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Abstract

The conventional success of textual classi-
fication relies on annotated data, and the
new paradigm of pre-trained language mod-
els (PLMs) still requires a few labeled data
for downstream tasks. However, in real-world
applications, label noise inevitably exists in
training data, damaging the effectiveness, ro-
bustness, and generalization of the models con-
structed on such data. Recently, remarkable
achievements have been made to mitigate this
dilemma in visual data, while only a few ex-
plore textual data. To fill this gap, we present
SelfMix, a simple yet effective method, to han-
dle label noise in text classification tasks. Self-
Mix uses the Gaussian Mixture Model to sep-
arate samples and leverages semi-supervised
learning. Unlike previous works requiring mul-
tiple models, our method utilizes the dropout
mechanism on a single model to reduce the con-
firmation bias in self-training and introduces
a textual level mixup training strategy. Ex-
perimental results on three text classification
benchmarks with different types of text show
that the performance of our proposed method
outperforms these strong baselines designed
for both textual and visual data under differ-
ent noise ratios and noise types. Our anony-
mous code is available at https://github.
com/noise-learning/SelfMix.

1 Introduction

The excellent performance of deep neural net-
works (DNNs) depends on data with high-quality
annotations. However, data obtained from the real
world is inevitably mixed with wrong labels (Guan
et al., 2018; Aït-Sahalia et al., 2010; Liu et al.,
2020b). Models trained on these noisy datasets
would easily overfit the noisy labels (Algan and
Ulusoy, 2020; Liu et al., 2020a), especially for pre-
trained large models (Zhang and Li, 2021), and the
performance will be negatively affected.

Research on learning with noisy labels (LNL)
has gained popularity. Previous work has revealed

that clean samples and noisy samples play differ-
ent roles in the training process and behave differ-
ently in terms of loss values or convergence speeds
etc. (Liu et al., 2020a). Different types of noise
have different effects on the training. For instance,
the impact of class-conditional noise (CCN) can
simulate the confusion between similar classes, and
the effect of instance-dependent noise (IDN) can
be more complex.

Most of the current methods perform experi-
ments on visual data. Label noise on visual data
often goes against objective facts and is easy to dis-
tinguish. As for NLP, there may be disagreement
even among expert annotators due to the complex-
ity of semantic features and the subjectivity of lan-
guage understanding. For example, suppose there
is a piece of news about “The Economic Benefit of
Competitive Sports to our Cities”. In that case, it is
hard to tell whether it belongs to Economic news or
Sports news without fully understanding the con-
textual information. Although a few works pay at-
tention to the natural language area, their methods
are mostly based on the trained-from-scratch mod-
els like LSTM and Text-CNN (Garg et al., 2021;
Jindal et al., 2019). However, PLMs might be a
better choice since the whole training process can
be divided into two stages, and the wrong labels
do not corrupt the pre-training process. Table 2
makes comparisons between PLMs and traditional
networks on the robustness against label noise.

In conclusion, it is vital to explore how to learn
with noisy labels on textual data and use the robust
PLMs as the base model. This paper proposes Self-
Mix, i.e., a self-distillation robust training method
based on the pre-trained models. Section 2 intro-
duces some related works and explains the motiva-
tion of our proposed method.

Our contributions can be concluded as follows:

• We propose SelfMix, a simple yet effective
method to help learn with noisy labels, which
utilizes a self-training approach. Our method

https://github.com/noise-learning/SelfMix
https://github.com/noise-learning/SelfMix
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only needs a single model and utilizes a mixup
training strategy based on the aggregated rep-
resentation from pre-trained models.

• We perform comprehensive experiments on
three different types of text classification
benchmarks under various noise settings, in-
cluding the challenging instance-dependent
noise, which is usually ignored in other works
on textual data, which demonstrate the supe-
riority of our proposed method over strong
baselines.

