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Abstract

The task of shallow discourse parsing in the
Penn Discourse Treebank (PDTB) framework
has traditionally been restricted to identifying
those relations that are signaled by a discourse
connective ("explicit") and those that have no
signal at all ("implicit"). The third type, the
more flexible group of "AltLex" realizations
has been neglected because of its small amount
of occurrences in the PDTB2 corpus. Their
number has grown significantly in the recent
PDTB3, and in this paper, we present the first
approaches for recognizing these "alternative
lexicalizations". We compare the performance
of a pattern-based approach and a sequence
labeling model, add an experiment on the pre-
classification of candidate sentences, and pro-
vide an initial qualitative analysis of the error
cases made by both models.

1 Introduction

The view that discourse relations serve to model
central aspects of the coherence of a text is widely
accepted, and several approaches with different
theoretical commitments have been developed (e.g.
Mann and Thompson, 1988; Prasad et al., 2008a;
Lascarides and Asher, 2007; Sanders et al., 1992).
Our work is situated in the framework of Shallow
Discourse Parsing and thus grounded in the Penn
Discourse Treebank (PDTB) corpus (Prasad et al.,
2008a). Here, some distinctions are commonly
being made regarding the surface realization of
discourse relations; most importantly:

1. A relation can be signalled by a connective,
i.e., a lexical item from a closed class (con-
junctions, certain adverbials).

2. A relation can be signalled by a different lex-
ical form, which the PDTB calls Alternative
lexicalization or AltLex for short.

3. A relation can also be stated without any lexi-
cal signal; in this case it is called implicit.

In the PDTB corpus, (1) and (3) are by far the
most frequent cases, and accordingly, they have re-
ceived much attention in shallow discourse parsing.
As for (2), Lin et al. (2014) had developed a first,
relatively simple approach; to our knowledge there
have not been any follow-up proposals (including
all the parsers presented in the CoNLL shared tasks
in 2015 and 2016 (Xue et al., 2015, 2016) and in the
recent DISRPT tasks (Zeldes et al., 2019, 2021)).

With the introduction of the PDTB corpus ver-
sion 3.0 (Prasad et al., 2018), amongst some other
changes, the number of annotated AltLex instances
has grown from 624 (in version 2.0) to 1632. With
the corpus now being considerably richer in Alt-
Lex signals, we believe that their role in shallow
discourse parsing now needs to be strengthened.
Besides, also for advancing the theoretical descrip-
tion of the AltLex category and its role in coher-
ence marking, it is important to perform empirical
studies.

Essentially, alternatively–lexicalized discourse
relations are signalled by an open set of phrases that
verbalizes the connection between two discourse
arguments. In the PDTB, they are being annotated
when no connective is present, and a "connective
insertion" test yields an impression of redundancy;
in this case annotators are asked to mark the text
span that already signals the relation. Previous
work (Prasad et al., 2010; Danlos, 2018; Rysová
and Rysová, 2018) studied the general form of Alt-
Lex expressions and tried to find and formalize
patterns that can complement the well-established
idea of a fixed list of discourse connectives (e.g.
Das et al., 2018).

Example (1) (Danlos, 2018) illustrates the inter-
changeability of explicit connectives and AltLex
signals withing the same context, as we could sim-
ply substitute the connective Therefore by alter-
native more complex lexicalizations such as This
caused and Because of this while still preserving
the meaning of the relation:
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(1) 1. Fred didn’t stop joking. Therefore, his
friends enjoyed hilarity throughout the
evening.

2. . . . This caused, his friends enjoyed
hilarity throughout the evening.

3. . . . Because of this, his friends enjoyed
hilarity throughout the evening.

Contrary to this, in Example (2) (Prasad et al.,
2010) the AltLex signal is not easily substitutable
by a simpler explicit connective as, with a replace-
ment such as because, this sentence would lose
information about the reason’s importance:

(2) But a strong level of investor withdrawals is
much more unlikely this time around, fund
managers said. A major reason is that
investors already have sharply scaled back
their purchases of stock funds since Black
Monday.

In this paper, we aim to overcome the negligence
of AltLex relations in shallow discourse parsing by
proposing two different technical approaches. Both
tackle the problem without relying on any external
lexical resources. Specifically, our contributions
are: (i) We present the first approach to automat-
ically classifying AltLex instances in the PDTB3
corpus; (ii) we compare a simple pattern-based ap-
proach to a neural model; (iii) we experiment with
pre-classification of AltLex-relevant sentences (for
dealing with class imbalance in the corpus); (iv)
we provide initial observations on types of errors
made by the models.

