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Abstract

While neural approaches to argument mining
(AM) have advanced considerably, most of the
recent work has been limited to parsing mono-
logues. With an urgent interest in the use of
conversational agents for broader societal ap-
plications, there is a need to advance the state-
of-the-art in argument parsers for dialogues.
This enables progress towards more purposeful
conversations involving persuasion, debate and
deliberation. This paper discusses Dialo-AP,
an end-to-end argument parser that constructs
argument graphs from dialogues. We formulate
AM as dependency parsing of elementary and
argumentative discourse units; the system is
trained using extensive pre-training and curricu-
lum learning comprising nine diverse corpora.
Dialo-AP is capable of generating argument
graphs from dialogues by performing all sub-
tasks of AM. Compared to existing state-of-
the-art baselines, Dialo-AP achieves significant
improvements across all tasks, which is further
validated through rigorous human evaluation.

1 Introduction

Argumentation is the process of reasoning sys-
tematically in support of an idea, action, or the-
ory. It is prevalent in our daily communication
and conversations, including online conversations.
Since argumentation represents an intrinsic human
attribute, the ability of artificial agents (bots) to
exhibit this skill can be seen as strong evidence
for judging such agents as “human-like”. While
computational models of argumentation have been
investigated (Bench-Capon and Dunne, 2007; Rah-
wan and Simari, 2009; Atkinson et al., 2017), cur-
rent progress is impeded by the scarcity of large
scale corpora exemplifying use of argumentation
and reasoning patterns from discourse. Such cor-
pora are necessary if we are to make progress in
training argumentative conversational agents. In
this paper we experiment with computational ar-
gumentation mining (AM) (Mochales and Moens,

Figure 1: Dependency representation of dialogical argu-
ments, across two turns.

2011; Lippi and Torroni, 2016; Lawrence and Reed,
2019) for automatically analyzing discourse at a
pragmatics level, and parsing argumentation struc-
tures from dialogues. Furthermore, although con-
siderable research can be found in the field of AM,
most of the current work has focused on parsing
monologues (micro-level models), while neglect-
ing dialogues (macro-level models) (Bentahar et al.,
2010; Grasso, 2002). Here, we aim to fill the re-
search gap in dialogical models for AM by propos-
ing Dialo-AP, a novel end-to-end argument parser
for dialogues.

Arguments primarily comprise claims and
premises, with the claim being the central contro-
versial statement of an argument, and the premise
provides reasoning by supporting or attacking the
claims (Stab and Gurevych, 2014b). End-to-end
AM for dialogues generally involves performing
text segmentation, component classification, and
intra/inter-turn relation detection & classification.
Formulating AM as dependency parsing (DP) prob-
lem operating at a mixture of elementary dis-
course unit (EDU) and argumentative discourse
unit (ADU) granularity, Dialo-AP is an end-to-end
argument parser which takes as input entire conver-
sations, and outputs an argument graph comprised
of arguments and relations. Figure 1 illustrates
our DP formulation, where speaker 1’s utterance
consisting of the ADU “Swimming is bad for your
joints" is attacked by speaker 2’s claim “That’s not
true", which in turn is supported by the premise
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comprising EDUs “it’s a low impact sport" and “it
reduces stress".

Trained on the annotated dialogical Change-
MyView (CMV) corpus released by Chakrabarty
et al. (2019b), and further utilizing robust pre-
training on large scale parallel corpora, followed
by fine-tuning on diverse argumentation datasets
using curriculum learning, Dialo-AP attains sig-
nificantly higher results compared to internal and
external baselines for both in and out-of-domain
examples.

2 Related Work

Significant advancements have been made in com-
putational model for AM in recent years. Stab
and Gurevych (2014c) implemented a feature en-
gineering based pipelined approach for perform-
ing all four sub-tasks of AM, on the Persuasive
Essays (PE) corpus (Stab and Gurevych, 2014a),
which was further improved by the Integer Linear
Programming (ILP) based approach proposed by
Persing and Ng (2016). Stab and Gurevych (2017)
introduced a larger version of the PE corpus and im-
plemented an ILP constrained pipelined approach
for AM. Mirko et al. (2020) improved upon the
pipelined approach for AM introduced by Nguyen
and Litman (2018), and further implemented a
novel graph construction process to create argu-
ment graphs. Recently, Bao et al. (2021) proposed
a neural transition-based model for component clas-
sification and relationship detection, which incre-
mentally builds an argumentation graph by gener-
ating a sequence of actions, and can handle both
tree and non-tree argumentation structures.

Eger et al. (2017) formulated the tasks of AM
as a token level DP, and achieved state-of-the-art
performance on the PE dataset, using a neural de-
pendency parser. Inspired by the success of incor-
porating biaffine classifiers for semantic DP (Dozat
and Manning, 2016, 2018), Ye and Teufel (2021)
further improved the DP based approach by using
biaffine layers, and leveraged pre-trained BERT
(Devlin et al., 2018) for richer argument represen-
tations. Instead of operating at a word level, Morio
et al. (2020) experimented with proposition level
AM and used a joint learning framework for jointly
performing the tasks of component classification,
relation detection and classification. For AM in di-
alogues, Chakrabarty et al. (2019b) proposed Am-
persand (AMP), a computational model for AM in
online persuasive discussion forums.