2 Related Work

Learning with Noisy Labels. A direct yet effec-
tive idea to handle label noise is to find the noisy
samples and reduce their influence by resampling
or reweighting (Rolnick et al., 2017). Jiang et al.
(2018) train another neural network to provide a
curriculum to help StudentNet focus on the samples
whose labels is probably correct. Han et al. (2018)
jointly train two deep neural networks and feed
each model the top r% samples with the lowest loss
evaluated by the other model in each mini-batch.
Following Han et al. (2018), Yu et al. (2019) ex-
plore how disagreement can help the model. Some
researchers believe that there exists a transition
from ground-truth label distribution to the noisy
label distribution and estimate the noise transition
matrix to absorb this transition (Goldberger and
Ben-Reuven, 2016). Northcutt et al. (2021) directly
estimate the joint distribution matrix between the
noisy labels and real labels. Garg et al. (2021) use
a fully connected layer to capture the distribution
transition. However, most of these methods either
need model ensembling or require cross-validation,
which is time-consuming and needs multiple pa-
rameters.

Some other works focus on designing a more
robust training strategy. Since DNNs with Cross-
Entropy loss tend to overfit noisy labels (Feng et al.,
2021), some researchers redesign noise-robust loss
functions (Wang et al., 2019b; Zhang and Sabuncu,
2018; Ghosh et al., 2017; Xu et al., 2019). When
trained on noisy data, DNNs tend to learn from the
clean data during an “early learning” phase before
eventually memorizing the wrong data (Arpit et al.,
2017; Zhang et al., 2021), based on which Liu
et al. (2020a) offer an easy regularization capitaliz-
ing on early learning. Some other works like Xia
et al. (2020) find that only partial parameters are
essential for generalization, which offers us a new

perspective to reconsider what difference exactly
the noisy labels make to the model’s learning. This
kind of approach treats all samples indiscriminately
thus the performance is sometimes unsatisfactory
under a high noise ratio.

Some excellent work combines these two ideas
(Ding et al., 2018; Li et al., 2020). Garg et al.
(2021) add an auxiliary noise model NM over the
classifier to predict noisy labels and jointly train the
classifier and the noise model through a de-noising
loss function. Cheng et al. (2021) progressively
sieve out corrupted examples and then leverage
semi-supervised learning.

Mixup Training. Mixup training (Zhang et al.,
2018) is a widely used data-augmentation method
to alleviate memorization and sensitivity to adver-
sarial samples on visual data. It combines the in-
puts and targets of two random training samples to
generate augmented samples. However, applying
mixup on textual data is a great challenge since lin-
ear interpolations on discrete inputs damage the se-
mantic structure. Some literature has explored the
textual mixup mechanism like: Chen et al. (2020)
propose to mix the hidden vector in the last few
encoder layers; Yoon et al. (2021) find a new way
to combine two texts which can also be treated as
a data augmentation strategy. In this paper, we do
not make comparisons for the following reasons:
(1) Our EmbMix is simpler in practical use and
there is little difference in the final performance of
various methods according to Chen et al. (2020).
(2) Some other methods need data augmentation
while EmbMix does not.

Proposed Method. Since simply redesigning a
robust loss function tends to have poor performance
under a high noise ratio, we combine sample selec-
tion with the robust training methods. Unlike the
previous work that needs model ensembling or uses
cross-validation, we train a single network with
dropout to reduce confirmation bias in self-training.
We make following improvements regarding to the
characteristics of the textual data: (1) The decision
boundaries in image-classification tasks are more
clear. However, the main idea of the same text can
vary under different contexts and sometimes there
is even no absolute correct label. So we iteratively
use the Gaussian Mixture Model (GMM) to fit the
loss distribution and use the predicted soft label
to replace the label of the fusing data rather than
setting a threshold and arbitrarily discarding the
undesired samples at the beginning. (2) Unlike
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the pixel input of visual data, the input of text is
discrete. So for the separated data, we leverage
a manifold mixup training strategy based on the
aggregated representation from the PLMs.

3 Methodology

Figure 1: The overall framework of SelfMix

Figure 1 shows an overview of our proposed Self-
Mix. Our method first uses GMM to select the sam-
ples that are more likely to be wrong and erase their
original labels. Then we leverage semi-supervised
learning to jointly train the labeled set X (contains
mostly clean samples) and an unlabeled set U (con-
tains mostly noisy samples). We also introduce a
manifold mixup strategy based on the hidden rep-
resentation of the [CLS] token named EmbMix.

