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Abstract

Current language models have been criticised
for learning language from text alone without
connection between words and their meaning.
Consequently, multimodal training has been
proposed as a way for creating models with
better language understanding by providing the
lacking connection. We focus on pre-trained
multimodal vision-and-language (VL) models
for which there already are some results on
their language understanding capabilities. An
unresolved issue with evaluating the linguistic
skills of these models, however, is that there
is no established method for adapting them to
text-only input without out-of-distribution un-
certainty. To find the best approach, we investi-
gate and compare seven possible methods for
adapting three different pre-trained VL mod-
els to text-only input. Our evaluations on both
GLUE and Visual Property Norms (VPN) show
that care should be put into adapting VL mod-
els to zero-shot text-only tasks, while the mod-
els are less sensitive to how we adapt them to
non-zero-shot tasks. We also find that the adap-
tation methods perform differently for different
models and that unimodal model counterparts
perform on par with the VL models regard-
less of adaptation, indicating that current VL.
models do not necessarily gain better language
understanding from their multimodal training.

1 Introduction

Having models learn language from text alone has
been criticised based on several aspects, from fun-
damental arguments about how language works
(Bender and Koller, 2020) to findings on lack of
certain information in text (Gordon and Van Durme,
2013; Paik et al., 2021). To train language mod-
els on more sources than text is therefore a pro-
posed direction for creating language models with
better language understanding (Bisk et al., 2020).
These models would then become multimodal, with
the capability to process both text and information
from other modalities.
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Figure 1: An overview of different ways to adapt a
multimodal model to text-only input. It showcases three
of the seven adaptations evaluated in this work.

The multimodal models of interest in this work
are vision-and-language (VL) models that have
been trained on images and their corresponding
captions or visual questions (Lu et al., 2019; Tan
and Bansal, 2019; Su et al., 2020; Li et al., 2019;
Chen et al., 2020). These models are performant on
several image-text tasks such as image captioning
and VQA, while there also is an increased interest
for evaluating how their natural language under-
standing is influenced by their multimodal training
(Iki and Aizawa, 2021; Yun et al., 2021).

It is however tricky to investigate the pure natural
language understanding of the aforementioned VL
models, since their language processing is condi-
tioned on visual features. For certain investigations,
we may simply wish to evaluate the models on text-
only domains, while these models have not been
developed for this purpose. If we do not attend
to the issue of accurately adapting VL models to
text-only domains we risk evaluating them out-of-
distribution and fail to accurately measure their
natural language understanding capabilities.
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Different methods for adapting VL models to a
text-only input have already been tried and we have
some results on the natural language understanding
capabilities of these models (Iki and Aizawa, 2021;
Yun et al., 2021). However, no systematic search
for the best way to adapt VL models to a text-
only input has been performed and it is unclear
how well the VL models work with the previously
proposed adaptations. If we wish to continue the
search for better natural language understanding
in multimodal models, we should ensure that we
evaluate them in the best way possible. In this work,
we search for the best method for adapting existing
VL models to a text-only input, as illustrated in
Figure 1.!

With the adaptations in place, we can then com-
pare the VL models to their unimodal text-only
counterparts. This will complement already exist-
ing results on the natural language understanding
capabilities of VL models and the effect of multi-
modal training.

The contributions of our work are as follows:

* We investigate and compare seven meth-
ods for adapting LXMERT (Tan and Bansal,
2019), VisualBERT (Li et al., 2019) and CLIP-
BERT (Norlund et al., 2021) to a text-only in-
put (Section 3). Two of these adaptations have
already been used in previous investigations
of the linguistic capabilities of VL models
(Frank et al., 2021; Iki and Aizawa, 2021).

* We evaluate these adaptations on the GLUE
benchmark (Wang et al., 2018) (Section 4.1).
This gives us results on how well the adap-
tations work for tasks that aim to evaluate
general natural language understanding.

* We also evaluate the adaptations on the Vi-
sual Property Norms (VPN) (Hagstrém and
Johansson, 2022) (Section 4.2). This gives
us results on how well the adaptations work
for zero-shot tasks that aim to evaluate visual
conceptual knowledge in the models.

* We compare the adapted VL. models to their
unimodal BERT-base (Devlin et al., 2019)
counterparts on the aforementioned evalua-
tion tasks. The ensuing results should provide
additional clarity on the natural language un-
derstanding of VL models.

!Code available at https: //github.com/lovhag/
adapt-pre-trained-VL-models-to-text

* We also compare the adapted VL models to
the multimodal FLAVA model (Singh et al.,
2022) that requires no adaptation to text-only
tasks.

