
Proceedings of the 29th International Conference on Computational Linguistics, pages 994–1005
October 12–17, 2022.

994

Locally Distributed Activation Vectors for Guided Feature Attribution

Housam K. B. Babiker1, Mi-Young Kim2, Randy Goebel1
1 Department of Computing Science, University of Alberta

2 Department of Science, Augustana Faculty, University of Alberta
Alberta Machine Intelligence Institute

Edmonton, Alberta, Canada
{khalifab, miyoung2, rgoebel}@ualberta.ca

Abstract

Explaining the predictions of a deep neural net-
work (DNN) is a challenging problem. Many
attempts at interpreting those predictions have
focused on attribution-based methods, which
assess the contributions of individual features
to each model prediction. However, attribution-
based explanations do not always provide faith-
ful explanations to the target model, e.g., noisy
gradients can result in unfaithful feature attribu-
tion for back-propagation methods. We present
a method to learn explanations-specific rep-
resentations while constructing deep network
models for text classification. These repre-
sentations can be used to faithfully interpret
black-box predictions, i.e., highlighting the
most important input features and their role in
any particular prediction. We show that learn-
ing specific representations improves model
interpretability across various tasks, for both
qualitative and quantitative evaluations, while
preserving predictive performance.

1 Introduction

Deep neural network (DNN) models have become
crucial tools in natural language processing (NLP)
and define state-of-the-art on a large variety of
tasks. However, DNN models are often consid-
ered “black boxes,” whose predictions are difficult
to interpret and understand. An immediate conse-
quence is that quantifying the contribution of indi-
vidual features is a challenging fundamental task in
NLP and explainable AI research. In most related
work, whether implicitly or explicitly, an explana-
tion’s role in NLP text classification is to reveal
which words and phrases are the most salient for
the final prediction (Bastings and Filippova, 2020).
From this viewpoint, a popular approach for ex-
plaining a prediction is to use attribution methods,
which justify the prediction of a pre-trained deep
network, i.e., the explanation approximates the fea-
ture attribution w.r.t. the predicted class. How-
ever, attribution techniques, also included in the

class of methods called post-hoc methods, might
not always provide explanations that are faithful
to the underlined model because of the instability
of the explanations. This is largely because they
often rely on heuristic rules; how those rules mimic
the predictive calculation of the black box has the
limitation of correlation with expected model be-
havior (Rudin, 2018). For instance, (Alvarez-Melis
and Jaakkola, 2018) showed that the explanations
of two very close prediction points varied signifi-
cantly in a simulated setting. We know that faithful
explanations are essential, especially in high-stakes
domains. If the explanations are wrong, we cannot
trust the black box model. In addition, explana-
tions are supposed to be faithful to what the model
actually computes, so they may not meet the end
user’s expectations. We define a faithful explana-
tion in the context of NLP as follows: an explana-
tion method is faithful if it is capable of identifying
the most salient/meaningful features used by the
model to make a prediction. The way humans ar-
rive at a decision can be different from a black-box
model. This limitation makes it difficult to enforce
the idea that an explanation must follow the user’s
expectation, e.g., as suggested by human annota-
tion, which can be completely different from the
predictive model behavior.

In a nutshell, our goal is to uncover faithful fea-
ture attributions from deep networks, thus to reveal,
as accurately as possible, the most influential fea-
tures used by the network to make a prediction
using a bottom-up approach. To do so, we need to
focus on learning representations to support feature
attribution. So we optimize a deep network model
for both faithful attribution and high prediction ac-
curacy. As a result, we construct a model that can
learn meaningful representations to explain class
predictions without using post-hoc methods. Our
guided model is based on learning an activation
vector for each class. This vector is intended to
capture the salient features for each class. Finally,

995

the activation vector is used to explain the model’s
prediction. Our contributions are as follows: (1)
We propose a method to learn feature attribution
concurrently while training a black-box, in order
to faithfully explain the black-box; (2) Our method
achieves better explanation and is capable of identi-
fying the most salient words; (3) Our method shows
that it does not trade off interpretability against clas-
sification accuracy; (4) We also propose a method
that can be used for hypothesis testing and measur-
ing importance of phrases.

2 Related work

Existing work on interpreting predictive models
tackles the problem from the following five direc-
tions.

Propagation-based methods This line of work
relies on a back-propagation algorithm to compute
the gradient of the output of the model’s predic-
tion with respect to the input vector. The result
is then used to construct a saliency map, which
masks irrelevant features from the input (Simonyan
et al., 2013; Denil et al., 2014). (Bach et al., 2015)
proposed ϵ-LRP, which is another technique for
feature attribution. It focuses on redistributing the
prediction score until the input layer is reached.
An improvement on these gradient-based methods
was proposed by (Sundararajan et al., 2017). Their
approach integrates overall gradients using a lin-
ear interpolation between a baseline input (all zero
embeddings) and the target input.

