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Abstract

Modern neural machine translation (NMT)
models have achieved competitive performance
in standard benchmarks. However, they have
recently been shown to suffer limitation in com-
positional generalization, failing to effectively
learn the translation of atoms (e.g., words) and
their semantic composition (e.g., modification)
from seen compounds (e.g., phrases), and thus
suffering from significantly weakened transla-
tion performance on unseen compounds dur-
ing inference. We address this issue by intro-
ducing categorization to the source contextu-
alized representations. The main idea is to en-
hance generalization by reducing sparsity and
overfitting, which is achieved by finding pro-
totypes of token representations over the train-
ing set and integrating their embeddings into
the source encoding. Experiments on a dedi-
cated MT dataset (i.e., CoGnition) show that
our method reduces compositional generaliza-
tion error rates by 24% error reduction. In ad-
dition, our conceptually simple method gives
consistently better results than the Transformer
baseline on a range of general MT datasets.

1 Introduction

Neural machine translation (NMT) has achieved
competitive performance on benchmark datasets
such as WMT (Vaswani et al., 2017; Edunov et al.,
2018; So et al., 2019). However, the generalizaiton
to low-resource domains (Bapna and Firat, 2019b;
Zeng et al., 2019; Bapna and Firat, 2019a; Khan-
delwal et al., 2021) and robustness to slight input
perturbations (Belinkov and Bisk, 2018; Xu et al.,
2021b) are relatively low for NMT models. In addi-
tion, recent studies show that NMT systems are vul-
nerable to compositional generalization (Lake and
Baroni, 2018; Raunak et al., 2019; Guo et al., 2020;
Li et al., 2021; Dankers et al., 2021; Chaabouni
et al., 2021), namely the ability to understand and

*This work was done as an intern at Pattern Recognition
Center, WeChat Al, Tencent Inc, China.
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Figure 1: The novel compounds in the CoGnition test
set are constructed by composing a few basis semantic
atoms (e.g., determiners (DET), nouns (N), and adjec-
tives (ADJ)) according to the composition patterns. The
compounds are then put into corresponding source con-
texts extracted from the training data.

produce a potentially infinite (formally exponential
to the input size) number of novel combinations
of known atoms (Chomsky, 2009; Montague and
Thomason, 1975; Janssen and Partee, 1997; Lake
and Baroni, 2018; Keysers et al., 2020a).

Take CoGnition (Li et al., 2021), a dedicated
MT dataset, for example (Figure 1). Despite that
certain instances of translation atoms (e.g., small,
large, car, and chair) and their semantic composi-
tions (e.g., small chair and large car) are frequent
in training data, unseen compositions of the same
atoms (e.g., large chair) during testing can suffer
from large translation error rates. Composition-
ality is also a fundamental issue in language un-
derstanding and motivated for translation (Janssen
and Partee, 1997; Janssen, 1998), which has been
suggested as being essential for robust translation
(Raunak et al., 2019; Li et al., 2021) and efficient
low-resource learning (Chaabouni et al., 2021).

The current dominant method to NMT employs a
sequence-to-sequence architecture (Sutskever et al.,
2014; Vaswani et al., 2017), where an encoder is
used to find representations of each input token that
thoroughly integrates its sequence-level context in-
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formation, and a decoder refers to such contextu-
alized representations for generating a translation
sequence. A key reason of failure on composi-
tional generalization is that the correspondence
between pairs of token sequences is modeled as
a whole. Specifically, NMT models are trained
end-to-end over large parallel data without disen-
tangling the representation of individual words or
phrases from that of whole token sequences. At the
sequence level, the source input sample space is
highly sparse mainly due to semantic composition,
and small changes to a sentence can lead to out-of-
distribution issues (Sagawa et al., 2020; Conklin
etal., 2021; Liu et al., 2021).

Intuitively, one way to solve this problem is to
decouple token-level information from the source
sequence by injecting token-level translation distri-
bution (e.g., P(petit|small)) into the source rep-
resentation. Given the fact that the source-side
contextualized representations encode rich token-
level translation information (Kasai et al., 2021;
Xu et al., 2021a), we categorize sparse token-level
contextualized source representations into a few
representative prototypes over training instances,
and make use of them to enrich source encoding.
In this way, when encoding a sequence, the model
observes less sparse prototypes of each token, thus
alleviating excessively memorizing the sequence-
level information.