Section 2 discusses related work, and Section
3 briefly describes relevant aspects of the PDTB
corpus. Section 4 introduces our various methods.
We present results in Section 5, discuss them in
Section 6, and finally conclude.

2 Related Work

We highlight two different directions that are rele-
vant for our work. The first part shows work related
to alternative lexicalized phrases. The second one
looks into recent applications for connective identi-
fication, whose methods are similar to one of our
approaches.
Alternative Lexicalized Phrases (AltLex). After
the introduction of alternative lexicalized phrases,
among others, in the PDTB (Prasad et al., 2008a), a
subsequent work by Prasad et al. (2010) presented
more details and analysed regularities by defining

groups of phrases. Based on their discoveries, a
first attempt was made to extract AltLex relations
while analysing implicit relations (Lin et al., 2014).
Their approach is evaluated in combination with
all non-explicit relations. Thus, the specific Alt-
Lex results of their approach are unfortunately not
available for comparison. Due to the revision of
the PDTB, the definition of discourse signals is
made more flexible, and Lin et al.’s approach is not
applicable to the current problem anymore (Prasad
et al., 2018).

Attempts of building a Czech Discourse Tree-
bank have also shown, how challenging the an-
notation process is. In contrast to the PDTB,
the Czech Discourse Treebank distinguishes dis-
course signals into three groups, namely primary
connectives, secondary connectives, and free con-
nective phrases. Low inter-annotator agreement
was particularly observed for the annotation of
free connecting phrases (comparable to alterna-
tive lexicalizations) due to the complexity of the
task (Rysová, 2012). Based on this tree bank, a
template approach is proposed to manually build
a lexicon for secondary connectives, analogously
to that for primary ones (Danlos, 2018; Rysová
and Rysová, 2018). One of Danlos’s single lexicon
entry, for example, to recognize the phrases for
this/a given reason, would describe the
lexical head N of this phrase reason in different
possible environments (so-called schemes) with a
rule like for [Ana-Det (Adj)/Ana-Adj]
N. Furthermore, Danlos (2018) concedes that, be-
cause “free connective phrases are compositional
and include at least two content words”, this
lexicon-based approach is not applicable.

Dunietz et al. (2017) adapt the PDTB annotation
scheme and present another corpus that entirely
focuses on causal relations. They do not distin-
guish between explicit connectives and alternative
lexicalizations as done in the PDTB. Comparing
their annotated signals with the second version of
PDTB, they discover an overlap of 8.9 % with the
PDTB connective signals. Further, they introduce
a feature-based system for tagging causal relations
between individual events. In contrast to them, we
avoid linguistic features by using representations
from pretrained language models.

In contrast to PDTB conform schemes,
RST (Mann and Thompson, 1988) contains only
information about discourse segments, their rela-
tions and nuclearity. The work of Das and Taboada
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(2018) complements the absence of this informa-
tion by annotating a subpart of the RST-DT corpus
with all kinds of signals point toward a discourse
relation. Their first finding reveals that discourse
relations may be signalled by other discourse el-
ements than lexical phrases, inter alia, syntactic
structure (e.g. relative clauses, reported speech), se-
mantics (e.g. synonymy, repetition, lexical chain),
text genre (e.g. inverted pyramid scheme, newspa-
per layout). Another interesting finding consists
in the presence of multiple signals that point to
the same relation, e.g. semantic+syntactic, refer-
ence+syntactic, and others. Further, recent work
of Zeldes and Liu (2020) proposed an interesting
approach for inferring discourse signals from the
given relation senses. However, this approach does
not take alternative lexicalizations into account yet.
Explicit Connective Disambiguation. Some of
the approaches that were proposed to this task are
relevant for AltLex identification as well. Pitler and
Nenkova (2009) presented a simple feature-based
model for the disambiguation (discourse versus sen-
tential usage) of connective candidates extracted
by matching entries of a connective lexicon. With
their best feature combination, they achieve an F1
score of 94.19 on the test set. Recently, Knaebel
and Stede (2020) adapt the original idea and replace
hand-crafted features by various types of word em-
beddings. Their state-of-the-art model uses contex-
tualized word embeddings and achieves 97.45 F1
score. In our work, we extend their approach to al-
ternative lexicalized phrases, tackling the problem
without external candidate lexicon.