3.1 Preliminary
In real-world data collection, the observed labels
are often corrupted. So the only difference between
this task and the traditional text classification task
is that a certain proportion of incorrect labels exist
in training samples. Let D = {(xi, yi)}Ni=1 denote
the original dataset, where N is the number of sam-
ples, xi is the text of the ith sample, and yi is the
one-hot representation of the observed label of the
ith sample. For the base model, we denote θ as the
parameters of the pre-trained encoder model and
ϕ as the parameters of MLP classifier head with
2 fully connected layers. The standard optimiza-
tion method tries to minimize the empirical risk by
applying the cross-entropy loss:

L = {ℓi}Ni=1 =
{
−yTi log (p (xi; θ, ϕ))

}N

i=1
, (1)

where p (x; θ) denotes the softmax probability of
the model output. We first warm up the model
using L to make it capable of doing preliminary
classification tasks without overfitting noisy labels
and then perform SelfMix for the rest epochs.

3.2 Sample Selection
On noisy data, Deep neural networks will preferen-
tially learn simple and logical samples first and re-

duce their loss. Namely, noisy samples tend to have
a higher loss in the early stage (Zhang et al., 2021).
Preliminary experiments show that the loss distri-
butions of clean and noisy samples during train-
ing tend to subject to two Gaussian Distributions,
where the loss of the clean samples hold a smaller
mean value. Taking advantage of such training
phenomena, we apply the popular used Gaussian
Mixture Model (Arazo et al., 2019) to distinguish
noisy samples by feeding the per-sample loss. For
IDN, noisy labels rely on both input features and
underlying true labels, so the noise in each class
is different, making the loss scales from different
classes vary greatly. The relatively high-loss sam-
ples in low-loss class may also be treated as clean
samples. So we compute a class-regularization loss
instead of the standard cross-entropy loss, which
can better model the distributions in IDN. For each
class c, the set Lc = {ℓi | yi = c, i ∈ [N ]} con-
tains the cross-entropy loss values of all samples
with label c, then µc and σc denote the arithmetic
mean and standard deviation of Lc respectively.
Our regularization loss has the following form:

L′ =
{
ℓ′i
}N

i=1
= {(ℓi − µyi)/σyi}

N
i=1 . (2)

We feed the loss L (L′ for IDN) to a 2-component
GMM and use Expectation-Maximization (EM)
algorithms to fit the GMM to the observations. Let
wi = p(g|ℓ′i) represent the probability of the ith

sample belonging to the Gaussian component with
smaller mean g, which can also be considered as the
clean probability due to the small-loss theory (Arpit
et al., 2017). By setting the threshold τ for the
probability wi, we can divide the original dataset
D into a labeled set X and an unlabeled set U
where the labels of samples that are more likely to
be wrong will be erased:

X = {(xi, yi) | xi ∈ D, wi ≥ τ} ,
U = {(xi) | xi ∈ D, wi < τ} .

(3)

3.3 Semi-supervised Self-training

To make semi-supervised learning work better, we
first do pre-process on the unlabeled set. For the
unlabeled set U , the original label is most likely
wrong and has been discarded. Therefore, we gen-
erate the soft label ŷ by sharpening the model’s pre-
dicted distribution, making the distribution more
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concentrated (Zoph et al., 2020).

ŷ = Sharpen (p (x; θ, ϕ)) , (4)

Û = {(xi, ŷi) | xi ∈ U} , (5)

D̂ = X ∪ Û . (6)

Here Sharpen (·) is the temperature sharpening
function commonly used in self-training. D̂ con-
tains the clean samples with original labels and
noisy samples with predicted soft labels.

Textual Mixup based on EmbMix. Mixup
training strategy is widely used in semi-supervised
learning and noise-robust training (Zhang et al.,
2018). It applies linear interpolation to the input
vectors and associated targets. Although image
data can be mixed on the pixel level, mixing the
discrete word index makes no sense for text classi-
fication. Considering that the [CLS] embedding
encoded by PLMs has the ability of semantic rep-
resentations, we attempt to apply interpolations
on the [CLS] embedding. Specifically, randomly
choose two samples (xi, yi), (xj , yj) and the mixed
sample (e′i, y

′
i) is defined as:

λ ∼ Beta(α, α), (7)

λ′ = max(λ, 1− λ), (8)

ek = Encoder (xk; θ) , (9)

e′i = λ′ei +
(
1− λ′) ej , (10)

y′i = λ′yi +
(
1− λ′) yj , (11)

where Encoder (x; θ) denotes the sentence [CLS]
embeddings obtained by pre-trained models.

