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Abstract

Cohesion devices, e.g., reiteration, corefer-
ence, are crucial for building cohesion links
across sentences. In this paper, we propose
a document-level neural machine translation
framework, CoDoNMT, which models cohe-
sion devices from two perspectives: Cohesion
Device Masking (CoDM) and Cohesion Atten-
tion Focusing (CoAF). In CoDM, we mask co-
hesion devices in the current sentence and force
NMT to predict them with inter-sentential con-
text information. A prediction task is also in-
troduced to be jointly trained with NMT. In
CoAF, we attempt to guide the model to pay
exclusive attention to relevant cohesion devices
in the context when translating cohesion de-
vices in the current sentence. Such a cohesion
attention focusing strategy is softly applied to
the self-attention layer. Experiments on three
benchmark datasets demonstrate that our ap-
proach outperforms state-of-the-art document-
level neural machine translation baselines. Fur-
ther linguistic evaluation validates the effec-
tiveness of the proposed model in producing
cohesive translations.

1 Introduction

Neural Machine Translation (NMT) has become
the dominant approach for machine translation and
achieved substantial progress in comparison to sta-
tistical machine translation. Some studies even
claim that NMT has reached human parity (Hassan
et al., 2018). Despite this, most NMT models are at
the sentence level, which translate documents sen-
tence by sentence, ignoring inter-sentential depen-
dencies. Documents translated in this way are usu-
ally incoherent and inconsistent across sentences.

In order to address this issue, a wide range
of efforts have been made to leverage inter-
sentential context information for document-level
NMT (Tiedemann and Scherrer, 2017; Zhang et al.,

∗corresponding author

2018; Voita et al., 2019; Tan et al., 2019; Maruf
et al., 2019; Xu et al., 2020b; Zhang et al., 2021).
Most efforts have been dedicated to modeling local
or global context via additional encoders, atten-
tion, cache, concatenating inputs, etc (Maruf et al.,
2021). However, these approaches normally focus
on the way of integrating context into translation,
rather than the context itself. The basic assumption
behind this is that models are able to detect rele-
vant contextual information. However, Kim et al.
(2019) and Li et al. (2020) find that most of the im-
provements obtained by these approaches cannot
be explained as leveraging the right context. We
suggest that it could be not a good choice to treat
contextual words equally and rely on models to
learn contextual clues in an implicit way. This is
because it is usually difficult for NMT to capture
key information from a long context through itself
(Yin et al., 2021). Hence, pinpointing semantically
or grammatically relevant context words in an ex-
plicit way is desirable for document-level NMT.

In this paper, different from the aforementioned
context modeling schemes, we model contextual
information for document-level NMT in an explicit
way via cohesion devices. Cohesion devices (e.g.,
reiteration, co-reference) are widely acknowledged
as important linguistic items that chain sentences
into cohesive discourse (Halliday and Hasan, 1976).
Moreover, the interpretation of one cohesion device
depends on the corresponding device that is paired
to it (Halliday and Hasan, 1976). Consider the
following text "Amy went to the party. She sat
with Sara.". The interpretation of the cohesion
device she is deeply related to the cohesion device
Amy. Therefore, explicitly modeling these cohesion
devices may guide document-level NMT to actively
explore contextual clues, so as to yield cohesive
translations.

Inspired by this, we propose CoDoNMT, as
shown in Fgiure 1, to explore Cohesion devices
for Document-level Neural Machine Translation.



5206

Figure 1: The diagram of CoDoNMT. We prepend the preceding three sentences to each current sentence as its
context on both the source and target side. CoDM is applied on the source side of the current sentence while CoAF
is softly used in each self-attention layer of the encoder. A masked token prediction task corresponding to CoDM
is employed as an auxiliary task to the primary translation task, where the concatenated input (source sentence
+ context) is translated into the target language. Exposure bias mitigation is applied during training: cy∗. and y∗.
indicate the predicted words in translations of the context and the current sentence, respectively.

Particularly, we present Cohesion Device Masking
(CoDM) and Cohesion Attention Focusing (CoAF)
as two essential components for CoDoNMT, in an
attempt to force NMT to explicitly predict masked
cohesion devices and to focus its attention exclu-
sively on related cohesion devices.

Cohesion Device Masking We concatenate the
previous context to the current sentence on both
the source and target side. Cohesion devices of
the current sentence on the source side are masked.
In doing so, we force NMT to actively explore
previous context to predict the masked cohesion
devices, which may teach document-level NMT to
pinpoint relevant linguistic context for translation.