2 Models

We investigate adaptations to text-only input for the
three multimodal models CLIP-BERT, LXMERT
and VisualBERT. We also compare their results
with those of a baseline BERT-base model and
FLAVA. The models are further described below
and an overview of them can be found in Table 1.

For each of the multimodal models, we also de-
scribe how to make the model function without
visual input. This is later used in some of the adap-
tations we evaluate, described in Section 3.

All models evaluated in this work except for
CLIP-BERT are provided by the Huggingface li-
brary (Wolf et al., 2020). The pre-trained model
weights for all models except for CLIP-BERT are
also provided by this library. The CLIP-BERT
weights are found in our public repository.

2.1 VisualBERT

Visual BERT is a single-stream model that has been
initialized from pre-trained BERT-base weights and
then further trained on MS COCO as well as VQA
(Lin et al., 2014; Goyal et al., 2017). As a result, it
has been trained on 1.27M more texts and 0.12M
more images than BERT-base. It utilizes a Faster R-
CNN detector (Anderson et al., 2018) as backbone,
for which it has been trained on the features of the
36 first detections, meaning that it expects visual
input features with shape (36, 2048).

Usage without visual input The single-stream
architecture of this model implies that it simply con-
catenates the embeddings from the visual features
with the word embeddings from the text input and
then forwards this to the BERT encoder. Therefore,
this model can be queried with text only without
changing anything in the model architecture, since
it simply means that only the word embeddings are
fed to the BERT encoder.

2.2 LXMERT

LXMERT is a dual-stream model trained on MS
COCO, VQA, VG, GQA and VG-QA (Hudson and
Manning, 2019; Zhu et al., 2016). It has not been
initialized from BERT-base weights. In total, it
has been trained on 9.18M visual texts and 0.18M
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Model Size  Pre-train data Backbone
BERT-base = 110M  English Wiki, BookCorpus -

FLAVA 86M  CCNews, BookCorpus, PMD -

CLIP-BERT 110M English Wiki, BookCorpus, CLIP-BERT V+L  CLIP
LXMERT 230M LXMERT V+L Faster R-CNN
VisualBERT 110M English Wiki, BookCorpus, VisualBERT V+L.  Faster R-CNN

Table 1: The models evaluated with details on their pre-training data. The V+L datasets refer to model-specific VL

datasets. With ‘FLAVA‘ we refer to the text encoder.

images. Similarly to VisualBERT, this model ex-
pects visual features of the shape (36, 2048) from
36 Faster R-CNN detections.

Usage without visual input The dual-stream ar-
chitecture of this model implies that it processes
the visual embeddings and word embeddings in
separate encoders before it fuses the information
from them in a so called Cross-Modality Encoder.
For this model it does not suffice to simply omit
the visual input since it is expected by a separate
visual encoder. However, the language output of
the model is only affected by the visual input at
a set of cross-attention sub-layers with residual
connections in the Cross-Modality Encoder. Con-
sequently, we can set the added residual from the
cross-attention layer to zero and remove the visual
encoder of the model.

2.3 CLIP-BERT

CLIP-BERT is a single-stream VL model that is
architecturally very similar to VisualBERT. The
main differences this model introduces are two, 1)
it has a CLIP (Radford et al., 2021) backbone that
generates visual features of dimension (512, ) for
each image, and 2) it has been trained on 4.72M
visual texts and 2.91M images, a vision-language
dataset approximately four times larger than that of
VisualBERT, in addition to having been initialized
from BERT-base weights.

Usage without visual input Similarly to Visual-
BERT, the single-stream architecture of this model
implies that it can be queried with text only without
changing anything in the model architecture, since
it simply means that only the word embeddings are
fed to the BERT encoder.

2.4 BERT-base

Since all VL models we evaluate to some extent are
based on BERT-base, we use this unimodal model
as a baseline in our evaluations seen in Section 4.

We also create two additional baseline versions
of BERT-base by further training the pre-trained
model on LXMERT text data® and a subset of the
English Wikipedia corpus from the Huggingface
Datasets library (Lhoest et al., 2021) sampled to
match the LXMERT text data in size, respectively.
We do this to enable more fair comparisons to the
evaluated VL models, since they have received ad-
ditional training on text and images. These model
versions are denoted by t rained-LXMERT and
trained-Wikipedia. The unchanged BERT-
base model is denoted by default.

Since the original LXMERT model developed
by Tan and Bansal (2019) was not initialized
from BERT weights, we also develop a third
baseline version of BERT that has been trained
from scratch on LXMERT text data for com-
parison. This model version is denoted by
trained-LXMERT-scratch.