Furthermore, another line of research started
with the focus to avoid lexicon-based solutions.
Recently, several promising sequence labeling ap-
proaches (e.g. Yu et al., 2019; Muller et al., 2019;
Bakshi and Sharma, 2021; Kamaladdini Ezzabady
et al., 2021) have been proposed using standard and
contextualized word embeddings. Among these,
Yu et al. (2019) achieves best scores (92.02 F1
score) in extracting connectives without lexicon.
They develop a model that combines linguistic in-
formation (e.g. part-of-speech tags, dependency
relation, sentence length, inter alia) with recent
advances in contextualized word representations.
In contrast, the work of Bakshi and Sharma (2021)
achieve slightly worse results (91.15 F1 score) but
with a completely feature-free approach.

3 Penn Discourse Treebank

The recent version (v3) of the Penn Discourse Tree-
bank (PDTB, Prasad et al. 2018) is the largest avail-
able resource of lexically grounded discourse rela-
tions which include both explicitly signalled rela-
tions and implicit relations. It describes discourse
relations to consist of exactly two arguments with
an optional marker to signal the relation. In ad-
dition, one or more senses are attached to each
relation to describe its meaning. For example, two
senses often correlate are Temporal.Synchronous
and Comparison.Contrast for the explicit connec-
tive while.

In its previous version, Prasad et al. (2008b)
start the annotation process by the identification of
connectives (defined by a fixed set of candidates).
Then, adjacent sentences without explicit relation
are examined according to whether there holds an
implicit relation, and, in addition, a connective is
searched that fits in between the relations’ argu-
ments. If the insertion of any connective leads to
redundancy, the lexical signal already part of the re-
lation is used instead—the AltLex. In their studies
on alternative lexicalizations, Prasad et al. (2010)
use the two properties of syntactical and lexical
flexibility to sort these signals into three groups.
Hereby they demonstrated, that most of the Al-
tLexes belong to the syntactically and lexically free
group with 76.6%.

As a consequence of the recent update, the def-
inition of discourse signals has undergone some
changes. The set of explicit connectives is ex-
panded (which indirectly changes the set of Alt-
Lexs too) and the position of the connective in
relation to its arguments is more relaxed compared
to the previous version. In addition, a few changes
have been made in the process of identifying Alt-
Lex relations in general. As a result of the intro-
duction of intra-sentential AltLex relations (about
900), arbitrary expressions are allowed, also in-
cluding adjectives and adjective modifiers. Also,
annotators are allowed to mentally add anaphoric
references, (e.g. next [to this], further [to that]),
which leads to potential overlap with explicit con-
nectives. Signals are not syntactically bound to
the second argument of the relation anymore, but
possibly combine parts of both arguments. A new
sub-class was introduced for lexico-syntactic con-
structions, the so-called AltLexC. In total, almost
1000 AltLex relations, including their signals, were
added during the revision. In our work, we do



840

Property PDTB2 PDTB3

count 624 1632
signal length 3.26 (2.08) 2.62 (2.45)
sentence length 22.65 (10.35) 27.68 (10.94)
signal position 1.42 (3.22) 9.37(10.26)

Table 1: Differences of AltLex relations between both
versions of the Penn Discourse Treebank. Properties
length and position show average values with standard
deviation enclosed in parentheses.

not further distinguish both types of alternative
lexicalized relations and henceforth refer to these
simply as AltLex relations. Discourse signals ap-
pear in both continuous (e.g. since then, after that)
and discontinuous forms (e.g. the aim . . . is, the
more . . . the more, ...). As the complexity highly
increases if POS patterns would also cover gaps
within, we restrict our work to continuous signals
only, and thus eliminated 62 instances (3.79 %)
from the full set. Explicit discourse connectives are
ignored for all our experiments, even if they should
occur in the same sentence of an AltLex signal.

The PDTB consists of 2,160 documents with
a total number of 50,945 sentences. We briefly
summarize the differences of both versions of the
PDTB in Table 1 to illustrate the motivation of
introducing our new approaches. As already men-
tioned, the number of available AltLex relations is
almost tripled from 624 to 1632 instances. The av-
erage length of the signals decreases slightly from
3.26 tokens to 2.62 token, and the average length of
sentences containing the signals increases by a few
tokens on average (22.65 up to 27.68). A partic-
ular challenging aspect of the new PDTB version
is the more flexible positioning of signals, which
renders previous simple identification approaches
as no longer feasible.