Considerable work has also been done in trying
to establish relationships between ADUs and EDUs.
Peldszus (2015); Peldszus and Stede (2016); Musi
et al. (2018); Hewett et al. (2019) studied the
mapping from discourse structure from Rhetori-
cal Structure Theory (RST) to argumentation struc-
tures and showed that discourse relations from RST
often correlate with argumentative relations.

3 Methods

Formulating AM as dependency parsing, we in-
troduce a multi-task learning (MTL) framework,
where unlike existing pipelined approaches, all the
sub-tasks are trained together in an end-to-end fash-
ion. Since large scale annotated data for AM from
dialogues is scarce, we augment existing mono-
logical datasets for our purpose, and leverage pre-
training and curriculum learning to learn from the
available datasets, before fine tuning on the target
CMV corpus.

3.1 Dependency Representation of Arguments

Inspired by the token level dependency represen-
tations of arguments in monologues by Eger et al.
(2017) and Ye and Teufel (2021), we formulate
the following EDU level dependency representa-
tion for dialogues (Figure 1), encompassing all the
sub-tasks for AM:
Text Segmentation & Component Classification:
An argument (ADU) comprises fully or partially
overlapping EDUs, which in turn contains labeled
argumentative/non-argumentative tokens, using the
IO tagging scheme. Identifying such EDUs by
predicting the token tags, and further combining
consecutive EDUs into ADUs by predicting the
existence of relationship constitutes performing
the sub-task of text segmentation. For example
in Figure 1, EDU 2 in turn N+1 partially overlaps
with ADU 2, as the token “as” is tagged as “O”,
whereas the EDUs 1 and 3 fully overlap with ADU
1 and 2 respectively, which is indicated by all the
tokens in the EDUs labelled as “I”. Further, EDU
2 and 3 can be combined using the “Append” re-
lationship to construct ADU 2, after removing the
non-argumentative token “as” (marked as O). Each
EDU can belong to 1 of 4 classes ∈ [Major Claim
(MC), Claim (C), Premise (P), Non Argument
(NA)], and predicting the type of a constituent EDU
constitutes performing component classification.
Intra/Inter-turn Relation Detection & Classifi-
cation: Within a speaker’s turn, ADUs are related



889

Figure 2: End-to-end Model Architecture.

using “Support" (Sup) or “Attack" (Att) relation-
ships which originate from the last EDU of the
parent and terminate in the last EDU of the child
ADU. Predicting the existence of such relationship
between EDUs and further labeling it comprises
the sub-tasks intra-turn relation detection & clas-
sification. Across turns inter-speaker support and
attack relationships are established by relating and
labeling (using Sup or Att) the last EDU of the
source ADU (child) from the current turn, with the
target ADU (parent) from the context. inter-turn
relation detection & classification encompasses de-
termining and labeling such relationships.

Thus, in each turn, ADUs constitute EDUs
which are related using directed “Append” edges
between consecutive EDUs. Support and attack
relationship between ADU pairs are established
by associating a labeled directed edge between
the last EDUs from the origin and target ADU.
The arguments in each turn are further parented by
the contextual ADUs by associating a labeled di-
rected edge originating from the contextual ADU,
and terminating in the last EDU of the support-
ing/attacking ADU in the current turn.

3.2 Model Architecture

Dialo-AP is trained in a multi-task setting, where
all the sub-tasks share a common encoded repre-
sentation followed by task-specific layers. Figure
2 illustrates our architecture in detail1.
Input Representation The model inputs EDU seg-
ments for the current turn, which are delimited by
a special [EDU] token, which not only signifies
the start of an EDU span, but is also responsible
for encoding and representing its meaning. Turns

1Code and data: https://github.com/sougata-ub/dialo-ap

with length greater than 300 tokens are split into
shorter sequences of maximum 300 tokens, while
ensuring that an EDU does not span multiple splits.
The model inputs a list of ADU spans from prior
turns as context, which unlike the current turn is
not segmented to an EDU level, and always starts
with the start of sequence (sos) token.

Encoding We use a shared transformer encoder to
independently encode the current turn tokens Sicurr
and the context Sictx. Lengthy turns which are split
into shorter sequences are sequentially encoded
and concatenated into a single representation Ecurr

(Eqn. 1). In order to preserve the temporal aspect
of the text across splits, the position ids of the
tokens in each split are cumulatively incremented
after every encoding step. The context tokens are
also encoded using the same encoder, which yields
the context representation Ectx (Eqn. 2).

Post encoding, the final context representation
ESOS
ctx is obtained by selecting and concatenating

the sos token encodings of the context ADUs, fol-
lowed by a multi-headed self-attention layer mha
with dropout drop (Eqn. 3, 4). The final current
turn representation EEDU

curr is constructed by select-
ing the encodings of the [EDU] tokens, followed
by a multi-headed self-attention layer and a multi-
headed cross-attention between the current turn
[EDU] token encodings and ESOS

ctx (Eqn. 5, 6, 7).