More information about the datasets used to train
the BERT-base baselines and training procedures
can be found in Appendices A and B respectively.

2.5 FLAVA

FLAVA is a multimodal model that works for all
combinations of VL. modalities without any need
for adaptation (Singh et al., 2022). It sidesteps
all issues related to the aforementioned VL. mod-
els and can directly be evaluated for its linguis-
tic capabilities. It consists of three separate parts:
an image encoder, a text encoder, and a multi-
modal encoder that combines the input from the
unimodal encoders. The unimodal encoders are
pretrained on unimodal datasets and the full model
is then trained end-to-end on the Public Multimodal
Datasets (PMD) corpus (Singh et al., 2022). We
use the text encoder of this model as a baseline in
our evaluations.

’The data is described in https://github.com/
airsplay/lxmert.
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3 Adaptations to text-only input

There are several ways to adapt a VL model to a
text-only input. In this work we investigate and
compare seven possible adaptations, as described
below. Two of the adaptations described here have
already been used for investigating the linguistic ca-
pabilities of VL models (Frank et al., 2021; Iki and
Aizawa, 2021). Common for all adaptations is that
their intended use is for evaluation of a pre-trained
VL model (encoder) on text-only input. When we
refer to the word adaptation we refer to the adapta-
tion of a VL model to text-only input.

The adaptions can be grouped into three differ-
ent categories based on how they are implemented.
For the first category, we simply remove the visual
input to the VL model (Sections 3.1 and 3.2). For
the second category, we provide the model with
visual features that are constant and can be viewed
as fillers, (Sections 3.3 to 3.6). For the third cat-
egory, we provide the model with visual features
predicted from text (Section 3.7).

3.1 Using model as-is without visual input

All VL models considered in this work can be
queried with text only, or after performing a small
set of alterations to the model architecture with-
out changing any pre-trained model weights, as
described in Section 2. Thus, we can directly eval-
uate the pre-trained models on the text-only task of
interest. This adaptation is denoted by default.

This adaptation is very simple to apply and does
not require any additional computations, while it
assumes that the VL model can be queried without
visual input. It is also not certain that the mod-
els will function as intended due to the imposed
train/test shift of this adaptation. To our knowledge,
this approach has not been tested before.

3.2 Fine-tuning model on text-only input

Before evaluating the pre-trained VL model we
fine-tune it on a small text-only fine-tuning task,
similarly to how several natural language under-
standing tasks are performed (Wang et al., 2018,
2019). The idea is that this will acclimatize the
model to the aforementioned domain shift. Simi-
larly to the default adaptation, this also relies
on being able to use the model without visual input.

We create two separate fine-tuning sets for this
adaptation. The sets have been extracted from the
text part of the LXMERT training data and from
English Wikipedia. Their sizes have been adapted

to match those of typical fine-tuning sets for e.g.
SuperGLUE (Wang et al., 2019) and we have en-
sured that the number of tokens in each fine-tuning
set is roughly equal. More information about the
datasets can be found in Appendix A.

Finetuning the VL models on each of these sets
should give us results on both the performance of
the method, and on how dependent it is on the cho-
sen fine-tuning set. These adaptations are denoted
by no-visual-features—finetuned-
LXMERT and no-visual-features-fine-
tuned-Wikipedia respectively.

This method avoids having to work with image
feature extractors and image data. However, it
requires setting up a training algorithm and ad-
ditional computations. Moreover, since the full
model needs to be trained for this adaptation, it
is more sensitive to hyperparameter choices. It is
also not certain whether it is sufficient to perform
fine-tuning on text to acclimatize VL models to a
text-only input. More information on tuning proce-
dures can be found in Appendix B.

3.3 Using averaged visual features from the
training dataset

In this method we give the VL model a constant
visual feature input together with the text of in-
terest at evaluation, where the visual features are
the average of all the visual features in the train or
evaluation data of the model. The provided visual-
features should then be kept in-distribution, while
they also are uninformative. This adaptation has
already been used by Frank et al. (2021) for ablat-
ing visual input to VL models. We denote it by
avg-visual-features.

No assumptions or changes to the model archi-
tecture are necessary for this method. However,
it requires access to the datasets used to train the
model of interest and the computation of the aver-
aged visual feature vector.

We calculate the averaged visual feature vector
for CLIP-BERT based on the CLIP features of its
training data. We also calculate the averaged visual
features and position vectors for LXMERT from
its corresponding training data. We take the aver-
age across training samples per detection for the
LXMERT visual features such that we get one av-
erage feature vector for the first detection, another
for the second detection and so forth up to the 36th.