Model-agnostic methods Another method for
feature attribution is the so-called model-agnostic
approach. Local Interpretable Model-agnostic
Explanation (LIME) (Ribeiro et al., 2016) is a
perturbation-based method for feature attribution.
It approximates the information flow of a given
black-box in the neighborhood of the input with
an interpretable classifier (e.g., a linear classifier)
model. One issue with LIME is that it relies on
a Gaussian distribution for sampling and ignores
the correlation between features. (Lundberg and
Lee, 2017) proposed to use Shapley values to quan-
tify the importance of a given feature. They also
proposed a sampling strategy, “kernel SHAP” for
approximating Shapley values. Both approaches
focus on feature attribution, and treat features as
independent from one another.

Learning-based attribution methods Another
line of work has focused on learning feature attribu-
tions. For example, (Chen et al., 2018a) employed

mutual information to learn essential features from
a classifier. However, this technique assumes ac-
cess to the output model. As a result, it learns the at-
tribution score from a pre-trained model, while we
learn feature attribution concurrently when training
a black-box model.

All three of these approaches are post-hoc tech-
niques, and they are not always reliable in provid-
ing faithful explanations to the model’s prediction
because their explanations do not always have any
relation with the actual behaviour of the model.

Rationale-based methods In addition to the
three aobve noted methods, there are other types of
interpretability methods for NLP text classification
called rationale-based methods (Lei et al., 2016;
Bastings et al., 2019; Bashier et al., 2020). These
methods attempt to extract a subset of text features
as the “rationale” for an explanation, then feed
them to a black-box to make the final prediction.
Rationale-based methods rely on using a complex
heuristic function to extract rationales from text,
and then use another complex (black-box) model to
classify the rationales. In our work, we rely only on
simple high-dimensional vectors to explain the pre-
diction faithfully without using complex functions
to pre-identify constellations of text as rationales.

Disentanglement representations Our work is
also different from existing disentanglement repre-
sentations. For instance, (Higgins et al., 2016) tack-
led a completely different problem, i.e., learning
independent factors in the highly non-linear latent
manifold for a given dataset, by using a variation
auto encoder. In this paper we focus on building
disentanglement representations at the embedding
layer for feature attribution. Similarly (John et al.,
2019) focused on disentangling the latent space of
deep neural networks for text generation, which is
again a different objective from our work. (Sha and
Lukasiewicz, 2021) employed disentanglement rep-
resentations instead of adversarial training for style
transfer, which is also different from our current
work. In a nutshell, we build a disentanglement rep-
resentation to learn feature attribution concurrently
while training the deep neural network classifier.

3 Locally distributed activation vectors

Our focus, like traditional post-hoc methods, is
on feature importance. We present our model
Locally Distributed Activation
Vector, which is an effective method for learn-
ing distributed-activation-vectors concurrently

996

Ju
st

 s
uc

ks
 a

nd
 b

ad

E
m

beddin
g layer

P
robabilistic text classifi

er (B
i-L

ST
M

)

Aggregation
 and fully

connected layer
Classes

Sa
li

en
t

fe
at

ur
es

Activation vector
(negative sentiment)

0.4
0.12
0.32
…
0.23

0.5
0.62
0.72

0.83
…

Activation vector
(positive sentiment)

Update activation
vector after the

prediction

(b)

PredictedJust

sucks

and

bad

Maximize
distance

Contextual
Cross entropy for

classification

Neural network architecture
with guided attribution

Disentangled
embedding features

In
pu

t
Minimize distance(a)

Figure 1: We use the activation vectors (LDAVs) to faithfully interpret a model’s prediction. We obtain the embedding features
and then feed the result to the deep neural network for classification. During training, we minimize the cosine distance between

the activation vector of the predicted class and the corresponding sentence vector (see dotted line (a)). In addition, we also
maximize the distance between activation vectors (see (b)).

while training deep neural networks for text
classification (i.e., learning a new representation to
support feature attribution).

A locally distributed activation vector (LDAV,
activation vector) is simply a one-dimensional vec-
tor that encodes the knowledge learned by a deep
neural network for a text classification task, with
a focus on interpreting the predictions (see Fig-
ure 1). We can use the activation vectors with any
black-box models, including Transformer, GRU,
and LSTM methods. Each activation vector records
the prediction knowledge of the deep neural net-
work for a particular class. The goal is to alter the
optimization problem to learn LDAVs that will be
used to interpret model predictions. We can also
use an LDAV to conduct hypothesis testing on the
role of attributes in any classification, for exam-
ple whether blood pressure is a critical factor in
predicting kidney disease.

For notation, we denote scalars with italic low-
ercase letters (e.g., x), vectors with bold lowercase
letters (e.g., x), and matrices with bold uppercase
letters (e.g., W). In the text classification task,
an input sequence x1, ...,xl ∈ Rd, where l is the
length of the input text and d is the vector dimen-
sion, is mapped to a distribution over class labels
using a parameterized deep neural network (e.g.,
BILSTM). The output y is a vector of class prob-
abilities, and the predicted class ŷ is a categorical
outcome. To faithfully interpret the deep neural
network’s prediction using relative importance, we
rely on information encoded by the LDAV. The
model learns k distributed activation vectors zj

(j = 1, 2, ..., k), where the prediction knowledge
of each ŷ is represented using zŷ ∈ Rd and k rep-
resents the number of classes. During deep neural
network training, we concurrently update each zj .