We propose a two-stage framework to train
prototype-based Transformer models (Proto-
Transformer). In the first stage, we warm up an
initial Transformer model which can generate rea-
sonable representations. In the second stage, for
each token, we run the trained model to extract all
contextualized representations over the training cor-
pus. Then, we perform clustering (e.g., K-Means)
to obtain the prototype representations for each to-
ken. Take Figure 2 as an example, for the token
“Toy”, we collect all the contextualized representa-
tions and cluster them into 3 prototypes. Finally,
we extend the base model by fusing the prototype
information back into the encoding process through
a prototype-attention module, and continue to train
the whole model until convergence.

Experimental results on CoGnition show that our
method significantly improves novel composition
translation by over 24% error reduction, demon-
strating the effectiveness for tackling the composi-
tional generalization problem. To further verify the
effectiveness on more datasets, we conduct experi-

ments on 10 commonly used MT benchmarks and
our method gives consistent BLEU improvement.
We also present empirical analysis for prototypes
and quantitative analysis on compositional gener-
alizaiton. The comparison between the one-pass
and the two-pass training procedure shows that the
one-pass method is both faster and more accurate
than the two-pass one, demonstrating that more
generalizable prototypes extracted from early train-
ing phrase are more beneficial to compositional
generalization. Additionally, quantitative analysis
demonstrates that our proposed model is better at
handling longer compounds and more difficult com-
position patterns. The code is publicly available at
https://github.com/ARIES-LM/CatMT4CG.git.

2 Related Work

Compositional Generalization Recent work
(Lake and Baroni, 2018; Keysers et al., 2020b)
has demonstrated weak compositionality of neural
models using dedicated datasets. Various methods
haven been proposed to solve the issue of composi-
tional generalization such as encoding more induc-
tive bias (Li et al., 2019; Korrel et al., 2019; Baan
et al., 2019; Chen et al., 2020a; Gordon et al., 2020;
Herzig and Berant, 2021), meta-learning (Lake,
2019; Conklin et al., 2021), and data augmentation
(Andreas, 2020; Akyiirek et al., 2021). Recently,
Ontanén et al. (2021) and Csordas et al. (2021)
show that the Transformer architecture can per-
form better on compositional generalization with
some modifications. Although these methods have
demonstrated better generalization or interpretabil-
ity, most of them are limited small vocabulary and
limited samples semantic parsing datasets. In the
context of machine translation, Lake and Baroni
(2018) construct a small dataset where the training
data contains a word daxy along with its parallel
sentences of a single pattern (e.g., I am daxy, je
suis daxist) while the test set contains novel pat-
terns (e.g., He is daxy). However, the experiment
is limited in that the test set only consists of 8 sam-
ples. Different from existing work, Li et al. (2021)
propose a large dataset (CoGnition) and construct a
large-scale test set that contains newly constructed
constituents as novel compounds, so that general-
ization ability can be evaluated directly based on
compound translation error rate. We proposed a
method enhancing compositional generalization on
the dedicated dataset of Li et al. (2021), while at
the same time gives improvements to the machine
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Figure 2: Architecture of Proto-Transformer. The dotted box denotes the prototype-attention introduced in stage 2.

translation quality at practical test cases.

Neural Machine Translation Recent research
on NMT has paid increasing attention to robustness
(Cheng et al., 2018, 2020; Xu et al., 2021b), domain
adaptation (Bapna and Firat, 2019b; Zeng et al.,
2019; Bapna and Firat, 2019a; Khandelwal et al.,
2021), and compositional generalization (Lake and
Baroni, 2018; Raunak et al., 2019; Fadaee and
Monz, 2020; Guo et al., 2020; Li et al., 2021). Lake
and Baroni (2018) propose a simple toy experiment
to first show the problem of compositionality. Rau-
nak et al. (2019) find that NMT models behave
poorly on recombining known parts and generaliz-
ing on samples beyond the observed length during
training, Fadaee and Monz (2020) find that NMT
models are vulnerable to modifications such as re-
moval of ad-verbs and number substitutions. More
recently, Li et al. (2021) observe significant com-
positional generalization issues on CoGnition, and
Dankers et al. (2021) argue that MT is a suitable
testing ground to ask how compositional models
trained on natural data are. Our work is in line with
the above methods, but we consider a method to
address the issue rather than analyse the problem.
Technically, Raunak et al. (2019) propose to use
bag-of-word regularization to refine encoder and
Guo et al. (2020) propose sequence-level mixup to
create synthetic samples. Different from them, we
propose to enhance models’ compositional gener-
alization by categorizing contextualized represen-
tations, which turns out more effective.

3 Method

3.1 Transformer Baseline

Given a sequence of source sentence X =
{z1,...,x7}, where T denotes the number of to-

kens, the Transformer encoder (Vaswani et al.,
2017) first maps X to embeddings, packing them
as a matrix H°, and then takes H as input and
outputs a contextualized sequence representation
HY € RT where d and L denote dimension size
and the number of layers respectively.