The original released VisualBERT visual fea-
tures are not compatible with the Huggingface im-
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plementation of the model used in this work. We
instead provide VisualBERT with the LXMERT
averaged visual features, since they are compatible.

3.4 Using visual features from a black image

The idea is yet again to give the VL. model a con-
stant visual feature input together with the text of in-
terest. In this case, the visual features are extracted
from a black image using the model backbone. The
model then receives a visual input similar to what
it has been trained on, while it does not contain
any information. This adaptation has already been
used by Iki and Aizawa (2021) for evaluating e.g.
VisualBERT and LXMERT on GLUE. We denote
itby zero-image-visual-features.

Similarly to the averaged features adaptation,
this adaptation makes no assumptions about the
model of interest. However, it requires access to
the backbone of the model and the computation of
the visual features from a black image.

We use the LXMERT feature extractor to ex-
tract 36 detections with their visual features and
bounding boxes from a black image. The extrac-
tor is a Faster R-CNN model developed by Ander-
son et al. (2018). These features are then given to
LXMERT and VisualBERT during evaluation. For
CLIP-BERT we use CLIP to extract visual features
from the same black image.

3.5 Using constant zero vector visual features

We give the model of interest constant visual fea-
tures, and the positions of bounding boxes in the
case of LXMERT, that are zeros. There are no
guarantees that this method will work well for
adapting VL models to a text-only input. It is
however easy to implement and can be seen as
a baseline to be compared with the other adapta-
tions. To the knowledge of the authors, this method
has not been used previously. We denote it by
zeroed-visual-features.

3.6 Using tuned visual features

We tune the visual features to a frozen version of
the model of interest, and then use these constant
features at evaluation together with the text of inter-
est. To the knowledge of the authors, this method
has not been used previously to adapt VL models to
a text-only input. However, the key idea of tuning
the input to the model has been used in previous
works (Qin and Eisner, 2021; Tsimpoukelli et al.,
2021).

We tune visual features to frozen and pre-
trained versions of CLIP-BERT, Visual BERT and
LXMERT respectively. We tune on the same
LXMERT and Wikipedia sets used for the adapta-
tion described in Section 3.2. More information on
tuning procedures can be found in Appendix B.

This method offers more flexibility for find-
ing the most suitable constant visual features
for a VL model evaluated on text-only tasks.
However, it also requires setting up the train-
ing, more computations and is more sensitive
to hyperparameter tuning. We denote these
adaptations on the different fine-tuning sets by
finetuned-LXMERT-visual-features
and finetuned-Wikipedia-visual-
features respectively.

3.7 Predicting visual features from text

Some feature extractors map text representations
and visual representations to the same parametric
space. Consequently, they can be used to “imagine”
visual features from text. The CLIP model serving
as a backbone for the CLIP-BERT model has this
capability and can be used to generate visual fea-
tures from text during evaluation on text-only tasks.
We implement it for the CLIP-BERT model and
denote it by imagined-visual-features.
This method is quite simple to implement, while
it requires access to CLIP and computing the visual
features from the evaluation corpus. It is also not
clear how well CLIP representations work for text
that is not specifically related to visual concepts.

4 Evaluation methods

To assess the performance of our text-only adap-
tations, we firstly evaluate them on the GLUE
benchmark, described in Section 4.1. These evalu-
ations will give us results on how well the models
and their adaptations work for general natural lan-
guage understanding tasks. This benchmark has
been used by both Devlin et al. (2019) and Iki and
Aizawa (2021) to evaluate natural language under-
standing capabilities of BERT and VL models.

Furthermore, to assess the performance of the
adaptations on text domains that are more focused
on visual concepts, we perform evaluations on
VPN, further described in Section 4.2. This will
provide us with results on tasks the VL. models po-
tentially are more attuned to, complementing the
general GLUE results.
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MLM query Gold labels
a cow usually is [...] black, white
amug has a [...] handle

q: a greeting card has? a: [...] pictures

Table 2: Query samples from the VPN dataset for the
concepts cow, mug and greeting card using three out
of nine possible query templates. The [...] is typically
replaced with a [MASK] token.

41 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark has the aim to evaluate model
performance across several NLU tasks. It was de-
veloped by Wang et al. (2018) and has since then
been used to evaluate the natural language under-
standing of several LMs, including BERT.

GLUE contains nine different tasks testing for
grammatical correctness understanding (CoLA),
sentiment classification (SST-2), semantic equiva-
lence detection on different text domains (MRPC,
QQP, STS-B), textual entailment (MNLI, RTE), an-
swer extraction from text (QNLI) and reading com-
prehension (WNLI). All tasks are sentence clas-
sification tasks and have corresponding train and
validation sets for fine-tuning.