Our intuition is that the “locally distributed activa-
tion vector” for a given class is trained to emulate
the average word embedding of all of the instances
that are predicted for that class, while being maxi-
mally different from the LDAVs of the other classes.
In general, for text classification, we feed x1, ...,xl

to the representation layer (e,g, a LSTM) to obtain
the context vector h. The model predicts the label
by feeding h to an output layer.

3.1 Objective function

Unlike traditional attribution methods for text clas-
sification, our optimization objective now includes
new terms for model interpretability. The loss func-
tion for the deep neural network is defined as fol-
lows:

3.1.1 Cross-entropy
Traditional text classification models employ cross-
entropy loss to penalize incorrect classification as:

L1 = −1

k

k∑
i=1

ȳi log(yi), (1)

where ȳ is the one-hot encoded vector. For exam-
ple, ȳ = [0, 1, 0] indicates that the input belongs to
the second class.

3.1.2 Towards faithful interpretations
We use back-propagation to learn the LDAV activa-
tion vector zŷ during a model’s training. Our goal
is to minimize the distance between each feature
xi that triggers the class ŷ and the activation vector
zŷ. As a result, semantically important words will
have a short distance to the activation vector and
vice versa. To faithfully model distance between xi

and its corresponding zŷ, we propose the following
hybrid distance approach:

997

Term 1. This term minimizes the cosine dis-
tance between the sentence vector of x and the
corresponding zŷ, i.e., it minimizes the distance in
high dimensional space as follows:

L2 = ρ1

(
1−

x̂ • zŷ

∥x̂∥
∥∥zŷ
∥∥
)
, (2)

where x̂ is the sentence vector obtained using
a pooling operation (i.e., calculating the average
of the embedding vectors) of all word vectors
x1, ...,xl and ρ1 is a weight coefficient. This term
attempts to quantify the semantic similarity be-
tween the input and corresponding LDAV.

Term 2. We maximize the distance between
the activation vectors so that each zŷ has a short
distance from words contributing to ŷ and a long
distance from words contributing to other classes.
This ensures that words closer to their correspond-
ing zŷ have a higher importance w.r.t. the pre-
dicted class and vice versa. We maximize the pair-
wise squared distance of z1...zk (similar to tradi-
tional clustering techniques). We denote this loss
as L3, which is the sum over distances. ρ2 is a
weight coefficient.

L3 = ρ2

(
k∑
i

k∑
j

(
zi − zj

)2)
(3)

Overall, the optimization objective forces the net-
work to learn features where unrelated words are
orthogonal and features that have semantic relat-
edness are co-linear. The final loss is defined as
L = L1 + L2 − L3.

3.2 LDAV score

We now have a new representation that we can
use to faithfully interpret the classifier’s prediction.
Our problem is now simpler; we want to quantify
the contribution of xi to the model’s prediction ŷ
using zŷ, by calculating the distance between xi
and zŷ. This contribution value is called the LDAV
score. We initially propose to use a Euclidean mea-
sure and calculate the distance as follows:

α
(
xi, zŷ

)
=

√√√√ d∑
j=1

(
(zŷ)j − (xi)j

)2 (4)

The LDAV score is calculated as follows:

LDAV_score(xi, zŷ) = −
(
α(xi, zŷ)− µ

σ

)
,

(5)
where µ and σ are the mean and standard de-

viation (std) of α(x1, zŷ),α(x2, zŷ)...,α(xl, zŷ),
respectively. LDAV score is the normalized contri-
bution score of xi on the prediction of ŷ. A higher
score indicates higher word importance. This
score explains the contribution of a word w.r.t.
the model’s prediction. A good feature attribution
method would be capable of quantifying the impor-
tance of each variable w.r.t. the model prediction.
Semantically related features (e.g., ‘excellent,’ in a
positive movie review) will have a short distance
from the corresponding LDAV.

4 Experiments and analysis

We focus on the following objectives: 1) ensure
explainability does not affect predictive accuracy,
and 2) ensure the constrained optimization problem
provides faithful feature attribution. A summary
of the datasets is shown in Table 1. In the table,
Kaggle-CF means Kaggle-consumer-finance data.

Dataset Train Test Voc. Length classes
IMDB (Maas et al., 2011) 25000 25000 10000 50 2
Kaggle-CF (Kaggle, 2016) 60125 6681 52943 60 11
DBpedia (Zhang et al., 2015) 63000 5600 50002 32 15
AG news (Zhang et al., 2015) 102080 25520 59706 20 4

Table 1: A summary of the datasets used in evaluation. Voc.
means the vocabulary size.

4.1 Implementation specification

We evaluate our approach on two popular archi-
tectures, namely Bi-directional Long Short Term
Memory with attention mechanism (BILSTM)
(Zhou et al., 2016) and a Transformer architec-
ture (Vaswani et al., 2017). The dimension of
the embedding vector, LDAV, and the context vec-
tor that we used is 128, based on the cross vali-
dation results using {64, 128, 256}. For training
the classifiers, we used the Adam optimizer with
a learning rate of 0.0001 based on the cross vali-
dation from {0.000001, 0.00001, 0.0001} and the
batch size of 256 from {128, 256, 512}. We have
tried different values for ρ1 and ρ2. We train for
a maximum of 250 epochs with early stopping if
the validation score has not been improved dur-
ing 10 consecutive epochs. We report the results
based on the average of 5 runs. We compare our
LDAV method with seven baseline methods: Int-
Grad (Sundararajan et al., 2017), SHAP (Lundberg

998

and Lee, 2017), LIME (Ribeiro et al., 2016), Occlu-
sion (Zeiler and Fergus, 2014), ϵ-LRP (Bach et al.,
2015), Grad*Input (Denil et al., 2014) and Saliency
(Simonyan et al., 2013).