Attention. Formally, given a set of packed query,
key, and value matrices (), K, and V, the dot prod-
uct attention mechanism are defined as

Q'K
Vd

where d is the dimension of the key vector.

A typical extension of the above is multi-head
attention (MHA), where multiple linear projections
are executed in parallel, and the outputs of all heads
are concatenated:

Attention(Q, K, V') = Softmax( W, (1)

MHA(Q, K, V) = WO°lheady; ...; heady), (2)
head; = Attention(WiQQ, WiKK , Wivv), 3)

where WO, WZQ, WK, and W) are model param-
eters.

Layer Structure. The Transformer encoder has
L identical layers, each of which is composed of
two sublayers (i.e., self-attention and feed-forward
networks). In the [-th self-attention layer, the query,
key, and value matrices are all the hidden states
from the previous layer H'~1:

H. = MHA(H'"', H!71 HI7Y). 4)

The feed-forward sublayer is a two-layer transfor-
mation with ReLU activation:

H' = WiReLUWIH. + b)) + b5,  (5)
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where W/, 6%, W}, and bl, are trainable parameters.
The layer normalization and residual connection
are omitted for brevity.

3.2 Proto-Transformer

Our proposed Proto-Transformer extends the base
Transformer by introducing a prototype-attention
module on top of the self-attention module in each
encoder layer, which aggregates token-level proto-
type representations for each token.

3.2.1 Prototype-attention

Assuming that each token z; in the input sequence
is assigned a set of prototype vectors packed as
a matrix C** € R%* where k is the number of
prototypes. The prototype attention aggregates the
global prototype information and refines the con-
textualized representations for each token by the
multi-head attention mechanism:

l l
H! = MHA(H], C, C), (6)

where C is all the prototype representations of the
sequence (i.e., {C*1,C*1,...,C*T}), and the lo-
calness of prototype attention is implemented by
mask mechanisms. The output Hlly is fed into the
feed-forward network (Eq. 5).

The difference between the Proto-Transformer
encoder and the Transformer encoder is illustrated
by the dotted box in Figure 2. By stacking multi-
ple self-attention layers with prototype-attention,
the encoder is able to exploit less-sparse prototype
representations, preventing the model from over-
memorizing the local context.

3.2.2 Training

Proto-Transformer takes a two-stage training
process, which is summarized in Algorithm 1.
Here, D denotes a training corpus, V denotes the
vocabulary of D, #(?) denotes initial parameters of
a Transformer model, 6 denotes parameters of the
prototype-attention module, and k£ and N denote
the number of prototypes and training epochs of
stage 1 respectively.

Stage 1. We first train a base Transformer model
for N epochs until it is able to generate reason-
able translations. Given the training corpus D =
{(X,Y)}, where X and Y denote a source sen-
tence and target translation, respectively, the model
is optimized by minimizing cross-entropy loss. Af-
ter training for N epochs we obtain a model (),
which has acquired some translation knowledge.

Algorithm 1 The training procedure of Proto-
Transformer
Input: Training set D = {(X,Y)}, vocabulary V, NMT
model 6, prototype-attention modules 6, number of
prototype k, training epochs of stage one N, token-
representation lookup table Q, token-prototype lookup table
P
Output: Trained NMT model 6*
Initialize 6*) and 6,
Stage 1
for i =1to N do
0™ « TrainModel(D, ¢~1)
end for
Stage 2
for X € Ddo
for each token z; in X do
Add H; to the corresponding contextualized represen-
tation list Q[x;] for token z;
end for
end for
Apply K-Means to each token v; € V to obtain prototype
representations C*J and add (vj, C%) to P
Introduce prototype-attention modules to the base model:
AN — oMy g,
Continue training to convergence:
0" < TrainModel(D, 6, P)

Stage 2. We cluster the contextualized repre-
sentations of each token to obtain its prototype
representations. In particular, using the model
9N, we build a token-representation lookup ta-
ble Q. We iterate through the whole training cor-
pus and calculate contextualized representations
{H", ..., H}”{(Ui)} of each source token v; in the
vocabulary except punctuation, where R(v;) is the
number of contextualized representations of token
v;. Here we omit the superscript L for simplicity.
Next, for each token v;, we use K-Means (Lloyd,
1982) ! to cluster the contextualized representations
due to its efficiency for large number of samples in
high dimensions:

C" = K-Means(H", ..., H;)%i(vi))' (7)
All token-prototype pairs are saved in a lookup
table P. Finally, we introduce the prototype-
attention modules with parameters 67 to the Trans-
former encoder, and for each source sentence we
retrieve the prototype representations from table P.
We continue to optimize the whole parameter set
{6™) U T} to obtain a final model 8.