Cohesion Attention Focusing As mentioned
above, in order to correctly interpret and translate
cohesion devices in the current sentence, we need
to capture their paired cohesion devices in the con-
catenated context. For this, we force NMT to pay
exclusive attention to previous cohesion clues in
the context with attention masks when translating
cohesion devices in the current sentence. In this
way, we narrow the range of context and enable the
model to evade irrelevant contextual information.

In a nutshell, our contributions are three-fold.

• We propose CoDoNMT for document-level
NMT, which explicitly explores cohesion de-
vices to capture context information.

• We introduce CoDM and CoAF in CoDoNMT
to force NMT to predict masked cohesion de-

vices with context information and to attend to
only cohesion devices in the context for trans-
lating cohesion devices in the current sentence,
respectively.

• We conduct experiments on three widely-used
datasets and a linguistic contrastive test set.
Results of both automatic and linguistic evalu-
ation demonstrate that our methods are able to
significantly improve translation quality over
previous state-of-the-art document-level NMT
models.

2 Cohesion Devices

A discourse is cohesive when sentences are prop-
erly linked by cohesion devices. From the linguis-
tic perspective, cohesion devices can be divided
into two categories: lexical cohesion devices and
grammatical cohesion devices (Halliday and Hasan,
1976). In this paper, we consider reiteration, syn-
onym and super-subordinate for lexical cohesion
devices, and co-reference for grammatical cohesion
devices. We choose these devices because they are
common and can be annotated automatically.

Reiteration: Reiteration refers to the repetition
of the same words in a discourse. This is a common
phenomenon in discourse (Church, 2000). And it
is easy to detect. Note that we exclude stop words
when detecting any type of cohesion devices.

Synonym: We use WordNet (Fellbaum, 2000) to
define synonyms, which is a large lexical database
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of English. Nouns, verbs, adjectives and adverbs
are grouped into sets of semantic groups called
synsets. We denote synset(w) as a set that in-
cludes synonyms grouped in the same synset as
word w in WordNet.

Super-subordinate: Superordinate and subor-
dinate are formed by words with an is-a semantic
relationship, such as apple and fruit (hypernym),
furniture and cupboard (hyponym), and so on. As
the super-subordinate relation is also encoded in
WordNet, we still use WordNet to detect hyper-
nyms and hyponyms. Let hypset(w) be a set that
includes both hypernyms and hyponyms in Word-
Net for word w.

Co-reference: Co-reference is a relationship be-
tween two words or phrases in which both refer to
the same person or thing and one is a linguistic an-
tecedent of the other. We use CoreNLP (Manning
et al., 2014) to parse co-reference relations between
the current sentence and its context sentences.

3 CoDoNMT

Figure 1 illustrates the diagram of the proposed
CoDoNMT, which uses the standard Transformer
(Vaswani et al., 2017) as its backbone. We prepend
the previous three sentences to the current sentence
on both the source and target side, separated by a
special token (i.e., <SEP>). We apply CoDM to the
source-side input and CoAF to the self-attention
layer of the encoder.

3.1 Cohesion Device Masking

The key of CoDM is to mask cohesion devices in
the current sentence and force the model to predict
those masked tokens using inter-sentential context.
Predicting cohesion devices might offer the model
the ability to establish cohesion links, so as to make
translation cohesive.

Obtaining Cohesion Devices We denote x as
the source side of the current sentence and cx as
the preceding context of x. |x| and |cx| denote the
length of x and cx, respectively. Correspondingly,
y indicates the target side of the current sentence
and its preceding context is cy. |y| and |cy| are the
length of y and cy, respectively.

For the ith word xi in x, we consider xi as a
lexical cohesion device if there exists a context
word that is the same as xi, or in the synset(xi) or
hypset(xi) in cx. We use CoreNLP to parse each
concatenated input to obtain co-reference links be-
tween x and cx, and refer to words occurring in

(a) Lexical Cohesion Device

(b) Grammatical Cohesion Device

Figure 2: Examples of cohesion device masking. The
same words "dog" in Figure 2(a) are reiteration devices.
"Amy" and "She" in Figure 2(b) are co-reference de-
vices.

the detected co-reference links as grammatical co-
hesion devices. We use D to denote the set of both
lexical and grammatical cohesion devices in x.