4.2 Interpretability does not affect predictive
accuracy

The proposed constrained optimization problem to
support a model’s explainability does not sacrifice
the classification performance of the deep neural
networks (DNNs) as shown in Tables 2 and 3. This
is because the constrained optimization problem en-
forces identification of semantic similarity between
sentences, which means sentences in a specific cate-
gory are close to each other in the embedding space
and far from sentences in other categories.

BILSTM Proposed
Dataset Accuracy F1 score Accuracy F1 score
AG news 0.88 0.88 0.88 0.88
DBpedia 0.90 0.84 0.94 0.88
IMDB 0.79 0.79 0.81 0.81
Kaggle-CF 0.81 0.67 0.82 0.67

Table 2: BILSTM performance on four datasets. The
BILSTM is from (Zhou et al., 2016)

Transformer Proposed
Dataset Accuracy F1 score Accuracy F1 score
IMDB 0.76 0.76 0.78 0.78
Kaggle-CF 0.78 0.59 0.79 0.66
AG news 0.88 0.88 0.88 0.88
DBpedia 0.91 0.85 0.94 0.88

Table 3: Transformer’s performance on four datasets. The
Transformer baseline is from (Vaswani et al., 2017)

4.3 Quantitative evaluation
We evaluate the faithfulness of the feature attribu-
tion obtained by previous post-hoc approaches and
our approach, and then compare performance. We
followed the current practice standard evaluation
techniques to evaluate the faithfulness. We note
that human evaluation might not be the best metric
for evaluating the faithfulness w.r.t. the black-box
(Jacovi and Goldberg, 2020). For example, human
annotation may not correlate with the salient fea-
tures used by the deep neural network. Further
note that a comparison with human annotation is
contrary to the ultimate goal of our technique, as
we aim to analyze the model’s behavior and defi-
ciencies. We adopt the following four metrics from
prior work.

4.3.1 Degradation test
This metric evaluates the faithfulness of the salient
features used by the model. We measure the local

fidelity by incrementally deleting words according
to their attribution score for the predicted class. For
each test data instance, we mask the top u words
(by using a special token <pad>) based on the
LDAV score that measures word attribution. We
then observe any change in the model’s prediction
compared with the original prediction when no
words are removed. We use the following equation
as a degradation score:

degradation-score(u) =
1

m

m∑
i=1

(ŷ
(i)
u = ŷ(i)), (6)

where m is the total number of test samples, ŷ(i)

is the predicted label on the i-th test data when no
words are masked, and ŷ

(i)
u is the predicted label

when u words are removed. A higher drop indicates
the capture of more informative words, which leads
to a better explanation for the model’s prediction.
This metric has also been used in previous work
(Nguyen, 2018).

Figures 2 and 3 show the results of degradation
scores in different explanation methods, as we in-
crease the number of masked words. We show
only the experimental results on BILSTM using
the AG news and DBpedia and the results on Trans-
former using the other two datasets. The figures
show that our method captures informative words
for the model’s prediction better than traditional
attribution methods. For instance, in IMDB, we see
a steep decline in the curve when removing the top
6% of important words, meaning that the classifier
uses a small percentage of words in IMDB to make
predictions on sentiment classification. We can
also observe that AG news and DBpedia classifiers
use a higher percentage of words for prediction,
compared to IMDB and Kaggle-consumer-finance,
which implies that they employ a larger context to
make a prediction. We arrived at the same conclu-
sion for Transformer tested on DBpedia and AG
news.

0 20 40 60

0

0.5

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

AG news

0 20 40

0

0.5

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

DBpedia

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input LIME

Figure 2: Change of degradation score when words are
masked on the BILSTM.

999

0 5 10 15

0.2

0.4

0.6

0.8

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e
IMDB

0 5 10

0.2

0.4

0.6

0.8

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

Kaggle-consumer-finance

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input LIME

Figure 3: Change of degradation score when words are
masked on the Transformer.

4.3.2 Change in log-odds score

In this experiment, we analyze the change in the
model’s probability of the predicted class when
the top u words are masked. Lower log-odds indi-
cate that the masked words are more important in
the model prediction. This metric is also used in
some previous models’ interpretation (Chen et al.,
2018b). The log-odds score is defined as follows:

Log-odds(u) = 1
m

∑m
i=1 log(

p(ŷ|xu)i
p(ŷ|x)i

),

(7)
where p(ŷ|x)i is the probability of the predicted
class when no tokens are deleted in the test sample
i, and p(ŷ|xu)i is the probability of the predicted
class when u words are deleted in the test sample i.
Results are shown in Figure 4 and 5.