As mentioned earlier in the introduction, we
compare the above one-pass method to a two-pass
method, where we train the base model to conver-
gence instead of for N iterations, before training

"https://scikit-learn.org/stable/modules/classes.htm]
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a Proto-Transformer from scratch which uses clus-
tered prototypes from the base model. The relative
advantage is that the prototypes are taken from a
fully trained NMT model, but the disadvantage is
that the training time doubles. In addition, it re-
mains a empirical question whether fully-trained
NMT models give prototypes that are more suitable
for guiding a final model. We discuss this in the
Section 5.1.

It is worth noting that a limitation of K-Means
is the pre-specification of cluster numbers, which
can be different for different tokens in practice.
Non-parametric clustering algorithms such as DB-
SCAN (Ester et al., 1996) can potentially solve
the problem. However, their runtime complexity is
typically O(n?) or worse, which prevents us from
choosing them for large-scale NMT data.

4 Experiments

4.1 Experimental Settings

Datasets. We use CoGnition (Li et al., 2021)
to systematically evaluate compositional gener-
alization in MT scenarios, an English—Chinese
(En—Zh) translation dataset. In consists of a train-
ing set of 196,246 sentence pairs, a valid set and
a test set of 10,000 samples. In particular, it has a
dedicated test set (i.e., CG-test set) consisting of
10,800 sentences containing novel compounds, so
that the model’s ability of compositional general-
ization can be measured by the ratio of compounds
that are correctly translated. In addition, we choose
9 machine translation tasks from IWSLT, WMT
and JRC-Acquis to verify the general effectiveness
of our methods. The dataset statistics are shown in
Appendix B.

Setup. We use Transformer (Vaswani et al., 2017)
as our baseline models implemented using the
Fairseq toolkit (Ott et al., 2019). For CoGnition
and IWSLT, we use the Transformer iwslt _de en
setting while for the others we use the trans-
former_base setting. Following previous work, for
IWSLT and JRC-Acquis En«<+Es, we use beam
search with width 5 and length penalty 0.6 for in-
ference, whereas for the other datasets we set the
beam width as 4. For CoGnition, N and k are set as
8 and 3 based on the validation set, and /N and k for
the other datasets are shown in Appendix B. Empir-
ically, IV is recommended to chosen from 10% to
25% of the total training epochs. We conduct cat-
egorization for all tokens except punctuation and

low-frequent words, and the token on CoGniton
is word and is subword on other datasets For re-
producibility and stability, we train 6 models with
seeds provided in (Li et al., 2021) for each method
and report the average performance.

Evaluation Metrics. We use compound transla-
tion error rate (CTER; (Li et al., 2021)) to measure
model performance on CoGnition. Specifically,
instance-level CTER denotes the ratio of samples
where the novel compounds are translated incor-
rectly, while aggregate-level CTER denotes the ra-
tio of compounds that suffer at least one incorrect
translation in corresponding contexts. To calcu-
late CTER, Li et al. (2021) provide a manually
collected dictionary for all the atoms based on the
training set, since each word may have different
translations. We also conduct human evaluation
(Appendix A) as a supplement. We conduct eval-
uation using BLEU (Papineni et al., 2002) for the
other datasets.

4.2 Baseline Methods

We compare our method with following baselines:
(1) Transformer (Vaswani et al., 2017), which
uses the same settings as Li et al. (2021); (2)
Transformer-Small, a more compact Transformer
model with 4 layers and 256 hidden size; (3)
Transformer-Deep, which increases the number
of encoder layers to 8 to take the same parame-
ters as Proto-Transformer; (4) Transformer-Rela,
which replaces absolute positional encoding with
a relative one, an important component for com-
positional generalizaiton demonstrated in (Csordds
et al., 2021; Ontanén et al., 2021); (5) Bow (Rau-
nak et al., 2019): which uses bag-of-words loss
to regularize the encoder based on the observation
that the encoder representations are much weaker
on unseen composition; and (6) SeqMix (Guo et al.,
2020): which synthesizes examples by interpolat-
ing embeddings”.

4.3 Results on CoGnition

The main results on CoGnition are shown in Table
1. Transformer gives instance-level and aggregate-
level CTERSs of 28.42% and 62.88%, respectively.
In comparison, Proto-Transformer gives a score of
21.69% and 51.84%, respectively, with a significant
improvement of 6.73% and 11.04% accordingly.