Ecurr=concat(enc(Sicurr)|
nsplits
i=1 ) (1)

Ectx=enc(Sictx)|
nctx
i=1 ; get(X, idx)=X[idx, :] (2)

ESOS
ctx =concat(get(Ectx, idxSOS)) (3)

ESOS
ctx =ESOS

ctx +drop(mha(ESOS
ctx ,ESOS

ctx )) (4)
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EEDU
curr =get(Ecurr, idxEDU) (5)

EEDU
curr =EEDU

curr +drop(mha(EEDU
curr ,E

EDU
curr )) (6)

EEDU
curr =EEDU

curr +drop(mha(EEDU
curr ,E

SOS
ctx )) (7)

Biaf(x, y)=xTUy +W(x⊕ y) + b (8)

Task Specific Layers We incorporate task-specific
layers to perform the final prediction for each sub-
task. Illustrated in Figure 2, we use single-layered
feed-forward neural networks (Head 3) as the final
layer for both text segmentation and component
classification, with the input for text segmentation
being the concatenated current turn representation
Ecurr, and EEDU

curr for component classification.
Biaffine classifiers (Eqn. 8) are generalizations

of linear classifiers, which include multiplicative
interactions between two vectors. Since relation
detection and classification require performing in-
ference over argument pairs, we implement biaffine
dependency parsing (Head 2 and 3 in Figure 2) for
both sub-tasks. For intra-relation prediction, the
current turn EDU encodings EEDU

curr are split into
two parts using FNNs–a parent Hi_parent

intra and a de-
pendent child Hi_child

intra representation, which in turn
are passed through a biaffine classifier for detect-
ing or labelling relationships between the EDUs
(Eqn. 9, 10). For inter-relation prediction, the par-
ent and child representations Hi_parent

inter and Hi_child
inter

for the biaffine classifier are obtained by passing
the context encoding ESOS

ctx and current turn EDU
encodings EEDU

curr through FNNs respectively.

Hi_j
k =FNN(x)|x ∈ (EEDU

curr ,E
SOS
ctx ), (9)

i ∈ (detect, label), j ∈ (parent, child),

k ∈ (inter, intra)

scij=Biaf(H
i_parent
k ,Hi_child

k )| (10)

i ∈ (detect, label), k ∈ (inter, intra)

The sub-tasks of append relation detection and the
additional context relationship prediction are per-
formed in a similar way to intra-relationship de-
tection and labeling respectively, where EEDU

curr is
used for append relation detection, and ESOS

ctx for
labeling relationships between the context ADUs.

Ltotal=
∑

λxLx|x ∈ (subtasks) (11)

All the sub-tasks are jointly trained end-to-end by
minimizing the aggregated interpolated loss Ltotal

(Eqn. 11), where text segmentation, component
classification, and inter/intra/contextual relation-
ship labelling are trained by minimizing the cross

entropy loss, whereas inter/intra/append relation-
ship detection is trained by minimizing the binary
cross entropy loss.

3.3 Pre-training

Since the size of the CMV corpus is small for
modern deep learning approaches, we pre-train our
parser for most sub-tasks, on large scale noisy la-
belled corpora.
Component & Intra-Turn Relation Prediction
We use the IMHO corpus (Chakrabarty et al.,
2019a) for pre-training the parser on the sub-tasks
of component classification, append relation detec-
tion, and intra/inter-turn relation detection. The
IMHO corpus comprises 5.5 million opinionated
claims from Reddit, which are self-labeled by their
authors using the internet acronyms IMO/IMHO
(in my (humble) opinion). For example “IMO,
Lakers are in big trouble next couple years. Their
players are out of contract”. We tokenize each ex-
ample into sentences, and label a sentence as claim
only if it contains the acronyms IMO/IMHO, and
further associated with a noisy premise by choos-
ing either the preceding or succeeding non-claim
sentence, depending on which has a higher leven-
shtein distance based similarity with the claim to-
kens. Argument components are further segmented
into EDUs, which we detail in Appendix A.2.1.
The training targets constitute claim and premise
labels, two binary relation matrices for predicting
presence of argumentative and “Append” relations
between EDUs, and a label matrix for predicting
the “support/attack” relationship type.
Inter-Turn Relation Prediction We use the
args.me (Ajjour et al., 2019), and QR corpus
(Chakrabarty et al., 2019b) for pre-training the
parser on the inter-turn relation detection and clas-
sification sub-tasks. The args.me corpus comprises
387,606 macro-level arguments crawled from di-
verse debate portals and already identifies source
and target arguments along with pro/con stance la-
bels, which we further convert to support/attack
inter-turn relationships. The QR dataset comprises
97,636 pairs of original post and replies from the
CMV sub Reddit, where the respondent used Red-
dit’s “quote” feature to reply, signifying an attack
relationship on the quoted section from the original
post. We combine both the macro-level datasets
consisting of source argument, target argument and
the inter-argument relationship, and further gen-
erate 10,000 random argument pairs with “no re-
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Figure 3: Curriculum Learning Framework.

lationship” labels. For constructing the training
relationship label matrices, similar to the IMHO
corpus processing we tokenize the source argument
into EDUs. However, as discussed in sub-section
3.1, distinct from intra-turn relationship prediction
the targets here are ADUs from prior turn, which
we identify by using a version of Dialo-AP trained
only on the processed IMHO corpus for extracting
claims/premises from the context.