Masking Strategy We mask all cohesion de-
vices in D to explore contextual dependencies es-
tablished by these devices as many as possible. Fig-
ure 2 shows examples of CoDM.

As there are not many cohesion devices some-
times, only masking cohesion devices is not suffi-
cient. We hence use a masking ratio r as a thresh-
old to mask other words (randomly selected) in
addition to cohesion devices. The total number of
words being masked in x is ⌈|x| × r⌉ where ⌈�⌉ in-
dicates the upward rounding operation. We denote
the set of masked tokens as M and the masked ver-
sion of x as x́ where tokens in M are substituted
by a speical symbol (e.g., <M>). We concatenate
cx and x́ as the input fed into the encoder and use
the corresponding hidden states of the last encoder
layer to predict the masked tokens in M. The loss
of predicting the masked tokens is calculated as
follows:

Lmask(M|x́, cx) = −
|M|∑
i=1

logP (Mi|x́, cx) (1)

where Mi is the ith token in M and P (Mi|x́, cx)
represents the probability that the model predicts
Mi given the current sentence and its context.

3.2 Cohesion Attention Focusing
Not all information in the context is useful for trans-
lating the current sentence. We hence want to guide
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the model to attend to only cohesion devices in the
context when we translate cohesion devices in the
current sentence as they are linguistically linked to
each other. We achieve this via a cohesion attention
mask.

Constructing the Cohesion Attention Mask
We use a key-value pair (xi, lxi) to store cohesion
devices linked to xi, where lxi is a list whose ele-
ments are the cohesion devices related to xi. Specif-
ically, for xi, if the jth word cxj in cx is the same
as xi, or in the synset(xi) or hypset(xi), cxj is co-
hesively linked to xi. We hence add xi and cxj into
lcxj and lxi , respectively. Through CoreNLP, we are
able to directly obtain co-reference links between
xi and cx. For each word in each co-reference
link, we first find its corresponding cohesion de-
vice list l, and then add the remaining words in the
co-reference link to l. We denote the collection of
all key-value pairs as L.

After obtaining L, we construct a cohesion at-
tention mask M ∈ RN×N and initialize each item
with 0. N = |x|+ |xc| indicates the length of the
concatenated source input. We use L to set value
for each item in the cohesion attention mask ma-
trix. For each key-value pair (xi, lxi), we obtain
the positions of xi (pxi) and words in lxi (pw∈lxi )
in the concatenated source input. Then, at the pxi

row, we mask out all items whose column positions
are not ∈ {pw∈lxi} by setting their values to −∞.
This is similarly done for each column ∈ {pw∈lxi}.
Note that we do not mask out (inter/intra-sentential)
interactions between ordinary words that are not
cohesion devices and intra-sentential interactions
among words even when they are not cohesion
devices. We only force cohesion devices to exclu-
sively attend to cohesion devices that are linked to
them in other sentences.

Figure 3 illustrates the cohesion attention mask.
For words (e.g., "from", "home") that are not cohe-
sion devices, they can only attend to words in the
same sentence. For cohesion devices, they can at-
tend not only to their intra-sentential context words
but also to associated cohesion devices across sen-
tences.

Applying the Cohesion Attention Mask In or-
der to make the model not lose the ability to capture
important contextual information, we apply the con-
structed cohesion attention mask softly by using
a probability threshold Pm to control whether to
apply the cohesion attention mask to self-attention.
Thus the model is trained with and without the

Figure 3: An example of the cohesion attention mask.
For brevity, we omit some words in the sentence. The
complete sentence is "We were driving from our home
to a little farm . <SEP> Driving ourselves . </s>". White
positions are set to 0 while black positions are set to
−∞.

cohesion attention mask, and we assume that the
model is able to acquire the ability to capture cohe-
sion information autonomously with this training
strategy. The attention Al in l-th self-attention can
be calculate as follows.

Al =

 Softmax( QKT√
d/h

+ M) , if ε > Pm

Softmax( QKT√
d/h

) , otherwise
(2)

where the matrices Q,K represent queries and
keys in self-attention. d and h indicate the dimen-
sion of hidden states and the number of heads, re-
spectively. ε is sampled from U ∽ (0, 1). Only
when the sampled ε is larger than the threshold Pm,
the cohesion attention mask is applied.

