to decouple both dis-
tributions, fact that is key for providing good ap-
proximations for both templates and queries.

Labeled in-batch negq provides a good estima-
tion over the distribution of queries, although the

observed distribution of templates is slightly bi-
ased towards the most frequent. This results from
the query-guided sampling technique, which can
explain the slightly worse performance.

Labeled in-batch negt,q, on the other hand, is
able to provide a uniform distribution of templates,
whilst maintaining a distribution of queries very
close to the real one. This provides, by far, the best
global fit of both the distributions, resulting in the
best overall performance.

The random negatives strategy, despite select-
ing templates on a per-query basis, is still slightly
biased towards the most frequent templates, a result
of the positive examples still following the query
distribution. This, coupled with the reduced num-
ber of negatives, are likely the main factors for the
lower performance.

Overall, the results seem to imply a correlation
between the quality of the sampling techniques as
an estimator of the involved distributions, and the
observed retrieval performance of the strategy.

5.3.2 Analysis on the Loss Terms
The proposed loss function combines different
terms, each enforcing a different similarity rela-
tion. In order to assess the contribution of each
component, along with their interaction, we tested
5 different combinations of terms:

• L1 = L(Q, T ): control experiment, consider-
ing the negative log likelihood over the posi-
tive template;

• L2T = L(Q, T ) + L(T , T ): considers equal
contribution of template-template and query-
template relations;



1114

Loss
W/o top-k neg W/ top-k neg

MRR@10 R@3 MRR R@3

L1 41.1 ± 0.9 46.9 ± 0.9 40.5 ± 1.4 47.1 ± 1.3
L2T 39.7 ± 0.9 45.8 ± 0.7 40.4 ± 0.5 46.8 ± 1.1
L2Q

‡41.7 ± 0.5 ‡47.7 ± 1.0 ‡41.8 ± 0.3 ‡47.9 ± 0.4
L3 40.9 ± 0.6 46.8 ± 0.6 ∗42.2 ± 0.3 ∗48.2 ± 0.3
L4 41.4 ± 0.8 47.6 ± 1.3 41.5 ± 0.3 ∗48.3 ± 0.5

Table 3: Ablation study on the terms of the loss and
the in-batch top-k sampling, on the CS-1 dataset, in-
cluding mean and variance intervals from 4 runs per
model with different seeds. ‡ and ∗ indicate significant
improvements with p-values of 0.01 and 0.001, respec-
tively, over the control experiment (L1, without top-k),
according to the permutation test from Bassani (2022).

• L2Q = L(Q, T ) + L(Q,Q): considers equal
contribution of query-template and query-
query relations;

• L3 = L(Q, T ) + 0.5(L(Q,Q) + L(T , T )):
combines the query-template relations with
equally contributing template-template and
query-query relations;

For each of the considered losses, we also test
the impact of using in-batch top-k negatives . We
selected values for k experimentally, resulting in
k = 4 for CS-1 and k = 12 for CS-2, with values
below often leading to less stable training, and
values above decreasing model performance. The
results are presented in Table 3.

In agreement to what was reported in PAIR (Ren
et al., 2021), the loss that combines query-template
and template-template relations (L2T ) is the one
with lowest performance, suggesting some mis-
alignment with the retrieval task. Combining query-
template and query-query relations (L2Q) improves
performance with respect to the control loss, and
the combination of both (L3) improves it further,
outperforming all others significantly, and suggest-
ing complementarity of the two terms. It is im-
portant to note that the proposed loss function is
effective without carefully tuning the contributions
of each term (i.e., we only considered the configu-
rations mentioned in Table 3), though tuning can
perhaps improve performance even further.

The in-batch top-k sampling strategy improved
performance and variance consistently, except for
the simple query-template loss. This result suggests
that the integration of the top-k sampling technique
in the proposed loss function is beneficial, likely by
regulating the contribution of each loss component.

6 Conclusions

This paper discussed challenges associated with re-
trieving templates for answering customer support
questions, proposing a dense retrieval framework to
address the task. This framework features innova-
tive contributions in terms of (a) extending in-batch
negatives to support unpaired sampling of queries
and templates, and (b) a novel loss function that
considers more similarity relations from the train-
ing data within each batch. Experiments on two
different datasets of customer support interactions
attest to the improvements brought forward by the
proposed ideas. For future work, we plan to adapt
and test the proposed techniques in other tasks that
involve unbalanced corpora and large texts, such as
general FAQ retrieval or question answering (Clark
et al., 2020; De Bruyn et al., 2021).
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