2The performance is the best when the hyper-parameters
of Beta distribution are set to 1.0, which is consistent with
(Guo et al., 2020).
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Compound Translation Error Rate (CTER) |

Model

NP

[ VP

[ PP

[ Total

Transformer

24.74%155.16%

24.82%159.54%

35.71%/73.94%

28.42%162.88%

Transformer-Deep

25.11%/54.11%

28.14%/60.43%

37.38%/75.24%

30.21%/63.26%

Transformer-Small

22.14%/47.21%

23.55%/53.60%

32.02%/69.64%

25.91%/56.82%

Bow

22.16%47.89%

24.83%/55.57%

35.04%/73.21%

27.34%158.89%

SeqMix

24.52%149.71%

26.88%/58.90%

34.36%/73.09%

28.59%/60.57%

Transformer-Rela

22.69%/51.20%

24.89%157.17%

34.94%/71.73%

27.50%/60.03%

Proto-Transformer ||

14.07 %/36.45 %

[ 22.13%/50.90%

| 28.85%/68.15%

[ 21.69%/51.84%

Table 1: Compound translation error rate (CTER) on CoGnition. We report instance-level and aggregate-level
CTERs, separated by “/”. NP, VP, and PP denote noun phrases, verb phrases and positional phrases, respectively,
three compound types in the compositional generalization test set (CG-test set).

Moreover, Proto-Transformer outperforms all base-
line systems significantly, indicating that catego-
rization on the contextualized representations is
more beneficial to compositional generalization.
We also calculate the BLEU scores, and Proto-
Transformer and Transformer obtain 60.1 and 59.5,
respectively. The BLEU scores are all relatively
high since the sentences on the CG test set are simi-
lar to the sentences in training data except the novel
compounds. For CoGnition, CTER is more accu-
rate and suitable than BLEU because the translation
dictionary processes multiple accurate translations
of each compound better.

Since Proto-Transformer brings some extra
parameters (approximately 6M), we investigate
whether the performance improvement is derived
from the increase of model parameters. As
can be seen, Transformer-Deep performs poorly
on the CG-test set, indicating that only increas-
ing model capacity may be harmful since it
leads to worse over-fitting to sequence-level dis-
tributions. Besides, the more compact model
Transformer-Small yields better results than Trans-
former and Transformer-Deep but lags far behind
Proto-Transformer. This shows that model size is
useful but not sufficient for solving compositional
generalization.

Proto-Transformer performs better than Bow, in-
dicating that the encoder representations refined
by categorization are more adequate than the reg-
ularization technique. Compared to SeqMix, the
improvement of Proto-Transformer is more signif-
icant (2.31% vs 11.04% aggregate-level CTER).
SeqMix reduces representation sparsity via linear
interpolation in the input embedding space, and we
conjecture that the stochastically synthetic samples
may be unreasonable and harmful to model training.
Relative positional embedding (Shaw et al., 2018)
is demonstrated to be important for compositional

. . BLEU
Dataset | Direction Transformer | Proto-TF
En=-De 28.44 28.96
En=1It 28.24 28.87
IWSLT | —¢ =3 30.19 30.96
En=-Ro 32.46 33.37
WMT Ro=-En 32.49 33.27
En=Fi 21.39 22.11
En=-De 27.95 28.49
JRC- En=Es 60.90/60.32 61.56/60.90
Acquis Es=En 63.21/62.59 63.73/63.10

Table 2: BLEU on commonly used MT datasets. For
JRC-Acquis, we follow previous work to report results
on both the valid and test sets, separated by “/”. The
performance of our model is significantly better than
Transformer (p < 0.05) (Koehn, 2004).

generalization. Specifically, Transformer-Rela re-
duces CTERs by 0.92% and 2.85% but is inferior
to ours, indicating that the prototypes bring more
than positional information.

4.4 Results on General MT Datasets

We conduct experiments on several general MT
benchmarks, where the translation compound error
rate (CTER) cannot be calculated directly. The per-
formances on IWSLT, WMT and JRC-Acquis are
presented in Table 2. Compared with Transformer,
our model achieves consistent improvement (0.67
BLEU), demonstrating its effectiveness under gen-
eral evaluation settings. Proto-Transformer outper-
forms Transformer by 0.91 and 0.78 BLEU scores
on WMT’16 En—Ro and Ro—En respectively.
For JRC-Acquis, our model achieves an average
improvement of 0.62 BLEU score on En—Es and
0.56 BLEU score on Es—En. On the largest dataset
WMT’ 16 En—De, our model also performs better
than Transformer by 0.54 BLEU score. In addi-
tion, the large datasets possibly benefit from the
additional parameters (about 6M). We run an exper-
iment of a model with 8 encoder layers on EN-DE,
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k| CTER |k
0 [ 28.42%/62.88% | 3
1 | 23.60%/54.33% | 4
2 | 22.58%/53.19% | 5

[ CTER

21.69%/51.84%
23.04%/52.70%
24.98%/54.71%

Table 3: CTERs against different number of prototypes
on the CG-test set. “0” denotes to the Transformer
baseline.

and it achieves 28.02 BLEU, inferior to our model
with same number of parameters.