0 20 40 60

−15

−10

−5

0

% of masked words

L
og

-o
dd

s
sc

or
e

AG news

0 20 40

−15

−10

−5

0

% of masked words

L
og

-o
dd

s
sc

or
e

DBpedia

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input

Figure 4: Change of log-odds score when words are masked
on the BILSTM.

0 5 10 15

−20

−10

0

% of masked words

lo
g-

od
ds

sc
or

e

IMDB

0 5 10

−30

−20

−10

0

% of masked words

L
og

-o
dd

s
sc

or
e

Kaggle-consumer-finance

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input

Figure 5: Change of log-odds score when words are masked
on the Transformer.

4.3.3 Switching point
The switching point test evaluates the sufficiency
of salient words to conform with the model pre-
diction. Words will be masked according to their
importance score, e.g., first x1, second x2, ..., and
last xn, where x1 is the word with the highest im-
portance for the predicted class based on the LDAV
score and xn is the word with the lowest impor-
tance. For each test, we measure the number of
words that need to be deleted before the prediction
switches to another class (the switching point), nor-
malized by the number of words in the input, as
proposed by (Nguyen, 2018). Our model (LDAV)
employs fewer words for classification on DBpedia
and AG news with the BILSTM architecture, and
on IMDB and Kaggle data with the Transformer
(see Table 4). This means our approach performs
better than post-hoc methods in capturing salient
features.

Transformer BILSTM
Method IMDB Kaggle Method AG news DBpedia
IntGrad 0.17 0.12 IntGrad 0.13 0.27
SHAP 0.26 0.08 SHAP 0.13 0.27

Occlusion 0.24 0.2 Occlusion 0.19 0.38
e-LRP 0.23 0.18 e-LRP 0.23 0.41

Grad*Input 0.23 0.18 Grad*Input 0.23 0.41
LIME 0.21 0.18 LIME 0.21 0.26

Saliency 0.41 0.42 Saliency 0.72 0.64
LDAV 0.11 0.06 LDAV 0.12 0.24

Table 4: The % of words that needs to be deleted to change
the classifier’s prediction. (e.g. 0.11 means 11%.)

4.3.4 Comprehensiveness
Here we use another alternative metric to evalu-
ate our approach, called ERASER (DeYoung et al.,
2019). This metric can be also used to evaluate
faithfulness of the explanation. It measures the
degree to which the words in the explanation in-
fluence the prediction. It provides two different
terms for faithfulness: comprehensiveness and suf-
ficiency. Due to page limits, we report only the
comprehensiveness result here. The comprehen-
siveness evaluates if all tokens needed to make a
prediction are selected. Let fθ denote a deep net-
work using LDAVs and parameterized by θ. A new
input is created x̃ such that x̃ = x − r, where r
is the salient words selected based on the LDAV
score. Let fθ(x)j be the prediction probability of
our model on the input x for class j. The compre-
hensiveness is calculated as fθ(x)j − fθ(x̃)j . A
higher score implies that the removed words are
more influential in the prediction.

Table 5 shows the results of comprehensive-
ness in term of Area Over the Perturbation

1000

Transformer BILSTM
Method IMDB Kaggle Method AG news DBpedia
IntGrad 0.122 0.008 IntGrad 0.014 0.009
SHAP 0.146 0.01 SHAP 0.011 0.01

Occlusion 0.065 0.01 Occlusion 0.009 0.005
e-LRP 0.081 0.005 e-LRP 0.012 0.005

Grad*Input 0.081 0.005 Grad*Input 0.012 0.005
LIME 0.113 0.007 LIME 0.012 0.028

Saliency 0.008 0.001 Saliency 0.001 0.001
LDAV 0.151 0.011 LDAV 0.0179 0.02

Table 5: Comprehensiveness scores of different explanation
techniques with the Transformer and BILSTM in terms of

AOPC.

Curve (AOPC) scores of different attribution tech-
niques. The comprehensiveness was calculated at
different percentages, 10%, 13%, 16%, 20%, 23%
for (IMDB, Kaggle consumer finance) and
15%, 21%, 28%, 34%, 40% for (DBpedia, AG
news), and the AOPC is reported. Since DBpedia
and AG news employed a larger context in pre-
diction, we used higher percentages for these two
datasets. LDAV outperforms the traditional feature
attribution techniques, achieving the highest scores
in comprehensiveness.

4.4 LDAV for pre-trained transformers
We also show that LDAVs can be used with pre-
trained language transformer models. We evalu-
ate the effectiveness of LDAVs on two datasets:
IMDB and AG news, when a pre-trained model
is used. We use the RoBERTa encoder (Liu et al.,
2019), which is a robustly optimized version of
BERT. We incorporate LDAVs into the RoBERTa
encoder and make the optimization trainable in
an end-to-end fashion by modifying the objective
function to learn LDAVs along with the classifica-
tion task. The hidden layer is fine-tuned for the
downstream classification task. The model was
trained on an NVIDIA GeForce RTX 3070 8 GB
GDDR6. We used two metrics here, degradation
score and comprehensiveness (using different per-
centages 1%, 5%, 10%, 20%, 50%). The results in
Table 6 and Figure 6 show that our method captures
the influential features used by the model in the
pre-trained transformer. For instance, we showed
that removing ∼ 4% of the words can significantly
affect the predictive power of the model.