3.3 Training

Our model performs both masking prediction and
translation in a multi-task learning fashion. Hence
the training objective of our model is composed of
the traditional negative log-likelihood (NLL) and
the masked token prediction loss Lmask.

During training, we use the ground-truth target
context (Teacher-Forcing) while we use the previ-
ously decoded output tokens as the target context
during inference. As a result, our model suffers
from exposure bias. Inspired by Zhang et al. (2019),
we mix the ground-truth words with the predicted
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words as the decoder input during training to allevi-
ate the exposure bias. We refer to a word predicted
by the model as the predicted word. For each word
in golden context sentences and current sentence,
we use the probability Po to control whether to
replace the ground-truth word with its correspond-
ing predicted word. Following Zhang et al. (2019),
we gradually decrease Po from 1 according to the
following decay function:

Po =
µ

µ+ exp (e/µ)
(3)

where µ is a hyper-parameter that controls the de-
cay rate. e is the index of training epochs starting
from 0.

For each step, the predicted words are obtained
through word-level greedy search. We denote the
mixed target context and current sentence as ćy

and ý, respectively. Thus, the NLL is reformulated
as follows:

LNLL(y|x́, cx, ćy) = −
∑
i

logP (yi|ý<i, x́, c
x, ćy)

(4)
Please note that we feed the masked version of

the current sentence into the encoder for translation
during training. In order to correctly translate to-
kens in masked positions, our model has to utilize
previous context, not only for the masked token
prediction task, but also for the translation task.

The two loss functions are integrated as follows:

L = LNLL(y|x́, cx, ćy)+λLmask(M|x́, cx) (5)

where λ is a hyper-parameter that balances the con-
tribution from the masked token prediction task.

4 Experiments

To examine the effectiveness of our proposed ap-
proaches, we carried out experiments on three
widely-used datasets and linguistic evaluation on a
contrastive test set.

4.1 Data and Settings

Following previous work (Zhang et al., 2021), we
used three datasets on two different language pairs
as the benchmark datasets, which are TED (Cettolo
et al., 2012), Opensubtitles (Maruf et al., 2018) and
Europarl7 (Maruf et al., 2018).

Dataset Language #Sentences #Documents
train/dev/test train/dev/test

TED En-De 0.2M/09k/2.2k 1.7k/7/22
Opensubtitles En-Ru 0.3M/6k/9k 23k/461/693
Europarl7 En-De 0.1M/2k/3.3k 3.6k/69/107

Table 1: Statistics of the used datasets on different lan-
guage pairs.

• TED (English-German): The corpus con-
tains transcriptions of TED talks from IWSLT
2017. Each talk is used as a document, aligned
at the sentence level. dev2010 was used as our
development set and tst2016-tst2017 for test-
ing.

• Opensubtitles (English-Russian): This cor-
pus is extracted from the OpenSubtitles2016
corpus (Maruf et al., 2018), where sentences
are segmented and aligned using additional
information.

• Europarl7 (English-German): Following
(Maruf et al., 2018), we used the same method
to preprocess the raw Europarl v7 Corpus
(Koehn, 2005) and extract the parallel coprus.

The statistics of these corpora are shown in Ta-
ble 1. We used scripts from MOSES (Koehn et al.,
2007) to tokenize and truecase sentences. We ap-
plied BPE (Sennrich et al., 2016) with 30K merge
operations for each language in the datasets. Trans-
lation quality was evaluated by BLEU (Papineni
et al., 2002). 1

We followed the same Transformer base setting
used in (Vaswani et al., 2017) and trained all mod-
els on 4 GeForce RTX 2080 Ti GPU. The dropout
was set to 0.1. The masking ratio r was set to 0.15.
The weight of the masked token predction loss λ
was set to 0.5. The probability threshold Pm was
set to 0.5. For TED, we set µ as 10. For Europarl7
and Opensubtitles, we set µ as 12. For inference,
we set the beam size to 4. The source code is avail-
able at https://github.com/codeboy311/CoDoNMT.