VL models have already been evaluated on
GLUE by Iki and Aizawa (2021) using the black
image adaptation method listed in Section 3.4. We
extend the GLUE evaluation to include all alterna-
tive adaptation approaches listed in Section 3.

To evaluate the performance of our adaptations
on GLUE, we first fine-tune our selected multi-
modal models with each adaptation on the training
sets of the GLUE tasks. We then report the vali-
dation scores of the models and their adaptations.
More information about the fine-tuning procedures
can be found in Appendix B.

4.2 Visual Property Norms

Our current VL models are not necessarily the best
fit for general NLU tasks such as GLUE (Iki and
Aizawa, 2021; Yun et al., 2021). Therefore, we also
evaluate them on a task we assume they are more
suitable to. Visual Property Norms (VPN) essen-
tially queries a model for the basic visual proper-
ties of a set of concepts (Hagstrom and Johansson,
2022). It is a text-only task, while it explicitly fo-
cuses on visual properties and concepts. Thus, if
the VL models should perform particularly well on
any text-only task, this would be the one. Table 2

displays examples of queries from the VPN dataset.

The VPN dataset is a zero-shot evaluation task
that evaluates a model using masked language mod-
elling (MLM), an objective our models already
have been trained on. To mitigate issues with
prompt-sensitivity of LMs, nine different query
templates are applied during evaluation.

VPN is a version of the CSLB concept property
norms dataset (Devereux et al., 2014) filtered to
only contain visual conceptual features. The orig-
inal property norms dataset was created with the
help of 123 human participants asked to list the
features of a set of concepts. Each concept has in
total been exposed to 30 humans and the maximum
frequency of a feature reported for a concept is then
30 and the minimum 2. This frequency is referred
to as Production Frequency (PF).

VPN has been segmented into five partitions
based on thresholding of PFs. We evaluate our
adaptations on the segment for which PF > 10,
such that ten or more annotators jointly have pro-
duced the visual features in this set. It consists of
2,001 feature entries for 621 different concepts.

5 Results

We report the evaluation results for CLIP-BERT,
LXMERT and Visual BERT with the seven poten-
tial adaptions to text-only input in Figure 2. We
also report the results for our four BERT-base base-
lines. For GLUE we report the macro-averaged
score over the GLUE tasks. The score for each
task is measured using its corresponding prede-
fined metric described by Wang et al. (2018). For
VPN evaluation we report the mean average preci-
sion (mAP) score averaged over each concept and
relation per query template.

We also report the evaluation results on GLUE
for each task and model for the best performing
adaptation measured by average GLUE score in
Table 3. Table 4 similarly reports the model scores
on VPN for the best adaptation on average. We
compare these results to those of the FLAVA text
encoder that requires no adaptation. Complete nu-
merical results can be found in Appendix C.

We format our discussion around a set of state-
ments that can be made with respect to the results
of this work, as follows.

Model performance on GLUE is more sensitive
to pre-training than to adaptation Model per-
formance on GLUE varies insignificantly between
different adaptations for each model in Figure 2a.
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3 no-visual-features-finetuned-LXMERT I finetuned-Wikipedia-visual-features

3 no-visual-features-finetuned-Wikipedia [ imagined-visual-features

Figure 2: Results on GLUE and VPN from evaluating different adaptations to text-only input. The GLUE results
are given by the mean of the scores for the development sets of all tasks, excluding WNLI. The metric used for
each task is F1 score for QQP and MRPC, Matthews correlation for CoLA, Spearman correlation for STS-B, and
accuracy for the remaining tasks. For VPN the box length indicates prompt sensitivity over nine different query

templates.

The CLIP-BERT performance varies with less than
0.01 score points between adaptations and the Visu-
alBERT performance with at most 0.02 score points
between "no-visual-features-finetuned-Wikipedia’
and ’zeroed-visual-features’. The LXMERT per-
formance also has a performance difference of at
most 0.02 score points between ’default’ and ’zero-
image-visual-features’.

The largest performance difference on the GLUE
benchmark can be observed between models,
where LXMERT and BERT-base trained from
scratch on LXMERT data perform significantly
worse in comparison to the other models. Most
likely, this is due to that the models were not initial-
ized from BERT weights and consequently were
not tuned to more general language usage.

A possible explanation for why the adaptation
methods seem to matter so little for the GLUE
results is that the benchmark is not zero-shot. The
fine-tuning performed on each task might provide
a sufficient of signal to the model for it to adapt to
the unimodal domain.