Finally, the EmbMix method for dataset D̂ is as
follows:

D̃ =
{(

e′i, y
′
i

)
| (xi, yi) , (xj , yj) ∈ D̂

}
, (12)

where (e′i, y
′
i) is computed by eq.(7-11).

3.4 Loss Function
Mix-Loss. Given our augmented dataset D̃ ob-
tained by EmbMix, we use the standard cross-
entropy loss for semi-supervised learning:

LMIX = − 1

| D̃ |

∑
(e,y)∈D̃

yT log (p (e;ϕ)) . (13)

Here p(e;ϕ) denotes the predicted probability of
the mixed target using the mixed hidden represen-
tation e as the input.

Pseudo-Loss. According to the Low-density
Separation Assumption theory, the decision bound-
ary of a classifier should preferably pass through

low-density regions in the input space (Chapelle
and Zien, 2005). To achieve this, we add a spe-
cial regularization on the unlabeled set to penalize
those samples whose output probability value of
the predicted class is small:

ỹi = argmax(p (xi; θ, ϕ)) , (14)

LP = − 1

| U |
∑
xi∈U

ỹilog(p (xi; θ, ϕ)) . (15)

Here p(xi; θ, ϕ) denotes the model’s prediction of
sample xi, and ỹ denotes the one-hot representa-
tion of the pseudo-label that the model predicts.
Preliminary experiments show that pseudo-loss reg-
ularization is more effective than a simple entropy-
minimization.

Self-consistency Regularization. It is worth
mentioning that confirmation bias caused by error
accumulation is common in self-training. Model
ensembling is a widely used method to handle this.
Dropout (Srivastava et al., 2014) mechanism can be
seen as an implicit sub-models ensembling. So we
use dropout when training the network and close
dropout when making sample selection or infer-
ence. Label noise under a high noise ratio setting
blurs the decision boundaries between classes, lead-
ing to a severe inconsistency between sub-models.
So we add R-Drop (Liang et al., 2021) loss, a sim-
ple but effective dropout regularization method to
constrain the consistency of these sub-models:

LR =
∑
x∈U

1

2
(DKL (p1 (x; θ, ϕ) || p2 (x; θ, ϕ))

+DKL (p2 (x; θ, ϕ) || p1 (x; θ, ϕ))),
(16)

where p1(x; θ, ϕ) and p2(x; θ, ϕ) are two predicted
distributions obtained by feeding the same sample
twice, DKL (a||b) computes the Kullback-Leibler
divergence between two probability distributions.

Finally, the total loss for SelfMix is:

L = LMIX + λpLP + λrLR, (17)

where λp and λr are the hyper-parameters to con-
trol the weight of the extra loss.

4 Experiments

4.1 Settings
Datasets and Noise Settings. We do experiments
on three text classification benchmarks of differ-
ent types, including Trec (Li and Roth, 2002),
AG-News (Gulli, 2005), and IMDB (Maas et al.,
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Name Class Type Train Test

Trec 6 Question-Type 5452 500
IMDB 2 Sentiment Analysis 45K 5K
AG-News 4 News Categorization 120K 7.6K

Table 1: The statistics of datasets.

Dataset Trec AG-News
Rand (%) 0 20 40 0 20 40
BERT 97.04 95.75 94.07 94.03 93.19 92.51

Asym (%) 0 20 40 0 20 40
Text-CNN 93.48 88.36 70.52 90.83 88.95 76.69
LSTM 92.58 90.68 83.96 91.92 90.20 88.62
BERT 97.04 95.52 89.04 94.03 93.38 91.59
RoBERTa 96.92 96.32 92.12 94.10 93.91 92.74

Table 2: Preliminary experiments (%) for different base
models under symmetric and asymmetric noise.

2011) (Table 1). In the preliminary experiments,
we find that PLMs are robust to random noise on
textual data (Table 2). The test accuracy drops by
only 3% even under 40% random noise, which may
benefit from the powerful pre-trained knowledge.
So we evaluate our strategy under the following
two types of label noise:

• Asymmetric noise (Asym): Asymmetric noise
tries to simulate the mislabeling between
classes. For a given class, we follow Chen
et al. (2019) and choose a certain proportion
of samples and flip their labels to the corre-
sponding class according to the asymmetric
noise transition matrix.