4 Method

Input to all models are prepared context sensitive
word embeddings. For extracting token-wise con-
text sensitive embeddings, we follow the sugges-
tion of Devlin et al. (2019). Given a sentence, to-
kens are processed by the WordPiece tokenizer (Wu
et al., 2016) which possibly leads to a higher num-
ber of subtokens. These are processed for generat-
ing corresponding hidden states on subtoken-level.
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Figure 1: Candidate-based classification approach. All
token embeddings directly associated with AltLex can-
didate are averaged and concatenated with surrounding
context tokens. Simple MLP module on top with final
classification layer to predict discourse signal.

We choose RoBERTa (Liu et al., 2019) as it per-
forms best on connective disambiguation compared
with other BERT variations (Knaebel and Stede,
2020). We average multiple subtoken outputs into
a single output that corresponds to the full token.
Following the suggestion of Devlin et al. (2019),
the last four hidden layers are concatenated and
thus form the final token embeddings that serve as
input for the subsequent models.

4.1 Pattern-based Candidate Extraction
Traditional approaches for connective disambigua-
tion integrate a connective lexicon that is used to
extract possible candidates, before using a system
to disambiguate discourse readings from their sen-
tential counterparts (Pitler and Nenkova, 2009; Lin
et al., 2014). Inspired by this approach, we de-
vised a different pattern-based extraction procedure
for finding possible AltLex candidates. Specifi-
cally, we generate possible AltLex candidates by
pattern-matching via a list of extracted part-of-
speech (POS) sequences. From the AltLex rela-
tions available in PDTB3, we extract 408 unique
POS patterns. They range from very frequent sin-
gle tags such as VBG (n=468) and RB (n=113) to
longer and less frequent sequences such as VBD
DT NN IN (n=9). This sequence, for example,
is extracted from the signals attributed the in-
crease/improvement to, but it also matches other
phrases such as visited a lot of and signed a con-
tract with. The number of extracted candidates per
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pattern is very high in comparison with the pattern
occurrence itself. For the simple single tag rule
VBG, for example, we find 1869 instances in one
of our randomly sampled test split.

We extend this basic pattern approach by intro-
ducing a small context window of additional tokens
to the left and right of the candidate. Our hypothe-
sis is that context sensitivity is not only beneficial
for the final classification of the embeddings, but
already useful during the pattern extraction. Infor-
mation such as start and end of sentence, but also
punctuation is useful. As the number of patterns
increases tremendously with each additional sur-
rounding word, and the generalization at the same
time decreases by patterns that are too specific, we
limit our experiments to only one tag on the left
and on the right of the original pattern. By doing so,
the number of extracted patterns increases to 800
in total. For example, instead of one most frequent
single-tag pattern VBG, we now have more specific
patterns that occur less often , VBG DT (n=162),
, VBG NNS (n=39), , VBG PRP (n=35), , VBG
NN (n=31), among others. In comparison to the
simple approach, the context-sensitive approach
reduces the number of extracted candidates by a
large margin, in particular for shorter tag patterns.
For example, the number of occurrences for VBG
is decreased by about 70 % to 516 instances. A
list of the 30 most frequent tag sequences for both
approaches is provided in the appendix Table 4,
and Table 5 provides numbers on the extracted can-
didates per approach.

We use the collected tag lists, iterate over all
sentences, and extract any phrase that matches one
of the POS patterns as possible AltLex candidate.
After generating these candidates, we follow the
approach of Knaebel and Stede (2020) for con-
nective disambiguation with contextualized embed-
dings, shown in Figure 1. In their experiments,
they outperform previous approaches with a sim-
ple multilayered-perceptron architecture on top of
contextualized embeddings. We refer to this archi-
tecture as MLP module, which consists of two fully
connected layers with a dropout layer following
each.

The first ("simple") approach is henceforth re-
ferred to as exact approach, while we call the sec-
ond one context-sensitive. For the experiments,
we also specify the context size, that is the number
of tokens surrounding the candidate on each side;
e.g., the value 0 refers to no context at all, while

the value 2 indicates a context of two tokens to the
left and right, which sums up to five embeddings
(four context embeddings plus one embedding for
the averaged candidate tokens).

4.2 Sentence Labeling
The limited variability of observed patterns in the
dataset is the major disadvantage of the pattern-
based approach. We aim to overcome this prob-
lem by introducing a sequence labeling approach
(see Figure 2) based on contextualized embeddings
for recognizing alternative lexicalizations. In the
PDTB3, AltLex signals always occur within a sin-
gle sentence, and thus our approach is designed for
sentence-level processing.