Note that the BLEU scores in the general
datasets can reflect translation quality, but has sev-
eral limitations in the measurement of generaliza-
tion or robustness. For example, when a sentence
is almost translated correctly but has few serious
errors, it can achieve a high BLEU score but suffers
severe semantic distortion. For instance, as shown
in (Li et al., 2021), the model mis-translates “He
became sick from eating all of the peanut butter
on the ball* into “He became sick from eating all
of the peanut butter on the field. With a minor
mistake on the compound “on the ball“, the model
achieves a sentence-level BLEU of 61.4, but the
full sentence meaning is largely affected.

5 Analysis

5.1 Prototypes

Effect of the Number of Prototypes. The num-
ber of prototypes k controls the granularity of con-
text used to refine the representation learning, and
is determined it based on the model loss on the de-
velopment set. In this experiment, we investigate its
influence on generalization performance. As shown
in Table 3, incorporating prototypes can reduce the
translation error caused by unseen compounds, and
the model obtains the best generalization perfor-
mance when k is 3. Intuitively, using too many
prototypes dilutes the concentration effect, leading
to overfitting again, while too few prototypes limits
the expressiveness for polysemous words, e.g., one
prototype represents a single sense.

Effect on Token-level Translation Consistency.
We hypothesize that token alignments induced by
Proto-Transformer are less ambiguous for tokens
having settled meaning. To verify it, we approxi-
mately measure the number of distinct translations
for 10 selected English tokens in the WMT Ro—En
dataset, by counting the number of Romanian to-
kens that are aligned to the English tokens in the
test set with the method of Chen et al. (2020b).

Tgt tokens [ PT | TF | Src tokens

yesterday 1 3 ieri,psd,victor
limited 2 5 limitata,limitat,comert,apel, ...
six 1 6 sase,procente,saptamani,din, ...
agriculture 1 4 agricultura,plasa, ...
culture 2 5 cultura,culturii, profesion...
republic 1 3 republica,liderului, ...
simply 1 3 simplu,nu,individuala, ...
november 1 6 | noiembrie,propaganda,2008, ...
tomorrow 1 3 maine,dimineata,amiaza, ...
saturday 1 3 sambata,seara,dimineata, ...

Table 4: Word translation variations induced from
Transformer (TF) and Proto-Transformer (PT). The
columns PT and TF denote the number of aligned Roma-
nian tokens, and the bold characters display the tokens
induced from Proto-Transformer.

o 045 Transformer Transformer
E 0.40 Proto-Transformer
0035
030
20.25
@ 0.20
€015
@ 0.10
= 0.05 ’
000 4
2

050 ‘ .
‘ Proto-Tranformer

5<2 3 4 5 6 7 8 9 10 11 12 13>l

3 :
(a) Compound Length (b) Context Length

Figure 3: CTERs of Proto-Transformer and Trans-
former over different compound and context lengths.

As can be seen in Table 4, Proto-Transformer at-
tends to much fewer token types than Transformer.
This shows that Proto-Transformer’s translations
are less prone to context changes, which indicates
the sparsity reduction of input sample space. The
finding also partly explains the improvement on the
Ro—En dataset. The above observations verify our
intuition in the introduction that adding prototypes
to the source representation enhances the model’s
knowledge on token-level translation consistency,
which leads to better compositional generalizaiton.
It is noteworthy that increase translation con-
sistency may increase translationese effects (Van-
massenhove et al., 2021). We argue that there can
be a trade-off between the consistency modeling
and translationese. Our approach does not force
the model to generate highly consistent translation,
but aims to alleviate the vulnerability to context
changes by introducing several prototypes.

One-pass vs Two-pass. The possible advantage
of the two-pass training procedure (Two-Pass)
mentioned in Introduction is that the quality of
the prototype representations generated by a con-
verged model may be better. Specifically, Two-
Pass achieves 24.36% instance-level and 55.69%
aggregate-level CTER, outperforming Transformer
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by 4.06% and 7.19%, respectively, but is notice-
ably inferior to Proto-Transformer (21.69% and
51.84%). This observation may relate to the obser-
vation that neural models learn more generalizable
features in the early phase before memorization
(Arpit et al., 2017; Stephenson et al., 2021). The
one-pass approach can not only reduce the train-
ing cost (11,103 seconds vs 6,286 seconds) but
also leverage more generalizable features to better
improve models’ compositional generalization. In
addition, the prototypes can be initialized randomly
and trained along with the model, and this variant
obtains 26.24% and 57.94% CTERs. It preforms
much worse than Proto-Transformer (21.69% and
51.84%) though they have identical number of pa-
rameters and architecture, indicating the effective-
ness of explicit categorization during training.