• Instance-dependent noise (IDN): The proba-
bility of being mislabeled depends on the fea-
ture of instances. So we use the other trained
model as the feature extractor. The labels of
the samples that are closest to decision bound-
aries are flipped to their counter class as noisy
labels (Algan and Ulusoy, 2020), which is
more challenging and quite realistic.

Model Architectures. Most related works per-
form experiments based on trained-from-scratch
models, while PLMs have been shown to have great
potential for all kinds of language tasks. Thus we
conduct experiments on different models to eval-
uate their robustness against label noise. Table 2
shows that the pre-trained model is more robust
than traditional networks when dealing with label
noise in text classification. Thus, we choose the
representative BERT for further research and ver-

ify the generalization of SelfMix across different
PLMs in Section 5.

4.2 Baselines
We compare SelfMix with the following baselines:
(1) BERT, which trains the model with the cross-
entropy loss without any denoising strategy; (2) Co-
Teaching (Han et al., 2018), which trains two mod-
els simultaneously and lets each model sample
small-loss instances to teach the other model for
further training; (3) Co-Teaching+ (Yu et al., 2019),
which updates on disagreement data on the basis
of the original Co-teaching; (4) SCE (Wang et al.,
2019b), which boosts Cross Entropy symmetrically
with Reverse Cross Entropy (RCE) for robust learn-
ing; (5) ELR (Liu et al., 2020a), which designs
a regularization term to prevent memorization of
the false labels; (6) Confident-Learning (Northcutt
et al., 2021), which estimates noise distribution by
cross-validation and then trains a new model on
clean data; (7) NM-Net (Garg et al., 2021) is one
of the few representative works which jointly train
a classifier and a noise model using a denoising
loss; (8) CORES2∗ (Cheng et al., 2021) is a method
for instance-dependent label noise, which progres-
sively sieves out corrupted examples with a confi-
dence regularization and applies semi-supervised
learning for consistency training. We implement
them based on the standard BERT Encoder (Devlin
et al., 2019) with reference to their public code and
make comparisons under the same setting.

4.3 Implementation Details
There are three hyper-parameters to tune in Self-
Mix (the hyper-parameters of BERT are set as de-
fault and remain unchanged), the threshold τ for
GMM to divide the data, and the weights λp, λr for
two special loss functions. We choose 0.5 as the
threshold τ and keep it the same under different
settings. (λp, λr) is demonstrated right besides the
name of datasets in Table 3-4. The performance
can be more satisfactory if we specify the (λp, λr)
for each setting. However, it is unfair to the meth-
ods that use few hyper-parameters, so we try to
keep them the same. Other settings like learning
rate (10−5), optimizer (Adam), and batch size (32)
keep the same for all the methods and tasks. For
SelfMix, we warm up the model for 2 epochs under
asymmetric noise and 5000 samples under instance-
dependent noise. Considering that the training data
is noisy, we report the test accuracy of the best and
last epochs over all 6 epochs rather than setting a



965

Dataset / (λp, λr) Trec (0.2, 0.3) AG-News (0.2, 0.3) IMDB (0.1, 0.5)

Data Size 5,453 (All) 5,000 120,000 (All) 5,000 45,000 (All)

Noise Ratio (%) 20 40 20 40 20 40 20 40 20 40

BERT
best 95.52 89.04 89.55 80.90 93.38 91.59 88.51 80.81 92.67 87.70
last 93.48 69.88 84.40 62.33 90.32 74.04 81.20 63.55 87.40 61.82

BERT+Co-Teaching
best 95.96 92.76 89.70 87.24 93.43 92.03 88.81 84.39 92.94 88.45
last 95.32 90.08 88.77 82.53 93.01 85.03 88.24 82.68 91.68 84.43

BERT+Co-Teaching+
best 96.37 91.14 89.45 85.81 92.93 90.96 88.57 81.75 92.71 87.94
last 95.98 87.24 89.12 79.82 92.87 90.41 88.33 81.23 92.69 87.07