The sentence processing part consists of two
bidirectional LSTM (Hochreiter and Schmidhuber,
1997) layers. After each layer we add a dropout
layer for better generalization. We will refer to
this as BiLSTM module. The hidden states are
further individually processed by an MLP module.
Finally, we use a conditional random field (Lafferty
et al., 2001) for the output prediction (compare
Figure 2 output (I) Sentence Labeling). As output,
we use a binary label that represents the AltLex
class membership.

Deciding whether a phrase should be identified
as AltLex is often dependent on its context. As
argument spans of AltLex relations often include
previous sentences, we hypothesize that additional
processing of the preceding sentence has a positive
effect on the prediction quality of our model. For
this reason, we propose an additional sentence pro-
cessing step (see Figure 2 Context Processing on
the left side) in which we use the final hidden states
of the BiLSTM module as the initial states for the
BiLSTM modules in the sentence processing part.

We refer to the architecture without previous sen-
tence context as single, and we use context to point
to the option with previous sentence processing.

4.3 Sentence Classification
The extraction of alternative lexicalized discourse
signals is especially hard with respect to the small
amount of signal occurrence. In addition to the
heavy imbalance of the labels on token-level, only
a minority of all sentences contains an alternative
lexicalized signal. Therefore, we hypothesize that,
following analogously work related to explicit con-
nectives (Patterson and Kehler, 2013), an additional
step of classifying a potential sentence candidate
as containing an AltLex relation or not might be
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Figure 2: Joint diagram of (I) sequence labeling and (II) potential sentence classification approaches. A given
sentence is processed by BiLSTM module. Either all hidden states are processed by MLP module individually
and forwarded to CRF layer to predict AltLex tokens in sentence, or only last hidden state is processed by MLP
module to predict the presence of AltLex in whole sentence. The optional context processing part contains a similar
BiLSTM module but processes the previous sentence. Then, hidden state of the LSTMs are used for initialization.

beneficial to reduce the overall complexity of the
sentence labeling problem. We first train a sen-
tence classification model on the full dataset, in-
cluding the majority of negative examples. There-
after, we train our sentence labeling architectures
(as described above) on the positive instances only.

5 Experiments

In our experiments we study various statistical
models on version 3 of the Penn Discourse Tree-
bank (Prasad et al., 2018). For all experiments’
runs, we randomly split the full dataset into three
parts (train, validation, and test), as suggested by
Shi and Demberg (2017). We set 10 % of the full
dataset aside for testing, then the remaining data is
split into 90 % and 10 % for training and validation
parts, respectively. The reported final results are
averaged over three different runs each. For the
precision–recall curves illustrated in Figure 3 we
interpolate the individual curve per run and com-
pute the mean curve surrounded by one standard
deviation. We use the average precision scores
(AP) of the mean curves for comparison.

5.1 Pattern-based Disambiguation
We compare two variants of our pattern-based ex-
traction, exact patterns and context-sensitive pat-
terns, taking into account one token to the left and
right of the pattern. We generate patterns for both
variants only once on the whole corpus which we
think is most similar to the experiments on con-
nective classification, where a list of possible con-
nective candidates is compiled previously before
splitting data. Further, we study the influence of the
number of surrounding context embeddings for the
model (context width). Through all experiments,
we use an up-sampling rate of 5 for positive sam-
ples and 0.1 for negative samples. The hidden size
of the first layer in the MLP module is 256 and the
second layer 64, respectively. We train for at most
20 epochs with a batch size of 64. In addition, we
stop earlier if validation loss does not improve over
7 epochs.

Evaluation metrics are calculated with regard to
the extracted signal candidates. Please note, that
in contrast to the later evaluation (Section 5.3),
multiple possibly overlapping candidates might be
extracted. Analysing the precision–recall curves
in Figure 3a, an increased context width for both
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(b) Sentence Labeling approach. Metrics are computed token-
wise based on the potentials of the CRF layer before optimal
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Figure 3: Precision–Recall curves for all trained models separated by tasks. Curves of individual run are averaged
surrounded by one standard deviation. Scores represent average precision scores with standard deviation in
parenthesis.

pattern-based models seems not beneficial, as the
context is already encoded in the individual token
embedding. Using context-sensitive patterns for ex-
traction, on the other hand, has a positive influence,
as originally assumed. On the one side, the overall
number of unique extracted patters roughly dou-
bles due to the higher specification. On the other,
the total number of extracted candidates reduces by
about 95% on a random test split. Finally, the best
performing model in this section (context-sensitive
pattern, zero embedding context width) achieves a
token-level averaged score of 0.62 precision.