Random Proposed Random Proposed
IMDB 0.011 0.047 AG news 0.021 0.036

Table 6: Comprehensiveness in terms of AOPC on RoBERTa.

4.5 Natural language inference
We also evaluate our approach on a structured
classification task, i.e., natural language inference

0 20 40

0.2

0.4

0.6

0.8

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

IMDB

0 20 40

0

0.5

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

AG news

Proposed Random

Figure 6: Degradation score on the RoBERTa model.

(NLI). Given a premise sentence x(p) and a hy-
pothesis sentence x(h), the objective is to predict
their relation ŷ, which can be one of the follow-
ing: {neutral, contradiction, entailment}. We use
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) for model training.
The dataset consists of 408, 579 samples for train-
ing and 9, 824 for testing. For building the predic-
tive model, we use the Decomposable Attention
network (DA) (Parikh et al., 2016).

DA+LDAV Similar to other tasks, we create an
LDAV for each of the three classes. During the
training, we update the deep network following our
proposed method. Because we have two inputs
(premise, hypothesis), Equation 2 will be modified
to consider information from both sentences when
learning the LDAVs. We first compute the premise
sentence vector x̂(p) for x(p), and the hypothesis
sentence vector x̂(h) for x(h).

Inspired by the idea of (Conneau et al., 2017), to
extract relations between x̂(p) and x̂(h), we use the
element-wise product. We compute the element-
wise product x̄(p,h) = x̂(p) ∗ x̂(h) and minimize
the cosine distance between x̄(p,h) and the corre-
sponding LDAV vector.

We use element-wise product to encode the in-
teraction between the premise and hypothesis sen-
tences which capture information from both. In
general, it can catch similarities or discrepancies.
The performance of the DA predictor with LDAV
was relatively similar to the original DA achieving
an accuracy of ∼ 84%. To calculate the attribu-
tion score of each word in premise and hypothesis,
we first predict the relation and then use the corre-
sponding LDAV of the predicted class. For instance,
to compute the attribution score for the token x

(p)
0

using Equation 5: (1) We find a new vector for the
token defined as x̄(p)

0 = x
(p)
0 ∗x̂(h) so that we could

estimate the attribution score given the hypothesis
sentence, (2) we apply Equation 5 using x̄

(p)
0 . We

use the same approach for the hypothesis tokens.

1001

Result. Results shown in Figure 7 in terms
of degradation score and log-odds demonstrate
the effectiveness of our approach in more struc-
tured/complex tasks such as NLI. LDAV outper-
forms traditional post-hoc explanation methods by
faithfully finding the most salient features used
by the model to predict the relation. Similar to
previous experiments, we have also used the com-
prehensiveness metric on the DA network using
different percentages (10%, 20%, 25%, 30%, 35%)
in Table 7, and showed that our proposed method
has best captured the salient features.

0 10 20 30

0.2

0.4

0.6

0.8

1

% of masked words

D
eg

ra
da

tio
n

sc
or

e

0 10 20 30

−0.4

−0.2

0

% of masked words

L
og

-o
dd

s
sc

or
e

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input LIME

Figure 7: Change of degradation score and log-odds when
words are masked on the DA network. (SNLI dataset). Lower

values are better.

Method AOPC Method AOPC Metho AOPC Method AOPC
IntGrad 0.136 Grad*Input 0.13 SHAP 0.19 Saliency 0.09
Occlusion 0.13 LIME 0.02 ϵ-LRP 0.13 LDAV 0.34

Table 7: Comprehensiveness in terms of AOPC. For each
method, AOPC is used to evaluate the features identified to be

supportive of predicted relation (positive evidence).

4.6 Ablation study

Loss terms. We conducted an ablation study to
understand the impact of each loss term on model
interpretability. This experiment identifies the min-
imum number of words required to switch the pre-
diction to another class (similar to the experiment
in Table 4). However, here we remove one term
from the optimization objective, and then evaluate
the effectiveness of our method in explaining the
prediction. Results shown in Table 8 demonstrate
the effectiveness of the proposed loss terms. The
values in Table 8 denotes the minimum percentage
of words required to be removed from the input so
that the prediction changes to another class. For in-
stance, 0.63 means we need to remove 63% of the
words in the input to switch the prediction. How-
ever, when we use the proposed LDAV method, we
will only need to remove 23% of the input.

Loss Deletion Loss Deletion Loss Deletion
Remove L2 0.63 Remove L3 0.66 No Removal (LDAV) 0.23

Table 8: Ablation study for the proposed loss terms.

4.7 Qualitative results

Instead of visualizing salient words for qualita-
tive analysis, we take a different approach by
testing the hypothesis. For example, consider
a binary classifier for kidney disease identifica-
tion. A doctor can be interested in understanding
whether or not low blood pressure or the
combination low blood pressure+heart
disease has a high correlation with kidney dis-
ease. This kind of analysis allows users to test
different sets of hypotheses when using a model.
This solution supports the consideration of evaluat-
ing any combination of features without feeding it
to the classifier. Note that a feature can be a single
word or a phrase.