3.4 Curriculum Learning (CL) Framework

Computational AM being a relatively new field, suf-
fers from the lack of large scale annotated data, spe-
cially for dialogues. Most of the available datasets
pertain to distinct and diverse aspects of AM for
monologues (Habernal and Gurevych, 2017). Al-
though monologues are distinct from dialogues,
parsing both the forms of discourse entails per-
forming comparable tasks like text segmentation,
component classification, and intra-turn relation-
ship prediction, which are more local in nature.
Further, with a few adaptations, monologues can
be augmented to mimic dialogues, and engender
noisy training data for inter-turn relationship pre-
diction. Inspired by these observations we design a
curriculum learning framework, where we leverage
diverse corpora spanning both monologues and di-
alogues pertaining for incrementally training our
parser on all the AM sub-tasks. We define four cur-
riculum spanning six distinct datasets, with the fi-
nal curriculum comprising fine-tuning on the target
CMV dataset. Figure 3 illustrates our curriculum
learning framework. Further, all the datasets are
pre-processed to conform with our defined depen-
dency representation, which we detail in Appendix
A.2.1 and A.2.2.
Curriculum 1 (C1): Component & Intra-
Relation Prediction The first curriculum com-
prises training the component classification and
intra-relation prediction sub-tasks, where we lever-

age the Feedback Prize Dataset2 (FDP), which con-
sists of 15,000 argumentative essays written by
U.S students in grades 6-12, and were annotated
by expert raters for elements commonly found in
argumentative writing.
Curriculum 2 (C2): Component & Intra/Inter-
Turn Prediction We train the resulting model from
curriculum 1 on the component classification, intra
and inter-turn relation prediction sub-tasks by com-
bining training data from three existing corpora: (i)
the argumentative microtext corpora (MicroArg)
(Peldszus, 2015) featuring 112 short argumentative
monologues, which were annotated with argumen-
tation structures, following the scheme proposed
in Peldszus and Stede (2013); (ii) Consumer Debt
Collection Practices (CDCP) corpora (Park and
Cardie, 2018), comprising 4,931 elementary unit
and 1,221 support relation annotations; (iii) Web
Discourse (WD) corpora (Habernal and Gurevych,
2017), comprising 340 documents annotated with
the extended Toulmin model (Toulmin, 2003).
Curriculum 3 (C3): Text Segmentation, Com-
ponent & Intra/Inter-Turn Relation Prediction
Using the Persuasive Essays (Stab and Gurevych,
2017) (PE) corpus, we train the resultant model
from curriculum 2 on the text segmentation, com-
ponent classification, intra and inter-relation pre-
diction tasks. PE comprises 402 randomly selected
essays from an online forum, which are annotated
with argumentation structures. Treating each para-
graph as a turn, we convert the dataset to dialogues
by considering the major claims as conversation
context, and re-labeling the existing “for/against”
relationship between a claim and major claim as
inter-turn “support/attack” relationship.
Curriculum 4 (C4): Target Dataset Fine-tuning
Finally, we fine-tune the resultant model from cur-
riculum 3 on the Change My View (CMV) dataset

2https://www.kaggle.com/competitions/feedback-prize-
2021/overview
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(Chakrabarty et al., 2019b), for all sub-tasks. Con-
sisting of 112 discussions, the CMV dataset ex-
pands the existing data collected by Hidey et al.
(2017) by annotating both inter-turn and intra-turn
relations, along with additional argument compo-
nents. Further, in order to facilitate learning mean-
ingful representations, we introduce an additional
task during inter-turn relation prediction, where we
train the model to predict relationships that exist
between the contextual ADUs.

4 Experiments and Results

We use the CMV data (C4 in Section 3.4) for
our experiments, and repeat each experiment five
times. In each run, 10% of the data is randomly
set aside for testing, and we report the average
and maximum results across all runs. More details
pertaining to model configuration and setup are
shared in Appendix A.1. We train a baseline vari-
ant Baseline-C4 by fine-tuning only on the CMV
data (without pre-training and curriculum learn-
ing), and use as our internal baseline for model
comparison. We further compare our implementa-
tion against the following strong external baselines,
and report results.
AMP-BERT: Ampersand’s (Chakrabarty et al.,
2019b) (AMP) BERT baseline using only the pre-
trained model without additional fine-tuning.
AMP-Pre-Train: AMP’s fine-tuned models IMHO
Context Fine-Tuned BERT for component classi-
fication and intra-turn relation prediction, and the
QR Context Fine-Tuned BERT for inter-turn rela-
tion prediction.
AMP-Best: AMP’s best models–IMHO Context
Fine-Tuned BERT for component classification,
IMHO Context Fine-Tuned BERT+ RST Ensemble
for intra-turn relation prediction, and IMHO Con-
text Fine-Tuned BERT+ RST Features + Extrac-
tive Summarizer for inter-turn relation prediction.
Note that in order to facilitate uniform comparison
across experiments, we disregard the variants that
incorporate additional rule-based post processing.
AMP-Pre-Train-Re: Since the models reported in
AMP are not available for public use, in order to
perform qualitative analysis we re-create their fine-
tuned models that incorporate pre-training (AMP-
Pre-Train), for all common sub-tasks.