Lastly, our results on GLUE for LXMERT and
VisualBERT differ from those obtained by Iki
and Aizawa (2021). Especially with respect to
LXMERT for which we observe a significant per-
formance difference compared to the other VL
models, while the same cannot be observed in the
results by Iki and Aizawa (2021). However, this
should not raise any concerns about the robust-
ness of the results, since we evaluated the original
released models, while Iki and Aizawa (2021) eval-
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CoLA MNLI  MRPC QNLI QQP RTE SST-2 STS-B
BERT-base 61.1 846 873/91.2 919 91.1/880 704 937 882
FLAVA 50.1 81.6 83.6/883 87.8 90.4/87.2 556 924  87.1
CLIP-BERT 554 832 75.5/84.1 89.8 91.1/3880 58.1 920 878
LXMERT 159  68.1 69.9/81.6 680 84.1/76.8 585 86.6  40.1
VisualBERT 533 83.7 80.4/86.4 907 90.9/87.6 675 91.7 896

Table 3: GLUE development set results per task for the best performing adaptation on average. The best performing
adaptation for each model is ‘default* for BERT-base, ‘avg-visual-features‘ for CLIP-BERT, ‘no-visual-features-
finetuned-Wikipedia‘ for LXMERT and ‘no-visual-features-finetuned-Wikipedia‘ for VisualBERT . We report
Matthew’s correlation for CoL A, average accuracy for MNLI, accuracy/F1 score for MRPC, accuracy for QNLI,
accuracy/F1 for QQP and accuracy for RTE and SST-2 and Spearman correlation for STS-B.

VPN Score
BERT-base  49.1 +13.2
FLAVA 30.7 6.9
CLIP-BERT 482 442
LXMERT 42.8 +10.8
VisualBERT 38.1 9.1

Table 4: VPN results for the best performing adap-
tations. The best performing adaptation for each
model is ‘trained-LXMERT* for BERT-base, ‘finetuned-
LXMERT-visual-features‘ for CLIP-BERT, ‘default‘ for
LXMERT and ‘no-visual-features-finetuned-LXMERT"
for VisualBERT. We report the results as median =+ stan-
dard deviation over the nine query templates.

uated models that had been unified and trained on
the same data by Bugliarello et al. (2021). And as
we observed previously, GLUE results are sensitive
to pre-training process.

Performance on Visual Property Norms is sensi-
tive to adaptation In contrast to the observations
made for GLUE, performance on VPN differs sig-
nificantly between different adaptions in Figure 2b.
In contrast to GLUE, this task is zero-shot and may
provide a greater challenge for models that are not
sufficiently tuned to the unimodal text domain.

Additionally, it is worth noting that the model
performance is quite sensitive to the choice of
query template. However, this is not entirely un-
expected since it has been shown that LMs are
prompt-sensitive in prompt-based retrieval evalua-
tions (Cao et al., 2021; Jiang et al., 2020).

Different adaptations perform differently for
different models on Visual Property Norms
For CLIP-BERT, the most suitable adaptation for
evaluation on VPN is to provide the model with
visual features that have been tuned on LXMERT

text data. For LXMERT, the best approach is to
use the model as-is without visual input, and for
VisualBERT the best adaptation is to fine-tune the
model on LXMERT data without visual features.
Common for all of these adaptations is that they
involve some kind of prior tuning on LXMERT
text data. A potential explanation for this is that the
LXMERT data is more similar to VPN and results
in a smaller domain shift.

An explanation for the varying adaptation fits be-
tween VL models is potentially found by looking
at the different pre-training datasets and architec-
tures of the models. VisualBERT has been tuned on
much less data compared to the other models, and
may therefore benefit from more training in general.
Additionally, the single-stream CLIP-BERT and Vi-
sualBERT models process all linguistic and visual
information in a joint manner, without the same
ability to disentangle signals as the dual-stream
LXMERT model.

FLAVA does not outperform adapted VL models
On both GLUE and especially VPN, FLAVA is not
better than the adapted VL models. This contrasts
the GLUE results reported for FLAVA and other
VL models by Singh et al. (2022). The difference
in results may arise from differences in fine-tuning
methods for GLUE and that we do not evaluate
unified VL models.

Based on our results, adapting VL models to
text-only input works better or equal to developing
a model to work for all modalities from the start, as
was done for FLAVA. However, since all models
evaluated have been trained on different datasets
with different objectives we cannot draw certain
conclusions related to model design.