To test a hypothesis, we only require the corre-
sponding LDAV and the embedding vectors of the
string. We can then compute the LDAV score of
the string: a higher score with a specific LDAV vec-
tor indicates that the features within the string are
more salient/discriminative for the model to trigger
prediction of that class. In Table 9, we conduct
a similar analysis on the AG news dataset trained
using a BILSTM. We can see that sentiment
analysis is correlated with the “business news”
class based on the high LDAV score. However,
sentiment classification is correlated with the “sci-
ence/tech” class. Another interesting observation
is that the model encodes the perspective that
corona virus is correlated with “business news” and
“world news,” and the highest contribution goes to
the “business news.” However, corona virus
infection is correlated with the “science/tech”
class, most probably due to the word infection.
The LDAV score for phrases is calculated using the
mean-pooling of the embedding vectors of all the
words.

Sentence world sports business science/tech
Corona virus 0.66 -1.14 1.72 -0.79
Corona virus infection -0.65 -0.73 0.35 1.67
Sentiment classification -0.58 -1.22 0.36 1.42
Sentiment analysis -0.3 -1.49 1.06 -0.79
Table 9: LDAV scores on AG news for hypothesis testing.

4.8 Concept testing

The LDAVs can also help measure whether a neural
network model reflects a specific domain or poten-
tial bias, i.e., whether the classifier is relying on
irrelevant features for making predictions or not.
For instance, our model can measure whether the
sentiment classifier is using positive lexicon words

1002

as “features” for predicting positive sentiment or
not.

Experiment. We apply a mean-strategy for em-
bedding vectors (i.e. calculating the average of
the embedding vectors) of the positive sentiment
lexicon (Hu and Liu, 2004), in order to get a sin-
gle concept vector. We construct a concept vec-
tor for the negative sentiment lexicon in the same
way. We then use the concept vector to calculate
the LDAV score w.r.t. each class, using already
constructed LDAVs from IMDB. The LDAV of the
positive class has the score of −1 w.r.t. the neg-
ative sentiment lexicon, while it has the score of
1 w.r.t. the positive sentiment lexicon. Similarly,
the LDAV of the negative class has the score of 1
and −1 for the negative sentiment lexicon and the
positive lexicon, respectively. The result shows that
each constructed LDAV from IMDB captures the
positive and negative concepts, respectively.

4.9 How correlated are LDAV vectors?
We have considered whether LDAV vectors are cor-
related with each other or not. Figure 8 shows the
correlation coefficient between LDAVs of classes.
All the negative values between different classes
imply that each learned vector negatively correlates
with others. In conclusion, the model is learning
discriminative features that do not correlate or over-
lap with features from other classes.

(a) AG news. (b) IMDB.
Figure 8: Correlation analysis between LDAVs trained on a

BILSTM.

5 Conclusion and future work

We have presented a method to learn locally dis-
tributed activation vectors (LDAVs) that can be
adapted to faithfully interpret deep network predic-
tions. Our method outperforms traditional post-hoc
techniques in revealing the classifier’s most dis-
criminative features for a given prediction. It also
avoids the often misrepresented trade off between
interpretability against classification accuracy. We

also showed that LDAV can be used for concept test-
ing and importance measure for phrases. Following
this work, we want to extend our approach to other
tasks such as Question answering and Name Entity
Recognition.

Acknowledgements

We would like to acknowledge the support of the
Alberta Machine Intelligence Institute (Amii), and
the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References
David Alvarez-Melis and Tommi S Jaakkola. 2018. On

the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS One, 10(7):e0130140.

Housam Khalifa Bashier, Mi-Young Kim, and Randy
Goebel. 2020. Rancc: Rationalizing neural networks
via concept clustering. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3214–3224.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP,
pages 149–155.

Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. Inter-
pretable neural predictions with differentiable binary
variables. In Proceedings of ACL, pages 2963–2977.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jianbo Chen, Le Song, Martin Wainwright, and Michael
Jordan. 2018a. Learning to explain: An information-
theoretic perspective on model interpretation. In In-
ternational Conference on Machine Learning, pages
883–892. PMLR.

Jianbo Chen, Le Song, Martin J Wainwright, and
Michael I Jordan. 2018b. L-shapley and c-shapley:
Efficient model interpretation for structured data.
ICLR 2019.

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

1003

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 670–680.

Misha Denil, Alban Demiraj, and Nando De Freitas.
2014. Extraction of salient sentences from labelled
documents.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2019. Eraser: A benchmark to
evaluate rationalized nlp models. Computation and
Language.

Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2016. beta-vae:
Learning basic visual concepts with a constrained
variational framework.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434.

Kaggle. 2016. Us consumer finance complaints. Kag-
gle.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
EMNLP, pages 107–117.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in Neural Information Processing Systems, 30:4765–
4774.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of ACL, pages 142–150. Association for
Computational Linguistics.

Dong Nguyen. 2018. Comparing automatic and human
evaluation of local explanations for text classification.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1069–1078.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2249–2255, Austin,
Texas. Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144. ACM.

Cynthia Rudin. 2018. Please stop explaining black
box models for high stakes decisions. 32nd Con-
ference on Neural Information Processing Systems
(NIPS 2018), Workshop on Critiquing and Correct-
ing Trends in Machine Learning.