4.1 Quantitative Results

Component Classification Table 1 shares our re-
sults for component classification, where we report

and compare F1 score against external and internal
baselines. We observe that although external base-
lines perform better for identifying non arguments,
our implementation (C1+C4) which is trained on
curriculum 1 followed by fine-tuning on the target
dataset, significantly outperforms all baselines for
claim and premise classification, which is more
beneficial for constructing argument graphs. We
reason that since curriculum 1 constitutes learning
only component classification and intra-relation
prediction using the fairly large FDP dataset, it is
better able to classify components due to lower
cognitive load.

We also observe that training the model on all cur-
ricula (CL+C4) yields good results, which is not
further improved by pre-training. We attribute this
to the noisy nature of the pre-training data for com-
ponent classification.

Inter/Intra Relation Detection Table 1 shares our
results for both inter and intra-turn relation detec-
tion, where we compare F1, precision, and recall
scores across models. In comparison to our inter-
nal baseline, for inter-relation detection we observe
that training using a curriculum learning frame-
work yields better results, specially for curriculum
2, which constitutes training the relation predic-
tion sub-tasks using the MicroArg, CDCP and WD
datasets. Furthermore, we observe higher F1 scores
with pre-training, which is further increased by in-
corporating curriculum learning, yielding the best
overall results for inter-relation detection. For intra-
turn relation detection we obtain best overall F1
results when incorporating all curricula in our cur-
riculum learning framework. Although pre-training
does not seem to be further enhanced the intra-turn
relation F1 score, it helps achieve a higher preci-
sion model, which can be useful depending on the
intended use case of the parser.

For both inter and inter relation detection, we
observe that in comparison to AMP based external
baselines, our models yield higher precision, lower
recall, and higher F1 scores. We also observe that
in contrast to our models, which balances preci-
sion and recall, all AMP variants generally have
disproportionately higher recall compared to their
precision. We attribute it to the fact that AMP
formulates relationship detection as a binary pre-
diction task between sentence pairs, and constructs
all possible permutations of possible sentence pairs
from text, which inadvertently spans all arguments,
thus increasing recall. On the contrary, our biaffine



893

Model
Component Classification Inter-Turn Relation Detection Intra-Turn Relation Detection

Non-Arg Claim Premise Precision Recall F1 Precision Recall F1
AMP-BERT 71.3 62.0 72.2 8.8 76.0 15.8 12.0 67.0 20.3
AMP-Pre-Train - - - 11.0 75.3 19.1 14.3 69.0 23.7
AMP-Best 75.7 67.1 72.5 16.0 79.4 26.8 16.7 73.0 27.2
AMP-Pre-Train-Re 82.7 63.6 60.9 8.0 52.5 14.0 11.7 77.0 20.4
Baseline-C4 * 70.1 (77.5) 63.7 (71.9) 74.3 (80.4) 23.9 (40.4) 31.2 (39.6) 26.4 (37.7) 17.2 (23.1) 19.3 (29.6) 16.5 (21.5)
C1+C4 72.9 (77.3) 68.5 (74.7) 75.5 (82.6) 43.8 (72.9) 33.2 (42.5) 35.2 (42.1) 23.4 (31.8) 28.0 (44.0) 23.0 (29.4)
C2+C4 67.0 (73.4) 59.2 (67.9) 72.1 (76.1) 46.4 (56.9) 30.3 (38.8) 36.4 (44.0) 22.1 (40.3) 13.6 (27.8) 12.9 (24.1)
C3+C4 66.5 (71.8) 63.2 (65.8) 72.4 (76.0) 35.4 (49.6) 29.4 (38.8) 31.2 (40.9) 20.3 (36.9) 25.2 (31.5) 20.7 (26.0)
CL+C4 73.2 (79.9) 68.4 (73.6) 75.1 (80.7) 33.0 (46.2) 35.1 (46.3) 33.8 (44.1) 28.0 (37.0) 34.3 (50.7) 29.2 (37.9)
Pre-Train+C4 67.4 (77.7) 65.2 (71.8) 73.7 (80.3) 63.9 (91.1) 27.4 (38.1) 38.4 (53.7) 12.9 (19.1) 16.8 (27.3) 14.1 (20.6)
Pre-Train+CL+C4 70.0 (76.1) 67.0 (71.5) 75.3 (80.1) 55.3 (70.3) 31.3 (43.3) 39.7 (49.8) 30.7 (45.7) 26.4 (31.8) 27.2 (37.5)

Table 1: Average and (maximum results) for Component Classification & Intra/Inter-Turn Relationship Detection.
For each metric best results w.r.t internal baseline (*) is highlighted in bold, and overall best result underlined.