5.2 Sentence Labeling
A sequence-level labeling model is trained to pre-
dict the presence of an discourse signal. The model
assumes as input contextualized word embeddings
for a maximum sentence size of 60 tokens. For
single-step prediction, we use a down-sampling
rate of 0.5, for two-step prediction we remove neg-
ative samples entirely. All modules’ layers use 128
units as hidden size. We give all models the chance
to train for 50 epochs with a batch size of 32; how-
ever, the training stops earlier in all cases, when
the validation loss stops improving over 7 epochs.

For the sentence labeling approach, we use
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token-wise potentials of the CRF output instead
of the decoded sequence labels. This allows us to
calculate precision and recall on token-level which
is visualized in Figure 3b. We observe that addi-
tional context in form of the previous sentence is
not beneficial on this level for sentence labeling.
With a mean score of 0.45 AP, the performance of
the context-sensitive labeling model is slightly be-
low the score of the single sentence labeling model
with 0.48 AP (note the low confidence caused by
the high standard deviation). The performance in-
creases dramatically, as expected, when labeling is
restricted to positive sentences only.

For potential sentence classification, the previ-
ous sentence’s context increases the average per-
formance slightly (from 0.59 to 0.65 average pre-
cision) as indicated by Figure 3c. This is in ac-
cordance with the previous observations for the
sequence labeling experiment.

5.3 Results
For the final evaluation, we introduce the metrics
overlap, partial-rate, and full-rate. The first score
indicates the overlap of true signal positions with
predicted signal occurrences. The partial-rate is
one if there is at least one token of the signal cor-
rectly classified. The full-rate is satisfied if and if
only the full range of the signal is correctly rec-
ognized. The sequential predictions are taken as
computed by the final layer, for the candidate-based
predictions, we simply choose all as signal classi-
fied candidates and set corresponding associated
tokens to being a signal. Note that a single token
might be classified multiple times. A token is set
to be a signal if a single instance prediction exists.

Results of the experiments are presented in Ta-
ble 2a for the candidate-based experiments and in
Table 2b for the labeling and sentence classifica-
tion experiments. Scores for precision, recall, and
F1 with respect to predicting the AltLex class are
presented for a 0.5 threshold. Thus, they merely
provide a limited view compared to the precision–
recall curves.

The best overall performing model is the
candidate-based model with context-sensitive pat-
tern and zero embedding context width. It achieves
a 74 % phrase overlap, with scores 0.83 and 0.63
for partial-rate and full-rate, respectively. Interest-
ingly, the candidate-based approach outperforms
the sequence-labeling approach. Although the F1
scores are higher for this approach, the final eval-

uation shows that lower performance regarding
overlap (0.63), partial-rate (0.67), and full-rate
(0.60). The performance increases dramatically,
as expected, when labeling is restricted to positive
sentences only. The combination of the simple
sentence classification (0.64 F1 score) and the sim-
ple labeling approach on positive samples (0.84 F1
score) leads to similar results as a model trained on
the full data set.

6 Discussion

Both pattern-based candidate approaches (exact
and context-sensitive) achieve better final results
compared to the labeling approaches which reflects
a similar observation as for studies on explicit con-
nective identification (Knaebel and Stede, 2020).
However, we have to keep in mind that patterns are
extracted on the whole corpus in advance, which
makes the lexicon approach for explicit connec-
tive identification more similar and, thus, better
comparable. The comparison to our sequence la-
beling approach is somewhat unfair, as we here
strictly split the corpus into three parts right at the
beginning and these models never have access to
all signal variants in the whole corpus.

Compared to the recognition performance of ex-
plicit connectives with about 96%, AltLex relations
are predicted far less accurately with at most 63%
exact match for the pattern-based approach. Also,
we expect a drop in performance when limiting the
extraction to the training corpus only.