5.2 Effects on Compositional Generalization

Composition Length. Longer compounds are
harder to generalize as they contain richer seman-
tic information (Li et al., 2021). We classify
the test samples by compound length and con-
text length, and calculate the instance-level CTER.
In Figure 3, we can observe that the advantage
of Proto-Transformer grows larger in generalizing
longer compounds and context. In particular, Proto-
Transformer gives a lower CTER by 12.80% over
samples with context longer than 13 tokens. The
underlying reason can be that longer compounds or
contexts are more sparse in input space, and Proto-
Transformer alleviates sparseness by putting token
distributions into representations via prototypes.

Modifier. One challenging type of novel com-
pounds in CoGnition is the postpositive modifier
atom (MOD), which is constructed to enrich the
information of its preceding word (e.g., he liked
in the sentence he bought the car he liked). The
difficulty of translating compounds with MOD lies
in word reordering from English to Chinese. We
divide the test samples into two groups according
to compounds with or without MOD (Figure 4).
Proto-Transformer demonstrates larger advantage
in translating the compounds with MOD, show-
ing its superiority in processing complex semantic
composition. To further understand the effective-
ness, we choose the token liked, a core part of the
MOD atom he liked, and visualize its represen-
tations with t-SNE (van der Maaten and Hinton,
2008). In Figure 5, we can see that the representa-
tions of he liked serving as MOD are concentrated

0.40
fioss
'_

O 030

Transformer
Proto-Transformer

s
2025 A
8020
go.

2015 -
2o.

0.10

wo/ MOD w/ MOD

Figure 4: CTERs on compounds w/o and w/ MOD.

embedding
® prototype
» is_mod -
not_mod

b4
@

L 2 ‘g/ :
&"’0

3

Figure 5: Visualization of contextualized embeddings
(grey tri-down markers) and 3 prototypes (black stars)
for the token liked. The blue diamonds and orange
circles denote the case where liked appear in the context
he liked, and the former one denotes the case where he
liked serves as MOD.

at the leftmost prototype, while the representations
of he liked not serving as MOD scatter on the other
prototypes. Through representation categorization,
Proto-Transformer finds a specialized prototype
which abstracts the knowledge of liked serving as
a part of MOD, and refers to the MOD prototype
when processing compounds with MOD.

Case Study We present 3 source samples contain-
ing a novel compound woke the silly boyfriend up
and 5 atoms, i.e., woke, the, silly, boyfriend and up,
and their translations in Table 5. For all samples,
correct translations should contain complete seman-
tic meaning of the compound. Proto-Transformer
correctly translates the compound along with dif-
ferent contexts across all samples, while Trans-
former suffers various mistakes. In the first sample,
the translation of something terrible is omitted by
Transformer. In the second sample, Transformer
omits silly boyfriend and mistranslates woke the
silly boyfriend up into a silly bird woke up. Simi-
lar mistake can be observed in the third example,
where Transformer mistranslates his dog woke the
silly boyfriend up into his dog woke up. Trans-
former overfits contexts and makes errors on un-
seen compositions, while our model is more stable.
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Source [ Transformer [ Proto-Transformer
SR, TEHETERIZ, EAIEERE,
Yet to her dismay something terrible — A B RKEERT - M AREIEIS BB KT -

woke the silly boyfriend up.

(Yet to her dismay
a silly boyfriend woke up.)

(Yet to her dismay something terrible
woke the silly boyfriend up.)

Every morning , a bird woke the silly
boyfriend up for work at 6 am.

FRE L6,
—HERER S EEE L.
(every morning , a silly bird woke up
for work at 6 am.)

BREF6R, —HE
MFEEAR A BRI R £ L3
(Every morning , a bird woke the silly
boyfriend up for work at 6 am.)

His dog woke the silly boyfriend up
in the middle of the night.

AT EREEE TN BB A -
(His dog woke up in the middle of
the night, the silly boyfriend.)

TR ERIEAN B KVRE T -
(His dog woke the silly boyfriend up
in the middle of the night.)

Table 5: Example translations. The bold characters denoting the novel compounds and corresponding translations.