BERT+SCE
best 94.72 91.28 89.62 86.72 93.13 90.78 88.76 82.65 92.82 87.32
last 94.04 82.44 89.43 74.37 93.03 87.34 87.74 74.38 92.77 82.52

BERT+ELR
best 96.08 92.16 89.88 85.43 93.63 92.00 88.70 82.45 93.13 87.62
last 95.40 88.28 89.47 81.24 93.30 90.67 87.76 72.71 92.50 79.54

BERT+Confident-Learning
best 95.92 91.80 89.83 84.77 93.57 91.96 89.05 81.65 92.66 87.13
last 95.36 88.64 89.27 78.48 93.38 89.97 88.62 77.93 92.52 83.39

BERT+NM-Net
best 96.00 90.92 89.35 81.35 93.54 92.09 88.70 81.21 92.93 88.47
last 94.84 79.76 85.41 63.26 93.47 84.55 88.41 74.62 92.28 86.60

BERT+SelfMix
best 96.32 94.12 89.90 88.80 93.39 92.79 89.20 86.38 93.30 90.19
last 96.04 93.80 89.79 88.63 93.04 92.40 88.84 86.38 92.86 90.12

Table 3: Average test accuracy (%) of five runs on the Trec, AG-News, and IMDB datasets with different data
sizes under different ratios of asymmetric noise. The results with outstanding improvement over the base model
are bolded, and underline values indicate the statistically significantly better (by paired bootstrap test, p < 0.05)
performances than BERT.

clean validation set. And this is a commonly used
metric in other related works. All the results are
the average of five runs. Our noise generation code
and more details can be found in our public code.

4.4 Main Results

Asymmetric Noise. The effect of asymmetric
noise is relatively small when data is sufficient
due to the excellent performance of PLMs. So we
cut the datasets into a small size of 5000 for more
precise comparison of the models’ performance.
Table 3 shows the results on three datasets under
asymmetric noise. CORES2∗ is designed to handle
IDN, so we show its performance in Table 4. Our
proposed SelfMix outperforms the strong baselines
in almost every setting. Most models’ performance
drops steeply under a high noise ratio and data-
insufficiency setting. However, SelfMix still holds
a remarkable performance over this challenging
scenario. SelfMix does not achieve the best result
under 20% label noise on AG-News, but it is ex-
cusable since the base model already holds a good
performance and there is not much difference be-
tween SelfMix and the best result.

Instance-dependent Noise. IDN is more close
to real-world noise. Following Algan and Ulusoy
(2020), we train an LSTM classifier on a small
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Figure 2: The generated instance-dependent label noise
distribution on AG-News, where the abscissa is the true
label, and the ordinate is the observed label.

set of the original training data and flip the ori-
gin labels to the class with the highest prediction
probability among other classes. Trec dataset has
only 5452 training samples and is extremely class-
imbalance. So the number of clean samples may
even be less than generated noisy samples in the
long-tailed class under a high noise ratio, which
makes the classification no sense. Therefore, we
only do experiments on IMDB and AG-News, and
Figure 2 shows noise transition on AG-News. Ta-
ble 4 presents the experimental results on IDN.
Some of the methods do not work properly since
they were not designed for IDN and did not con-
sider the discrepancy of loss distributions between
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Dataset / (λp, λr) AG-News (0.0, 0.3) IMDB (0.0, 0.3)

Noise Ratio (%) 10 20 30 40 10 20 30 40

BERT
best 88.24 83.67 77.61 72.73 90.44 83.07 79.52 76.59
last 87.76 82.28 74.80 69.04 90.43 80.26 70.43 60.59

BERT+Co-Teaching
best 88.62 84.63 78.40 73.14 90.00 83.64 79.70 76.09
last 87.74 83.87 77.01 70.58 89.71 83.01 76.50 69.07

BERT+Co-Teaching+
best 88.72 84.62 80.75 78.94 89.92 85.65 82.72 80.23
last 88.33 83.64 77.70 74.72 89.20 84.45 79.13 75.20

BERT+SCE
best 88.43 84.09 78.81 73.11 90.23 84.30 80.60 75.76
last 87.86 83.55 76.49 69.09 90.04 82.59 75.46 67.94