After examining the errors made by the pattern-
based mode, we conclude that the length of the
errors (unrecognized signals) compared to the cor-
rectly recognized patterns is almost the same (2.5
and 2.7 tokens on average each). Thus the length of
signals is not a crucial factor for this type of model.
Quite a few poorly recognized examples are related
to adverbial phrases (e.g., eventually, further, so far,
too). This type of error seems problematic for both
model variants. A possible reason is the high imbal-
ance of adverbial signal instances (about 100), com-
pared to extracted candidates ranging from 1000 to
4000 instances. Regarding verb gerund forms, the
pattern-based approach recognizes most of them.
This is interesting as it represents the largest group
in PDTB with most variations. On the other side,
we also recognize cases where signals are marked
as false positives, such as resulting and allowing.
Here, more more in-depth elaboration is necessary,
to check whether the model is truly wrong or just
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model-type context-size precision recall F1 overlap partial-rate full-rate

exact 0 0.29 0.58 0.38 0.68 0.82 0.55
exact 1 0.30 0.53 0.38 0.57 0.72 0.43
exact 2 0.30 0.47 0.36 0.56 0.73 0.42

context-sensitive 0 0.35 0.72 0.47 0.74 0.83 0.63
context-sensitive 1 0.36 0.64 0.46 0.72 0.82 0.60
context-sensitive 2 0.35 0.60 0.44 0.67 0.78 0.56

(a) Results of candidate-based extraction approach.

model-type input mode precision recall F1 overlap partial-rate full-rate

labeling single all 0.53 0.55 0.53 0.63 0.67 0.60
labeling context all 0.59 0.48 0.53 0.58 0.60 0.57

labeling single positives 0.84 0.85 0.84 0.87 0.90 0.82
labeling context positives 0.80 0.79 0.79 0.80 0.85 0.72
sentence single all 0.74 0.57 0.64
sentence context all 0.68 0.49 0.56

(b) Results of the sequence-labeling and sentence classification approaches are computed on token-level.

Table 2: Evaluation results: Scores on the left (precision, recall, F1) with respect to AltLex class. These scores of
both tables cannot be compared directly, as prediction level differs (candidates vs. tokens). Final signal extraction
on the right evaluates predictions by degree of overlap, and agreement on partial and full prediction.

found new signals.
For the sequential model, it is noticeable that

prepositions are missing in the predicted signal e.g.
only to and opposed to. Also, verbs in combination
with anaphoric pronouns e.g. that would leave, this
creates, are often recognized as discourse signal
although there are not annotated as such.

The sequential models with additional context
information in form of the previous sentence re-
sult in unexpectedly low performances. Intuitively,
because AltLexes often connect parts of two con-
secutive sentences, we would expect a model’s per-
formance to increase if it gets access to more infor-
mation. We assume poor performances are caused
by context representation and therefore we wonder
whether models especially designed to serve sen-
tence representations would lead to better results
in this experiments.

7 Conclusion

Our work is a successful first attempt to fully au-
tomatically (without hand-crafted rules) extract al-
ternative lexicalized discourse relation signals. For
this task, we propose two technically different solu-
tions: First, a pattern-based approach working anal-
ogously to lexicon-based connective disambigua-
tion approaches, and second, a sequence labeling
approach similar to recent connective labeling ap-

proaches without external lexicon. We evaluated
these models directly on their corresponding train-
ing task and, further, provide more details on the
actual recognition task.

We wonder, how these two model architectures
perform on a different corpus domain such as
biomedical data (Prasad et al., 2011) and whether
the pattern-based limitation of the first approach is
noticeable. Having the new version of the PDTB
with about three times as much data as before,
it still seems the performance of the sequence-
labeling approach is strongly limited by the amount
of available data. For future work, it would be in-
teresting to extract different patterns for generating
candidates for the first approach. Universal part-
of-speech tags would have the advantage of being
a little more flexible (less specific word classes)
while at the same time, it could be possible to use
similar techniques for other languages when the
embeddings model is changed to a different lan-
guage or to a multi-lingual model. The sequential
approach has the advantage to be able to find new
patterns without observing them in the training data
directly. With more raw data from possibly differ-
ent domains, it would be interesting to apply this
technique and examine new/other variants of al-
ternative lexicalizations that do not occur in such
form in the original corpus.
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A Carbon Footprint

We access carbon footprints by using the codecar-
bon1 framework. The corpus is processed once
in the beginning and embeddings are persistently
stored on disk for later usage. By preparing the-
ses embeddings, we roughly emitted 7.93g carbon
dioxide (CO2). Table 3 shows the carbon foot-
prints for each model and provide averaged values
per experiment. In total, as we avoid training large
models by ourselves, and rather use features taken
from pre-trained language models as provided, we
emitted about 266.15g CO2 for all our experiments.