Model
Inter-Turn Rel. Classify Intra-Turn Rel. Classify Text Segmentation Append
Support Attack Support Attack Non-Arg Arg

Baseline-C4 * 74.9 (82.3) 66.0 (78.9) 97.8 (99.4) 53.0 (85.7) 77.3 (80.1) 89.1 (90.5) 18.5 (30.5)
C1+C4 76.9 (84.9) 71.3 (81.0) 98.3 (99.2) 50.3 (61.5) 78.1 (81.8) 89.3 (91.4) 59.2 (61.0)
C2+C4 75.1 (84.1) 69.5 (79.5) 98.7 (99.3) 56.3 (75.0) 74.0 (79.1) 87.9 (90.0) 15.7 (25.8)
C3+C4 67.6 (80.3) 60.5 (74.1) 98.2 (99.2) 48.9 (80.0) 75.7 (77.9) 87.9 (89.2) 36.3 (45.4)
CL+C4 78.7 (85.2) 78.2 (81.3) 98.9 (99.3) 58.0 (66.7) 78.5 (83.9) 89.5 (91.4) 62.5 (65.6)
Pre-Train+C4 75.6 (80.5) 77.3 (82.2) 99.2 (99.7) 60.3 (92.3) 75.5 (83.2) 87.9 (90.5) 61.5 (65.5)
Pre-Train+CL+C4 77.2 (86.3) 76.6 (81.5) 98.5 (99.3) 51.4 (80.0) 78.5 (82.4) 89.1 (90.1) 81.2 (83.3)

Table 2: Average and (maximum) F1 scores for Inter/Intra-Turn Relationship Classification, Text Segmentation and
Append relationship prediction. In each column, best result w.r.t baseline (*) is highlighted in bold.

Model
Component Inter-Turn Intra-Turn

TP-C TP-A TP-C TP-A TP-C TP-A
AMP-Re 71.1 75.6 54.3 46.7 67.6 72.7
Dialo-AP 82.2 80.4 87.5 90.9 71.3 73.2

Table 3: Comparison of Human Evaluation Re-
sults between AMP-Pre-Train-Re (AMP-Re) and Pre-
Train+CL+C4 (Dialo-AP)

dependency parsing based formulation operates at
an entire turn level, and facilitates information ex-
change across EDUs, thus resulting in a balanced
score.
Inter/Intra Relation Labeling, Text Segmenta-
tion and Append Detection We report our results
for inter/intra-turn relationship label prediction and
append relationship detection in Table 2. We only
perform comparison amongst our implemented
variants and inter baselines, due to lack of external
baselines for these tasks. For inter-turn relation
classification, we observe that incorporating both
pre-training and curriculum learning yields better
results compared to baseline. Further, training on
all curricula yields best F1 score for predicting both
support and attack relationship. Similarly for intra-
turn relation classification, we observer both pre-
training and curriculum learning yields superior
results compared to baseline. However, compared

to curriculum learning, incorporating pre-training
yields better results. We also observe that com-
pared to inter-turn, all model variants are perform
intra-turn support relationship classification better
and attack relationship classification worse, com-
pared to inter-turn. Further, for each model, the
difference in support and attack classification F1
scores for intra-turn is higher compared to inter-
turn, signifying. We attribute this to the fact that
occurrence of support relationships are more preva-
lent within a turn compared to attack relationships,
which is the converse for inter-turn relationships
(Table 4, Appendix A.3).

Although the task of text segmentation is more
dependent on linguistic features, we observe best
results (Table 2) when training using curriculum
learning, proving the efficacy of training using di-
verse curriculum, in a multi-task learning frame-
work. Also, for detecting append relationship be-
tween EDUs (Table 2), we observe significantly
better results when incorporating pre-training along
with curriculum learning, compared to other means.

4.2 Qualitative Results

We further perform human evaluations to ascer-
tain Dialo-AP’s usefulness in real world scenarios,
where the topic of the discussion might be unre-



894

stricted. For our purpose, we collect discussion
threads from the ChangeMyView subreddit on the
controversial and out-of-domain topics of abortion,
gun violence, minimum wage and death penalty,
and perform human evaluation on the component
classification, inter-turn and intra-turn relation de-
tection subtasks, using a subset of 100 discussions
(Table 5, Appendix A.3).

Since our motivation is to create a parser that can
identify salient arguments with high precision, we
introduced and compared two new metrics: (i) TP-
C: Mean True Positive rate at a Conversation level,
signifying for a conversation, the number of model
predictions that are correct on an average. (ii) TP-
A: Mean True Positive rate at an overall level, sig-
nifying on an average, the number of model pre-
dictions that are correct. We parse each discussion
using Dialo-AP variant incorporating pre-training
and curriculum learning (Pre-Train+CL+C4), and
the recreated version of AMP that leverages pre-
training (AMP-Pre-Train-Re), and use Amazon
Mechanical Turk (AMT) Human Intelligence Task
(HIT) to collect human evaluation on the parsed
outputs. In each HIT we provide the entire dis-
cussion thread, followed by either the identified
arguments with their predicted claim/premise la-
bels, or inter/intra argument pairs predicted by the
parsers, and ask the evaluators to mark (by ticking
a checkbox) if they think the prediction is correct.
Appendix A.4 details the human evaluation task
and the AMT collection framework. We compute
inter-annotator agreement using 2 evaluators, and
observer a Cohen’s Kappa score of 0.15, 0.22 and
0.16 for component classification, intra and inter-
turn relationship detection respectively, signifying
fair amount of agreement (Table 6, Appendix A.4).