BERT-base baselines outperform vision-and-
language models regardless of adaptation
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Lastly, we can observe in Figure 2 how default
BERT-base and BERT-base trained on LXMERT
text data each have among the best performances
on GLUE and VPN respectively. For GLUE it is
expected: Iki and Aizawa (2021) have already ob-
served that VL models on average perform worse
on GLUE. Yun et al. (2021) also found similar
results when they compared the quality of the lin-
guistic representations of VisualBERT to those of
BERT-base. The general natural language under-
standing capabilities evaluated in GLUE are po-
tentially not easy to learn from a visual modality,
explaining why the VL models did not perform
better on this task. Our results on VPN are perhaps
more surprising.

From their visual training, the VL models should
more easily have gained natural language under-
standing capabilities necessary for better perfor-
mance on VPN. Three potential explanations for
why a LM still outperforms a VL model on VPN
are 1) BERT-base is better tuned and therefore has
a better overall performance, 2) the VL models
evaluated in this work do not learn more about vi-
sual concepts from images compared to text that
has been curated to contain visual information, or
3) the VPN task does not accurately measure the
visual conceptual information we have in mind.
More investigations are necessary to accurately de-
termine the reason. In support of explanation (2),
Abdou et al. (2021) found that there are similarities
between color representations in LMs and actual
perceptual color spaces, indicating that visual per-
ceptual information may be found in text.

We should also note that none of the models
evaluated in this work were developed with the goal
of achieving better natural language understanding
by multimodal training. This potentially explains
some of our results, and provides an interesting
avenue for future research in developing models
that have a better performance on both unimodal
and multimodal tasks.

6 Related Work

As previously mentioned, Iki and Aizawa (2021)
have already looked at the language understand-
ing capabilities of VL models, while they only
looked at one way of adapting these models to a
text-only input and only evaluated on GLUE. Yun
et al. (2021) also look at the language understand-
ing capabilities of VL models by evaluating the
linguistic representations of VisualBERT and com-

pare them to a BERT-base model that has been
trained on the same text data. In contrast to their
work, we investigate several VL models and evalu-
ate their performance on language generation tasks.

Bugliarello et al. (2021), Hessel and Lee (2020),
Thrush et al. (2022) and Frank et al. (2021) also
perform extensive evaluations of several VL mod-
els such as LXMERT and VisualBERT. In contrast
to our work, they primarily focus on the VL per-
formance of the models, and do not consider the
model performance on text-only input.

Tan and Bansal (2020) introduce a new method
for enriching the textual representations of a model
by training on visual information. Their method
results in a model that can be directly applied to
text-only tasks and outperforms its standard BERT
model counterpart on GLUE. This method provides
a parallel research avenue compared to adapting
VL models to text-only input.

7 Conclusions

We have investigated and compared seven pos-
sible adaptations of CLIP-BERT, LXMERT and
VisualBERT to text-only input by evaluation on
GLUE and Visual Property Norms. We can con-
clude that care should be put into adapting these
pre-trained VL models to text-only input for better
performance on zero-shot tasks, while the choice
of adaptation method seems to be less impactful on
tasks coupled with fine-tuning sets.

Finally, we have observed that a unimodal LM
has a performance on text-only tasks that is better
or comparative to that of its VL. model counterparts,
regardless of how these counterparts were adapted
to text-only input. Seemingly, improved pure text
capabilities are not guaranteed from simply training
a model on arbitrary multimodal tasks. This agrees
with and solidifies previous research results on VL
models.
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A Datasets for training and tuning

More detailed information on the datasets used for
training and fine-tuning the models investigated in
this work can be found here.

A.1 Training of BERT baselines

More information about the LXMERT and
Wikipedia training datasets used for the BERT-base
baselines can be found in Table 5. By training the
BERT model on LXMERT text data, it will have
seen the same textual information as LXMERT.
And by training it on the Wikipedia data, it will
have seen the same amount of text as LXMERT.

A.2 Fine-tuning model on text-only input

The LXMERT and Wikipedia datasets used for
fine-tuning text-only versions of VL models are
further described in Table 6. The two fine-tuning
sets cover quite different domains. This is already
visible from the tokens/sample count in the table,
in which the Wikipedia corpus generally contains
long sentences and the LXMERT corpus generally
contains shorter sentences more suitable for image
captions.

B Training procedures

More detailed information on our training proce-
dures can be found here.

B.1 Training BERT-base baselines

For the training of BERT-base on both the
LXMERT and Wikipedia datasets we use an MLM
objective, a batch size of 16,384 and learning rate
5 x 107 until the model performance on the dev
set had converged. The maximum training time
was at most 23 hours on 32 Tesla T4 GPUs.

B.2 Fine-tuning model on text-only input

We fine-tune the models using an MLLM objective,
batch size of 256 and learning rate 5 x 10~° until
the model performance on the dev set had con-
verged. The maximum training time was two hours
on eight Tesla T4 GPUs.