Lei Sha and Thomas Lukasiewicz. 2021. Multi-type
disentanglement without adversarial training. In Pro-
ceedings of the 35th AAAI Conference on Artificial
Intelligence.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of International Conference on Machine
Learning (ICML), page 3319–3328.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Pro-
ceedings of the European Conference on Computer
Vision, pages 818–833. Springer.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, pages 649–657.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 207–
212.

https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244

1004

A Average runtime

We evaluate the computation time of each expla-
nation method on two architectures (BILSTM and
Transformer). In Table 10, we compare the average
runtime of 500 samples in seconds. SHAP and Oc-
clusion remain expensive compared to other tech-
niques. LDAV achieves the lowest time ∼ 1e−4

as it only requires feeding the input to the model
followed by calculating the LDAV scores. We used
Tensorflow running on Ubuntu machine with an
Intel Core i7 CPU at 3.60 GHz and Nvidia GPU
with 6GB in memory.

Model Methods DBpedia Model Methods IMDB

BILSTM

IntGrad 8.8

Transformer

IntGrad 9.0
Occlusion 191.4 Occlusion 252.7
SHAP 881.4 SHAP 976.6
ϵ-LRP 1.3 ϵ-LRP 1.5
Grad*Input 1.4 Grad*Input 1.7
Saliency 1.6 Saliecy 1.7
LIME 0.3 LIME 0.4
LDAV 0.0001 LDAV 0.0002

Table 10: Average runtime for each input in seconds on two
architectures: BILSTM (using DBpedia) and Transformer

(using IMDB)

B Analysis of learned representations

To see how well LDAVs capture the semantic differ-
ence between classes, we analyze the change of the
embedding vectors. In other words, we compare
between the embedding vectors without learning
LDAVs and the embedding vectors after learning
LDAVs. To do so, we perform two experiments:
one is to project the average of all word embed-
ding vectors (x̂) in each input without learning
LDAVs into two dimensions using principal com-
ponent analysis (PCA). The other is to project x̂
after learning LDAVs into two dimensions using
PCA. The results of the projections on AG news
and IMDB are shown in Figures 9 - 12.

Figure 9: PCA to two dimensions using x̂ without employing
LDAVs. X-axis and y-axis refer to the principal components

(dataset: AG news, Model:BILSTM).

Figure 10: PCA to two dimensions using x̂ without
employing LDAVs. X-axis and y-axis refer to the principal

components (dataset: IMDB, Model:BILSTM).

LDAVs modify the representations of the embed-
ding layer so that they can explain the classifier
faithfully. Therefore, we expect the embedding
vectors will be changed to better understand the
semantic difference between classes while LDAVs
are learned. As we can observe in Figures 11 and
12, the embedding vectors of the input texts after
LDAVs are learned tend to be clustered collinearly
depending on the predicted class. However, in Fig-
ures 9 and 10, the embedding vectors have not been
clearly clustered when LDAVs are not learned.

Figure 11: PCA to two dimensions using x̂ after employing
LDAVs. x-axis and y-axis refer to the principal components

(dataset: AG news, Model:BILSTM).

Figure 12: PCA to two dimensions using x̂ after employing
LDAVs. x-axis and y-axis refer to the principal components

(dataset: IMDB, Model:BILSTM).

The intuition here is that the optimization ob-
jective with LDAVs (ideally) forces the network to
learn embedding representations where inputs of
different classes are orthogonal, and inputs belong-
ing to the same class are collinear. As a result,
LDAVs can explain the classifier prediction well.

C Performance analysis with respect to
distance metric

In this section, we evaluate the effectiveness of
using cosine distance over Euclidean distance for

1005

Term 1. We have found that cosine distance works
relatively better and it does not sacrifice the per-
formance of the baseline classifier (see Table 11).
The performance of the baseline classifier is shown
in Table 3 of the main paper. The increased accu-
racy of cosine distance likely results from inherent
normalization during computation and the natural
geometric structure it induces (orthogonality and
collinearity) on the representations of the embed-
dings.

Euclidean distance Cosine distance
Dataset Accuracy F1 score Accuracy F1 score
IMDB 0.73 0.73 0.78 0.78
Kaggle-CF 0.73 0.54 0.79 0.66
AG news 0.86 0.86 0.88 0.88
DBpedia 0.59 0.55 0.94 0.88

Table 11: Comparing distance metric for Term 1 on the
Transformer model.

D Baseline details

Here we describe the baselines used in the evalua-
tion.

Grad*Input is the gradient of the output w.r.t.
the input, followed by multiplying the input with
the gradient.

Integrated Gradient (IntGrad) calculates a path
integral of the model gradient to the input from a
non-informative reference point.

Layer-wise relevant propagation (ϵ−LRP) is
a layer-wise relevance method, which focuses on
redistributing the relevance.

LIME focuses on creating an interpretable clas-
sifier by approximating it locally, with a linear
model.

SHAP employs game theory to estimate feature
attribution.

Saliency uses gradient of the output neuron with
respect to the input.

Occlusion employs perturbation techniques to
learn feature attribution in a post-hoc approach.

E LDAV score

We found that Euclidean distance in LDAV score
(Equation 4 in the main paper) works relatively
better than cosine distance in approximating feature
attribution. The switching points on IMDB using
Euclidean and cosine distances are 9% and 15%
respectively.