Table 3 shares the results from the human eval-
uation. We observe that our formulation yields
significantly better results for all three subtasks,
with inter-turn relation detection reporting high-
est gains compared to the competing model. We
attribute this to our robust pre-training and curricu-
lum learning framework, which trains the parser on
existing and augmented dialogical data, for identi-
fying inter-turn argumentative relationships. In
comparison to itself, leveraging pre-training on
the monological IMHO and the noisy QR corpus,
AMP performs best on component classification
followed by intra-turn and inter-turn relation detec-
tion subtasks, whereas Dialo-AP performs best on
inter-turn relation detection, followed by compo-

nent classification and intra-turn relation detection
subtasks. Thus, signifying Dialo-AP’s better appli-
cability for mining arguments from dialogues.

5 Discussion

Our aim with Dialo-AP was to devise an end-to-
end argument parser that can not only enable dis-
course analysis, but also aid in argument gener-
ation by engendering argument graphs compris-
ing salient (support-attack) chains of arguments
from dialogues. In Figure 4 we illustrate an argu-
ment graph generated by Dialo-AP (on the right)
on a randomly sampled CMV discussion on death
penalty, and further compare it against the output
by recreated AMP (on the left). Firstly, we observe
that although both the parsers yield similar num-
ber of components, operating at a combination of
EDU and token level, Dialo-AP better identifies
and labels argumentative spans. For instance, AMP
incorrectly labels the non-arguments P5 and P6 as
premises. Further, operating at a sentence level,
AMP classifies the component C2 as a single claim,
whereas Dialo-AP is correctly able to segment it
into 2 components P1 and C2.

Secondly, we observe that since AMP formu-
lates relation prediction as a binary classification
problem between argument pairs, it predicts co-
pious relations between components which need
not hold, thus hurting it’s usefulness for construct-
ing argument graphs. For example, none of the
relationships predicted between user 2’s argument
components hold. On the contrary, not only are the
relationships identified by Dialo-AP more mean-
ingful, it also labels the relationship type, making
it more useful for constructing argument graphs.

Although Dialo-AP yields better results, it
comes with its own set of predicaments. As illus-
trated on the right, it is unable to relate and utilize
all identified argumentative components in the ar-
gument graph. For instance, although Dialo-AP
identifies the component P4, it is unable to estab-
lish relationship, and leaves them out of the graph.
Further, we observe that both the parsers lack epis-
temic reasoning capabilities, and could possibly
benefit from the use of external knowledge graphs
and knowledge bases, which we point as the next
possible research direction for argument parsing.

6 Conclusion

In this paper, we present Dialo-AP, a state-of-the-
art end-to-end dependency parsing based argument
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Figure 4: Comparison of parsed CMV post.

parser for parsing arguments from dialogues. For-
mulating AM as dependency parsing of EDUs and
ADUs, and trained in a multi-task setting over di-
verse curriculum, Dialo-AP is capable of engender-
ing argument graphs from dialogues, by perform-
ing all sub-tasks of AM. Dialo-AP’s efficacy is
exhibited by its superior experimental and human
evaluation results, in comparison to strong internal
and external baselines. We further discuss Dialo-
AP’s limitations, and point towards possible next
research steps.
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A Appendix

A.1 Experiment Setup

We use Roberta (base) (Liu et al., 2019) as the base
encoder, and increase its embedding layer to ac-
commodate the special [EDU] token. The size of
positional embedding layer is increased to 2500.
Two layers comprising four attention heads are
used for MHA, where the MHA result in each layer
is sum pooled with the residual output while ap-
plying dropout with 0.1 probability to the MHA
result. The hidden size of the FNNs in the biaffine
layer is set to 600. An interpolation factor of 0.4
each is used for aggregating the inter and intra-turn
relation prediction losses, 0.1 for component clas-
sification, and 0.01 for the additional contextual
relationship loss prediction. The remaining factor
of 0.09 is split equally among text segmentation,
append relation prediction, and inter/intra-turn rela-
tion labeling. Further, a weight of 3.0 is applied to
positive examples during computing binary cross
entropy loss for inter and intra-turn relation predic-
tion. All models are trained with a learning rate of
1e-5 for 15 epochs and optimised using AdamW
(Loshchilov and Hutter, 2017), with early stopping
if the validation loss doesn’t reduce for 2 epochs.
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the average and maximum results across all runs.
During inference, a threshold of 0.5 is used for re-
lationship detection, which is lowered to 0.2, for
parsing the out-of-domain samples for human eval-
uation.

A.2 Pre-processing Steps for Dependency
Representation

A.2.1 EDU Segmentation
Depending on the volume of data that needs to be
processed, we incorporate the following two seg-
mentation strategies for segmenting text into EDUs:
(i) Neural Segmentation: For low volume data we
use the Bi-LSTM-CRF based discourse segmenter
by Wang et al. (2018). (ii) Rule Based Segmen-
tation: For larger volumes of data, we use a rule
based discourse segmenter, where we segment on
encountering the following punctuation :“.”, “?”,
“!”, “,”, “;”, and further use a pre-defined set of 113
commonly used discourse markers for finer seg-
mentation (example: “however”, “in conclusion”,
“besides”, etc.).