B.3 Using tuned visual features

We tune the visual features using an MLM objec-
tive, batch size 64 and a learning rate of 0.05 until
the model performance had converged on the dev
set. The maximum training time was 18 hours on
one Tesla T4 GPU.

B.4 Fine-tuning on GLUE

For the GLUE fine-tuning, we tune our models
for four epochs with a learning rate of 3 x 107,
weight decay of 0.01 and batch size of 32. The
longest tuning time was four hours on two A100
GPUs. We then pick the model checkpoint with the
best validation score during training for evaluation.

C Complete numerical results

The complete numerical results on GLUE and VPN
can be viewed in Tables 7 and 8 respectively.
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Corpus Partition # of samples # of tokens # of tokens/sample
LXMERT train 9.0M 59.0M 6.6

dev 0.2M 1.4M 6.8
Wikipedia train 4.4M 59.0M 13.4

dev 0.1IM 1.3M 134

Table 5: The two text datasets used for developing two additional BERT-base baselines. The number of samples are
roughly equal to the number of sentences for these datasets. The LXMERT data is the text part of the LXMERT
training data. Wikipedia is a subset of general English Wikipedia texts that has been adapted to match the LXMERT

data in total number of tokens.

Corpus Partition # of samples # of tokens # of tokens/sample
LXMERT-f train 9,500 63,000 6.6

dev 3,300 22,000 6.6
Wikipedia-f train 4,600 63,000 13.7

dev 1,600 22,000 13.5

Table 6: The two text datasets used for fine-tuning, denoted by the “-f”” ending. The number of samples are roughly

equal to the number of sentences for these datasets.
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Model Adaptation Score

BERT-base  trained-LXMERT 80.7
trained-LXMERT-scratch 64.1
trained-Wikipedia 81.1
default 83.7

FLAVA default 78.8

CLIP-BERT default 79.6

no-visual-features-finetuned-LXMERT  79.0
no-visual-features-finetuned-Wikipedia  79.7

avg-visual-features 79.8
zero-image-visual-features 79.4
zeroed-visual-features 79.7
finetuned-LXMERT-visual-features 79.5
finetuned-Wikipedia-visual-features 79.6
imagined-visual-features 79.6
LXMERT default 61.9

no-visual-features-finetuned-LXMERT  59.7
no-visual-features-finetuned-Wikipedia 61.9

avg-visual-features 61.3
zero-image-visual-features 59.9
zeroed-visual-features 61.8
finetuned-LXMERT-visual-features 61.5
finetuned-Wikipedia-visual-features 61.6
VisualBERT default 80.6

no-visual-features-finetuned-LXMERT  80.1
no-visual-features-finetuned-Wikipedia 81.3

avg-visual-features 80.9
zero-image-visual-features 80.6
zeroed-visual-features 79.0
finetuned-LXMERT-visual-features 79.9
finetuned-Wikipedia-visual-features 80.5

Table 7: The adaptation and baseline results for GLUE seen in Figure 2a.
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Score

Model Adaptation Median Standard deviation
BERT-base  trained-LXMERT 49.1 13.2
trained-LXMERT-scratch 44.3 13.2
trained-Wikipedia 35.5 9.5
default 39.0 12.4
FLAVA default 30.7 6.9
CLIP-BERT  default 44.3 4.7
no-visual-features-finetuned-LXMERT 44.5 7.0
no-visual-features-finetuned-Wikipedia 41.5 54
avg-visual-features 33.1 5.0
zero-image-visual-features 41.8 5.8
zeroed-visual-features 39.3 4.9
finetuned-LXMERT-visual-features 48.2 4.2
finetuned-Wikipedia-visual-features 333 4.8
imagined-visual-features 314 10.2
LXMERT default 42.8 10.8
no-visual-features-finetuned-LXMERT 41.0 7.5
no-visual-features-finetuned- Wikipedia 34.6 10.0
avg-visual-features 37.3 12.9
zero-image-visual-features 42.1 11.0
zeroed-visual-features 35.2 12.0
finetuned-LXMERT-visual-features 37.2 13.9
finetuned-Wikipedia-visual-features 28.5 11.7
VisualBERT default 29.0 10.9
no-visual-features-finetuned-LXMERT 38.1 9.1
no-visual-features-finetuned-Wikipedia 21.6 9.0
avg-visual-features 29.8 11.0
zero-image-visual-features 25.6 10.2
zeroed-visual-features 7.1 3.1
finetuned-LXMERT-visual-features 345 10.3
finetuned-Wikipedia-visual-features 20.1 9.9

Table 8: The adaptation and baseline results for VPN.
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