6 Conclusion

We investigated a conceptually simple method for
enhancing compositional generalizaiton of NMT
models, proposing a two-stage training framework
to fuse prototype representations into the encoding
process of Transformer. Experiments on CoGnition
show the effectiveness of our method on composi-
tional generalization, and extensive results over 9
translation tasks verify the generality of our method.
To our knowledge, we are the first to propose token-
level categorization for NMT, achieving promising
performance on both a large-scale compositional
generalization dataset and general datasets.
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A  Human evaluation

Model Adequacy | Fluency
Transformer 4.32 4.27
Proto-Transformer 4.51 4.54

Table 6: Human evaluation on adequacy and fluency.

We conduct the human evaluation for transla-
tions in terms of adequacy and fluency. We ran-
domly sample 100 sentences from the CG-test set
of CoGnition, and invite three annotators to eval-
uate the translation adequacy and fluency ranging
from one to five. The five point scale for adequacy
indicates how much of the meaning expressed in
the reference translation is also expressed in a hy-
pothesis translation: 5 = All, 4 = Most, 3 = Much,
2 = Little, and 1=None. The five point scale for
fluency indicates how fluent the translation is: 5 =
Flawless, 4 = Good, 3 = Non-native, 2 = Disfluent,
and 1 = Incomprehensible.

The average of the scores from the three anno-
tators is taken as the final score, and the results
of the baseline and our model are shown in Table
6. Compared with Transformer, Proto-Transformer
improves adequacy and fluency by 0.19 and 0.27,
respectively. Proto-Transformer achieves more ac-
curate translation of the novel compounds by allevi-
ating the problem of compositional generalization,
and possibly make the other part of the sentence to
be translated better.

B Dataset Statistics and
Hyper-parameters

We list the statistics and the introduced hyper-
parameters of all the datasets in Table 7.

For IWSLT’14 English<+German (En<+De),
IWSLT’14 English—Italian (En—It), and
IWSLT’15 English—Vietnamese (En—Vi), we
use Moses tokenizer® and apply joint BPE (Sen-
nrich et al., 2016) with 10,000 merge operations.
For WMT’ 16 English<+Romanian (En<+Ro), we
use the processed data from Lee et al. (2018).
For WMT’16 English—German (En—De) and
WMT’17 English—Finnish (En—Fi), we ap-
ply joint BPE with 37,000 and 32,000 merge
operations, respectively. For JRC-Acquis
English<+Spanish (En<+Es) we use the datasets
processed by Gu et al. (2018). For WMT’ 17
En-Fi, we use the concatenation of newstest2015,

3https://github.com/moses-smt/

newsdev2015, newstest2016 and newstestB2016
as the development set, and the newstest2017 as
the test set.

C Target-side Prototypes.

Target-side prototypes possibly contain more bilin-
gual translation knowledge since the decoder pro-
cesses target sentences based on source repre-
sentations. We are interested in whether target-
side prototypes can be used to enhance composi-
tional generalization and/or further improve Proto-
Transformer. To answer this question, we first ex-
tract prototypes from the decoder and incorporate
them back to the decoder using the same mecha-
nism of Proto-Transformer. The model can reduce
CTERs to 25.93%/58.21%, largely inferior to us-
ing source-side prototypes (21.69%/51.84%). We
also try to incorporate target-side prototypes to the
decoder based on Proto-Transformer but it gives
no noticeable improvement, achieving 21.65% and
51.71% CTERs, respectively. The underlying rea-
son is connected a recent finding that translation
already happens in the source encoding and the
representations from encoders contain sufficient
translation knowledge (Kasai et al., 2021; Xu et al.,
2021a).

D Computational Cost

Our framework adds some computational over-
heads including extracting contextualized repre-
sentations and conducting the clustering algorithm.
The former only requires a single forward pass
over the training set, merely amounting to a frac-
tion of the cost of training for one epoch. Thanks
to pytorch implementation of K-means algorithms
which utilize GPU for faster matrix computations,
the clustering is friendly for the large-scale datasets
and it can be much faster with parallelization and
more powerful hardware. Since the number of pro-
totypes is a constant k, the complexity of prototype-
attention is O(kT'), linear with respect to sequence
length 7.
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CoGnition IWSLT 14 IWSLT’ 15 WMT’16 WMT’17 JRC-Acquis
En-Zh En-De En-It En-Vi En-Ro En-Ro En-De En-Fi En-Es  Es-En
#Train 196k 157k 175k 133k 608k 608k 4.5M 2.6M 679k 679k
#Valid 10k Tk 1k 1.6k 2k 2k 3k 9k 25k 25k
#Test 10k Tk 0.9k 1.3k 2k 2k 3k 3k 26k 26k
N 8 12 10 8 8 11 15 12 8 8
k 3 4 4 3 4 6 5 6 4 4

Table 7: Dataset statistics and hyper-parameters.
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