4.2 Baselines
We used five baselines to compare against our
model. The sentence-level baseline Sent is the stan-
dard Transformer (Vaswani et al., 2017) trained on
sentence-level parallel data. The rest four baselines
are all document-level NMT, including: 1) DocT

1We use sacrebleu to calculate BLEU score for
each dataset, and the signature of sacrebleu we used is
“BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1”.

https://github.com/codeboy311/CoDoNMT
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Model TED Opensubtitles Europarl7 AVG #Param
En-De En-Ru En-De

Sent (Vaswani et al., 2017) 24.30 19.50 30.70 24.83 50M
DocT (Zhang et al., 2018) † 25.04 20.21 30.67 25.31 72M
HAN (Miculicich et al., 2018) † 25.70 20.08 26.61 24.13 70M
CADec (Voita et al., 2019) † 26.08 19.46 30.36 25.30 91M
MHT (Zhang et al., 2021) † 26.22 20.46 31.25 25.97 80M
Our Model 26.89 21.49 32.07 26.82 50M

Table 2: Overall results on the TED, OpenSubtitles and Europarl translation tasks. †indicates that the results of
baselines are reported from corresponding papers.

Model Deixis Lexical
Cohesion

Sent (Voita et al., 2019) 50.0% 45.9%
CADec (Voita et al., 2019) 81.6% 58.1%
Concat (Voita et al., 2019) 83.5% 47.5%
Our Model 89.4% 62.3%

Table 3: Linguistic evaluation results on the contrastive
test set (accuracy).

(Zhang et al., 2018) that employs an additional
encoder for context, 2) HAN (Miculicich et al.,
2018) which integrates document contextual infor-
mation from both the source and target side through
context-aware hierarchical attention networks, 3)
CADec (Voita et al., 2019) that explores contextual
information to refine sentence-level translation, and
4) MHT (Zhang et al., 2021) that applies a multi-
hop mechanism to imitate reasoning process.

4.3 Main Results

Results on the three translation benchmarks are
shown in Table 2. As can be seen, our model
achieves the highest BLEU scores on all tasks over
both sentence- and document-level baselines. Fur-
thermore, we gain improvements of 0.67, 1.03 and
0.82 BLEU points over the strongest document-
level baseline on TED, Opensubtitles and Eu-
roparl7, respectively, using fewer parameters. This
suggests that modeling cohesion devices is able
to benefit document-level NMT and could be bet-
ter than simply integrating full context into NMT
without showing relevant context information ex-
plicitly.

4.4 Linguistic Evaluation

To further investigate whether our method is able
to improve translation cohesion, we conducted lin-

guistic evaluation on Deixis and Lexical Cohesion
using a linguistic contrastive test set (Voita et al.,
2019). These two discourse phenomena are rel-
evant to the cohesion devices that we attempt to
capture (i.e. co-reference and lexical cohesion de-
vices) in our model.

To make a fair comparison, we follow Voita
et al. (2019) to use 6M sentence-level instances
to train the sentence-level baseline and then
use 1.5M document-level instances to train our
document-level model. Results are shown in Table
3. Our model achieves significant improvements
on Deixis and Lexical Cohesion compared with
sentence-level baseline Sent (Voita et al., 2019)
and document-level baselines CADec (Voita et al.,
2019) and Concat (Voita et al., 2019). This indi-
cates that our model can make better use of context
to deal with discourse phenomena.

4.5 Ablation Study

In order to take a deep look into the improvements
gained by our model, we further conducted abla-
tion study to investigate the contributions of the
three components in our model: 1) cohesion de-
vice masking, 2) cohesion attention focusing and
3) exposure bias mitigation introduced in Section
3.3. Results are shown in Table 4. Without us-
ing cohesion device masking, CoDoNMT drops
by 0.58, 0.62 and 0.55 BLEU on TED, Opensubti-
tles and Europarl7, respectively. This demonstrates
that forcing the model to predict masked cohesion
devices is beneficial for document-level NMT. Sim-
ilarly, without using the other two techniques, we
also see performance drops of 0.2 BLEU for the
exposure bias mitigation, 0.34 BLEU for cohesion
attention focusing. These results validate the effec-
tiveness of the three methods used in CoDoNMT.
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Ablation TED Opensubtitles Europarl7 AVG
BLEU ∆ BLEU ∆ BLEU ∆ BLEU ∆

Our 26.89 - 21.49 - 32.07 - 26.82 -
w/o Exposure Bias Mitigation 26.60 -0.29 21.38 -0.11 31.86 -0.21 26.62 -0.20
w/o CoAF 26.53 -0.36 21.16 -0.33 31.75 -0.32 26.48 -0.34
w/o CoDM 26.31 -0.58 20.87 -0.62 31.52 -0.55 26.23 -0.59

Table 4: Ablation study results.