Model-Type Config Emission (g CO2)

candidate advance ctx=0 2.97 (0.01)
candidate advance ctx=1 3.05 (0.04)
candidate advance ctx=2 2.98 (0.02)
candidate simple ctx=0 3.96 (0.54)
candidate simple ctx=1 3.99 (0.56)
candidate simple ctx=2 4.42 (0.15)
label ctx (all) 26.11 (3.09)
label simple (all) 16.04 (0.49)
label ctx (pos) 2.73 (0.61)
label simple (pos) 1.79 (0.17)
sentence ctx (all) 10.97 (0.93)
sentence simple (all) 7.07 (0.54)

Table 3: Carbon footprint approximations averaged over
runs with standard deviation.

B Extracted Candidate Patterns

The following tables give a more detailed overview
about the pattern-extraction mechanisms. In Ta-
ble 4, the top 30 extracted patterns are given for
both approaches, exact extraction on the left side
and context-sensitive extraction on the right side,
with one additional token to the left and right. This
is complemented in Table 5 by the number of ex-
tracted candidates per rule on a randomly sampled
test set, as described in Section 5.

1https://github.com/mlco2/codecarbon

https://github.com/mlco2/codecarbon
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# Exact Count Context-Sensitive Count
1 VBG 468 , VBG DT 162
2 RB 113 , VBG NNS 39
3 VBN IN 59 , VBG PRP 35
4 IN DT NN 45 , VBG NN 31
5 DT VBZ 39 BOS IN DT NN , 29
6 DT VBZ IN 31 , VBG JJ 26
7 IN RB 24 , VBG IN 25
8 IN NN IN 23 , VBG NNP 18
9 JJ 17 , VBN IN DT 18
10 VBG IN 16 BOS RB , 17
11 DT NN VBZ 15 BOS IN RB , 15
12 RB TO 15 BOS IN NN IN VBG 15
13 DT NN VBD 14 , VBG TO 14
14 IN VBD 14 , VBG JJR 14
15 RB VBG 12 , VBG PRP$ 14
16 WP VBZ JJR 12 , RB TO VB 13
17 RB RB 12 BOS WP VBZ JJR , 12
18 DT MD VB 12 , VBG IN DT 12
19 DT NN 11 , VBG RB 10
20 IN VBZ 11 BOS DT VBZ IN DT 10
21 IN DT 11 , VBN IN JJ 9
22 DT VBD 10 BOS DT NN : 8
23 IN NN 10 DT JJ NN 8
24 RB RB IN 10 , RB , 7
25 DT NN VBD IN 9 BOS DT NN VBD DT 7
26 IN CD NN 9 BOS IN DT , 7
27 VBD DT NN IN 9 BOS IN CD NN , 7
28 DT JJ NN VBZ 8 , RB . 7
29 VBG RP 7 , VBG VBG 7
30 DT NN MD VB 7 BOS VBG DT 7

Table 4: Top 30 of extracted patterns from full data set. Comparison of simple patterns with their context-sensitive
counter parts.
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# Exact Count Context-Sensitive Count
1 NN 18686 JJ 1541
2 IN 13915 RB 1100
3 DT 10907 DT 552
4 JJ 7698 VBG 516
5 DT NN 5278 IN 245
6 IN DT 4654 DT NN 206
7 NN IN 4517 VBZ 142
8 RB 4509 VBN IN 128
9 VBD 3997 VBN 104
10 VB 3565 IN DT NN 76
11 VBN 2910 TO 73
12 VBZ 2623 DT NN VBD 58
13 IN DT NN 2133 VBG IN 54
14 VBG 1869 IN NN 51
15 TO 1761 RB RB 46
16 TO VB 1728 DT NN VBZ 45
17 IN NN 1590 PRP VBD 30
18 DT JJ NN 1418 DT VBZ 30
19 IN JJ 1182 IN DT JJ NN 29
20 MD VB 1061 JJR 28
21 VBN IN 1035 IN CD 26
22 IN DT JJ 996 VBD DT NN IN 25
23 IN CD 917 PRP VBZ 21
24 CD NN 871 IN NN IN 20
25 IN NNS 765 VBD 17
26 NN VBZ 728 DT NN MD VB 15
27 NNS VBP 648 RB JJ 13
28 PRP VBD 626 VBG DT NN 13
29 IN DT JJ NN 622 RB TO 12
30 VBD IN 557 IN NNS 12

Table 5: Top 30 of extracted patterns from randomly sampled test partition. The ordering differs between Exact and
Context-Sensitive due to different patterns. In comparison, context-sensitive patterns are extract more different, but
much less candidates per pattern, for example interjections (IN) on the left are extracted about 57 times more than
on the right.