BERT+ELR
best 88.45 83.41 77.77 72.97 90.60 83.44 79.29 76.10
last 88.05 82.25 75.26 69.12 90.44 80.91 71.81 63.04

BERT+Confident-Learning
best 88.52 83.70 77.49 71.58 90.09 83.45 79.34 74.14
last 88.20 83.23 75.97 70.62 89.98 82.12 75.76 69.05

BERT+NM-Net
best 88.25 83.19 76.60 72.31 90.05 83.28 79.54 75.85
last 87.92 82.89 75.49 69.91 89.83 81.79 74.44 69.37

BERT+CORES2∗ best 87.98 84.45 81.12 78.20 89.99 83.35 79.62 76.20
last 86.76 82.79 78.67 75.39 73.39 62.90 55.47 58.16

BERT+SelfMix
best 88.45 86.82 86.72 83.99 90.31 85.49 84.38 82.76
last 87.64 85.96 86.38 83.67 86.70 84.14 83.18 78.94

Table 4: Average test accuracy (%) of five runs on the AG-News and IMDB datasets under different ratios of
instance-dependent noise. The results with outstanding improvement over the base model are bolded, and underline
values indicate the statistically significantly better (by paired bootstrap test, p < 0.05) performances across the
board.

Dataset Trec AG-News IMDB

SelfMix w/o LP
best 89.40 87.57 89.55
last 85.04 83.21 87.40

SelfMix w/o LR
best 91.56 89.66 85.54
last 88.28 87.73 75.98

SelfMix w/o mixup
best 91.52 89.51 88.23
last 87.04 84.82 86.17

SelfMix
best 94.12 92.79 90.19
last 93.80 92.40 90.12

Table 5: Ablation study results (%) on Trec, AG-News
and IMDB under 40% asymmetric label noise.

different classes. However, our proposed class-
regularization loss can still make the samples dis-
tinguishable and SelfMix outperforms the strong
baselines in most circumstances.

5 Analysis and Discussion

To make a more comprehensive analysis of our pro-
posed strategies, we offer fine-grained experiments
and visualization to answer the following research
questions (RQs): (1) Can GMM actually distin-
guish the noisy samples on textual data? (2) How
well can SeflMix help prevent the model from over-
fitting the noisy labels? (3) SelfMix utilizes more

than one component. Does each of them contribute
to the final performance? (4) Can SelfMix be ap-
plied to other pre-trained models except BERT? (5)
Noise and outliers both might have higher loss in
early stages. While examples with noisy labels are
useless or detrimental while training, how do we
make sure with GMMs we don’t filter out outliers
in this approach?

Answer 1: We demonstrate the loss distributions
of the clean samples and noisy samples on IMDB
under 40% asymmetric noise in Figure 3 (a-c) and
IDN in Figure 3 (e-g). Consistent with Liu et al.
(2020a), the model tends to learn clean data dur-
ing an early learning phase, and the 2-component
GMM almost perfectly fits the loss distribution to
distinguish the clean and noisy samples. During
training, the loss output by SelfMix is getting more
polarized while the base model has already over-
fitted the wrong labels. Notably, the cross-entropy
loss values of different classes vary greatly under
instance-dependent noise. And our proposed class-
regularization loss can help GMM better isolate
these distributions in each class.

Answer 2: We record the test accuracy for every
few mini-batches and show the learning process on
AG-News (120k samples) and IMDB (45k samples)
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(b) Epoch 6 (SelfMix)
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(e) Epoch 1 (Warmup/Base)
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(f) Epoch 6 (SelfMix)
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(g) Epoch 6 (Base)
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Figure 3: (a-c) the loss distributions of SelfMix/Base on IMDB under 40% asymmetric noise in different stages;
(d) the test accuracy of every few training steps under 40% asymmetric noise; (e-g) the loss distributions of
SelfMix/Base on IMDB under 40% instance-dependent noise in different stages; (h) the test accuracy of every few
training steps under 40% instance-dependent noise.

under 40% asymmetric/instance-dependent noise
in Figure 3(d)/3(h). The left side of the green verti-
cal dotted line records the warm-up stage of Self-
Mix, which is the same as the base model. From
the right side, we can observe that the base model
overfits the noisy samples quickly. At the same
time, SelfMix can keep learning and performs bet-
ter, which may benefit from the effective sample
selection and mixup training. The loss distributions
in Figure 3 can also prove that. We have an interest-
ing observation: The training process under IDN is
more stable than asymmetric noise. We assume that
the randomness in asymmetric noise breaks the sta-
bility of the map from features to output probability.
While for IDN, there still exists a learnable map
from input features to output labels, which makes
the learning process no different from a standard
text classification from another perspective.