Cohesion
Device TED Opensubtitles Europarl7 AVG Deixis Lexical

Cohesion
Lexical 26.58 21.24 31.99 26.60 84.1% 60.3%
Grammatical 26.64 21.21 31.86 26.57 87.4% 58.2%
Both 26.89 21.49 32.07 26.82 89.4% 62.3%

Table 5: Impact of different cohesion types modeled on translation quality on the TED, Opensubtitles and Europarl7
translation tasks (BLEU) and the constrastive test set (accuracy). "Lexical" and "Grammatical" denote the lexical
and grammatical cohesion devices.

5 Analysis

In this section, we analyzed three factors to exam-
ine their impact on the performance of the proposed
model, including: 1) cohesion device type, 2) mask-
ing strategy, 3) cohesion attention mask.

5.1 Cohesion Device Type
In CoDoNMT, we take into account both lexical
and grammatical cohesion devices. To further un-
derstand the effect of the type of cohesion devices
on the model performance, we conducted experi-
ments to model them separately during training.

Results on TED, Opensubtitles and Europarl7
are shown in Table 5. As can be seen, when
we model both lexical and grammatical cohesion
devices, CoDoNMT achieves the highest BLEU
scores over the three translation tasks. This indi-
cates that considering both lexical and grammatical
cohesion devices is more beneficial to document-
level NMT than only modeling one type of cohe-
sion devices.

The performance differences of "Lexical" and
"Grammatical" on the three translation tasks in
terms of BLEU are slight. We conjecture that it
may be because BLEU is not a good metric for
discourse phenomena (Xu et al., 2020a). There-
fore, we performed another linguistic evaluation
(Voita et al., 2019). As shown in Table 5, "Both"
continues to achieve the best performance on the
two discourse phenomena. This again suggests that
considering both lexical and grammatical cohesion
devices are more helpful for the model to deal with
discourse phenomena. In addition, the results of

different types of cohesion devices demonstrate
that modeling the corresponding type of cohesion
devices can better solve discourse phenomenon
relevant to these devices. In other words, lexical
cohesion devices can better solve Lexical Cohesion
than grammatical cohesion devices, but it is the
other way around on Deixis.

5.2 Masking Strategy

Due to the scarcity of cohesion devices, we mask
not only cohesion devices, but also a part of re-
maining tokens of the current sentence randomly.
In other words, if the current sentence does not
include any cohesion devices, CoDM degenerates
to random masking. In order to investigate the ef-
fect of masking cohesion devices against randomly
masking tokens, we conducted experiments to com-
pare our masking strategy with the random masking
strategy. We mask both lexical and grammatical co-
hesion devices in CoDM. For the random masking,
we randomly mask a set of tokens in the current
sentence according to the masking ratio r. Note
that we do not apply CoAF in this analysis for a fair
comparison as CoAF may further improve CoDM.

As shown in Table 6, in terms of BLEU, the dif-
ferences between the two masking strategies are
marginal. However, on the linguistic test, CoDM
significantly outperforms Random on both linguis-
tic phenomena. This suggests that predicting co-
hesion devices could be more efficient to produce
document cohesion than predicting other words and
reconfirms that BLEU is not sensitive on discourse
phenomena (Xu et al., 2020a).
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Masking
Strategy TED Opensubtitles Europarl7 AVG Deixis Lexical

Cohesion
CoDM 26.53 21.16 31.75 26.48 83.40% 55.70%
Random 26.48 21.26 31.67 26.47 79.08% 46.20%

Table 6: Comparison on masking strategies on the TED, Opensubtitles and Europarl7 translation tasks (BLEU) and
the constrastive test set (accuracy). "Random" denotes the random masking strategy that randomly masks a subset
of tokens in the current sentence according to the masking ratio r.

Figure 4: Impact of the probability threshold Pm on the TED, Opensubtitles and Europarl7 translation tasks.

5.3 Cohesion Attention Mask

As shown in Figure 4, we conducted experiments
with different probability threshold Pm to explore
its effect. As can be seen, when Pm is 0.5, our
model achieves the best BLEU score over the three
translation tasks. Furthermore, if we rigidly focus
the model on cohesion devices (i.e., Pm = 0.0, ap-
plying the cohesion attention mask in a hard way),
the model performance drops significantly. This
suggests that a soft application of the cohesion at-
tention mask allows the model to gain the ability
to capture cohesion information and maintain the
ability to explore other important contextual infor-
mation.