We use the rule based segmentation for pre-
processing the large scale IMHO, args.me, FDP,
and QR corpus, whereas the neural segmentation is
used for segmenting the PE, WD and CMV corpus.
Further, we always resort to neural segmentation
during inference. Due to it’s relatively shorter ar-
gument length, for CDCP corpus we treat each
proposition as an EDU, and for MicroArg each
sentence is considered to be an EDU.

A.2.2 Dataset Specific Pre-processing
IMHO Corpus: We enforce a minimum length of
10 and a maximum length of 300 tokens for each
segment. Further, we remove examples whose to-
kens are split into more than 25 segments. Further,
while associating claims with noisy premise, by de-
fault the succeeding sentence is chosen as premise
if its similarity score is within a margin of 10%
compared to the preceding sentence.
arge.me & QR corpus: For args.me, we consider
a “pro” stance as “support”, and “con” as “attack”.
For QR, all relationships are considered to be “at-
tack”.
FDP Corpus: We remap “Position”→“Major
Claim”, (“Claim”, “Counterclaim”, “Rebut-
tal”, “Concluding Statement”)→“Claim”, and
“Evidence”→“Premise”. We use textual entailment
to associate a claim with a premise. For each claim
we construct a set of four candidate premises: two
preceding and two following. Using AllenAI’s

(Gardner et al., 2017) ELMO (Peters et al., 2018)
based Textual Entailment we select the premise
with the highest entailment score above a thresh-
old of 0.7, as the most likely connected premise,
else select the premise immediately following the
claim.
MicroArg Corpus: We remap “NA”→“No Re-
lation”, (“sup”, “exa”, “add”, “pro”)→“Support”,
and (“reb”, “opp”)→“Attack”. Further, since Mi-
croArg constitutes monologues, we consider the
prompt as the previous turn, and convert the mono-
logues to dialogues.
CDCP Corpus: Here we make an assumption and
only mark propositions as claim if they have any
associated evidence. Else, it’s tagged as premise.
WD & PE Corpus: For the WD corpus, we remap
“Backing”, “Rebuttal” and “’Refutation” to premise.
For the PE dataset, we derive dialogues from each
paragraph by treating the “Major Claims” (or the
essay prompt if major claim is not present) as prior
conversation context.
CMV: We remap (“support”, “agreement”, “par-
tial_agreement”, “understand”)→“Support”,
and (“rebuttal_attack”, “partial_attack”,
“rebuttal”,“undercutter_attack”, “par-
tial_disagreement”, “disagreement”, “undercutter”,
“attack”)→“Attack”.

A.3 Additional Stats

Relation Support Attack
Intra 96.1 3.9
Inter 45.0 55.0

Table 4: Percentage distribution of Support and Attack
Relationships for Inter and Intra-Turn Relations.

Topic Search Keywords Count Discussions
abortion abortion, foeticide 53

gun control

gun control, own gun,
second amendment,
gun violence,
ban gun

19

death penalty
death penalty,
capital punishment

18

minimum wage minimum wage 10

Table 5: Topic distribution of out-of-domain examples
collected from CMV.

A.4 Amazon Mechanical Turk Annotations

We leveraged Amazon Mechanical Turk (AMT) in
order to collect human evaluations on the model
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Task % Agreement Cohen’s Kappa Krippendorff’s α N Agreements N Disagreements N Cases N Decisions
Inter-Turn Relation Detection 57.1 0.16 0.13 12 9 21 42
Intra-Turn Relation Detection 57.1 0.22 0.1 12 9 21 42
Component Classification 68.0 0.15 0.14 17 8 25 50

Table 6: Inter-Annotator Agreement of Human Evaluations

generated parsed outputs. We set up human in-
telligence task (HIT) in the AMT platform, with
two evaluators per example and each task worth
$0.01. The evaluators were provided with clear
instructions on what to annotate and how to anno-
tate the examples, along with a few worked out
examples, which are illustrated as screenshots in
Figures 5 and 7. The tasks comprised of reading
a conversation context, and determining if the pre-
sented claim/premise labels are true for component
classification (Figure 6), or if the presented argu-
ment pairs are valid for inter and intra-turn relation
prediction (Figure 8).

In order to ensure quality of annotations, a ran-
dom portion of the examples presented to each
annotator would not be related to the provided con-
versation, and would have to be marked as “Not in
Conversation". Any annotations that failed the qual-
ity check were discarded. Further, we discarded
annotations which were quickly submitted (less
than 2 minutes of work time), and also removed
samples where the evaluators missed unchecking
the checkboxes, resulting in ambiguity.
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Figure 5: Instructions provided for evaluating component classification in AMT.

Figure 6: Component classification sample from AMT.



901

Figure 7: Instructions provided for evaluating intra/inter-turn relation identification in AMT.

Figure 8: Relation identification sample from AMT.