Answer 3: We remove each sub-method used in
SelfMix respectively and check the test accuracy
to see whether each component of our proposed
method contributes to the task (Table 5). We ob-
serve that each component can significantly con-
tribute to the final performance. LP and mixup
training play a more critical role against overfitting
since the results of the last epoch fall sharply with-
out these two mechanisms. Another unexpected
but reasonable observation is the precipitous drop-

ping result without LR on IMDB under 40% noise.
SelfMix utilizes dropout as an alternative to prevent
confirmation bias in self-training. However, 40%
asymmetric label noise blurs the class boundary. It
inevitably leads to the inconsistency between im-
plicit sub-models, which is more pronounced on
the binary classification dataset IMDB, and LR just
constraints the divergence between sub-models.

Answer 4: To verify the effectiveness of our pro-
posed SelfMix on other PLMs, we perform experi-
ments on RoBERTa. Table 6 shows the significant
improvement brought by SelfMix.

Answer 5: 1).Outlier refers to a data point that
is significantly dissimilar to other data points or
a point that does not imitate the expected typical
behavior of the other points (Wang et al., 2019a),
which has some similarities with the concept of
noisy samples. Most noisy sample filtration meth-
ods are constructed based on the consumption
or phenomenon that noisy samples behave differ-
ently from other data points during training. With
the overlapped concept and the similar consump-
tion/phenomenon in distinguishing noisy samples
and outliers from other data points, many outlier de-
tection methods resemble the noisy filtration ones
(Wu et al., 2020; Knox and Ng, 1998), i.e., they
view a point as an outlier/noisy sample if it is far
away from its nearby neighbors in the represen-
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Dataset Trec AG-News IMDB

Noise Type Asym Asym IDN Asym IDN

RoBERTa
best 92.12 92.74 72.49 90.54 74.09
last 86.56 89.43 69.94 80.60 60.50

RoBERTa+Ours
best 94.88 92.81 84.44 92.33 91.19
last 94.64 92.15 82.87 92.14 91.10

Table 6: Test performances (%) on RoBERTa under 40%
asymmetric/instance-dependent noise.

tation space. As one of the most representative
strategies in both noisy sample filtration and out-
lier detection, the conventional GMMs used in this
paper is difficult to distinguish precisely the out-
liers and noisy samples. 2).Actually, excluding
outliers along with the filtration of noisy samples
from clean data may not be harmful. As men-
tioned by Zhu et al. (2008), these selected outliers
(i.e., unlabeled examples) have high uncertainty
and cannot provide much help to learners. Shin
et al. (2006) also show that excluding outliers from
the noisy training data significantly improves the
performance of the centroid-based classifier. More-
over, Carlini et al. (2019) have made a comprehen-
sive study on what impact outliers exactly bring
to deep neural networks. For the tasks of image
classification, outliers/hard samples are only help-
ful when training on easy-to-learn data. In this
paper, the mixed data is challenging enough that
it may not benefit from keeping these filtrated out-
liers in training. From another perspective, outliers
in textual data appear to be inherently misleading
or ambiguous examples located on the clustering
boundary. The mixup strategy of this work can
generate adequate samples around the boundary.

6 Conclusions

This paper presents SelfMix to handle label noise
on textual data. It uses the Gaussian mixture model
for sample selection and applies EmbMix for semi-
supervised learning. Unlike the mutual distillation
methods requiring co-training or model assembling,
the proposed framework needs only a single model
with dropout mechanism and utilizes two specific
regularizations. Extensive experiments conducted
on three representative text classification datasets
under different noise settings indicate that Self-
Mix achieves a significant improvement over strong
baselines. However, the proposed framework does
not explicitly distinguish outliers and label noise.
The future work includes exploring the different

roles the noisy data and outliers play and applying
our method to other supervised natural language
tasks like Named Entity Recognition.
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