5.4 Case Study

To better illustrate how our model improves trans-
lation quality, we provide an example of Deixis
from the linguistic contrastive test set in Table
7, which is translated by both the document-level
baseline Concate and our model. The document-
level baseline Concate is a standard Transformer.
We trained Concate on the document-level cor-
pus where the current sentence is concatenated to
its corresponding previous context by a special
token (e.g., <SEP>) on both source- and target-
side. As shown in Table 7, according to the transla-
tion "tvo�" in previous context, the word "you" in
"Maybe you know." should be translated into "ty",
instead of "vy". Obviously, Concate fails to cap-
ture the co-reference information, while our model

is able to translate the word correctly.

6 Related Work

Document-level NMT aims to improve translation
quality with the aid of contextual information be-
yond the scope of current sentences. Most pre-
vious works focus on the integration of the inter-
sentential context into NMT. One typical approach
is introducing an addtional encoder to encode con-
text, and then integrate the context representation
into the primary encoder and/or the decoder (Zhang
et al., 2018; Voita et al., 2018; Kuang and Xiong,
2018; Xu et al., 2020a; Zheng et al., 2020). Miculi-
cich et al. (2018) propose a hierarchical attention
model to capture the contextual information from
both word and sentence level. Tan et al. (2019) pro-
pose a hierarchical model to learn global context for
document-level NMT. Voita et al. (2019) introduce
a two-pass framework that uses several previous
sentences as context to refine the translation gener-
ated by a strong sentence-level NMT. Zhang et al.
(2021) apply a multi-hop mechanism to document-
level NMT to simulate the human-like draft-editing
and reasoning process. Liu et al. (2020), Ma et al.
(2020) and Bao et al. (2021) combine pre-trained
models with document-level NMT. Zhang et al.
(2020) pretrain a source context prediction model
on a large-scale monolingual document corpus to
learn contextualized sentence embeddings.

Yet another research strand is to focus on context
selection. Maruf and Haffari (2018), Kuang et al.
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Source

cx

cx

cx

x

Like your boss said, might get you killed.
Well, that’s what I keep hearing.
Nobody wants to share this dangerous entity’s idea with me.
Maybe you know.

Reference

cx

cx

cx

x

Kak skazal tvo� boss, �to mo�et konqit~s� tvoe� smert~�.

Qto �, � �to � slyxu vse vrem�.

Nikto ne hoqet delit~s� so mno� liqnost~� to� opasno� suwnosti.

Mo�et, ty znaex~.

Concate

cx

cx

cx

x

Kak skazal tvo� boss, mo�et ubit~ teb�.

Nu, �to to, qto � prodol�a� slyxat~.

Nikto ne hoqet delit~s� so mno� idee� �to� opasno� suwnosti.

Mo�et byt~, vy znaete.

Our Model

cx

cx

cx

x

Kak skazal tvo� boss, teb� mogut ubit~.

nu, �to to, qto � vsegda slyxal.

nikto ne hoqet delit~s� so mno� mysl�mi ob �to� opasno� suwnosti.

mo�et byt~, ty znaex~.

Table 7: An example of Deixis translation in English-Russian. x and cx denote the current sentence and its
corresponding previous context, respectively. Blue words indicate the correct translations, while red words are the
opposite.

(2018) and Tu et al. (2018) use a cache-like mem-
ory network to memorize the translation history,
and treat it as context to translate future sentences.
Maruf et al. (2019) uses sparse attention to selec-
tively focus on relevant sentences in the document
context. Kang et al. (2020) adopt reinforcement
learning to select dynamic context for document-
level NMT.

Recently, approaches have been proposed to
leverage discourse information. Xu et al. (2020b)
build directed graphs of documents with intra-
sentential and inter-sentential relations and use
GCN to obtain the document representation. Lyu
et al. (2021) use word links to encourage the model
to generate more consistent translations.

Different from the above works, we attempt to
leverage cohesion devices to enhance the ability of
model to capture inter-sentential contextual infor-
mation to generate cohesive translations.

7 Conclusion

In this paper, we have presented CoDoNMT for
document-level NMT, which models cohesion de-
vices with two key methods, CoDM and CoAF.
CoDM masks cohesion devices in the current sen-
tence to force the model to actively explore inter-
sentential contextual information. CoAF softly
guides the model to focus attention on cohesion
devices. Both automatic and linguistic evalua-
tions show that our model can significantly im-

prove translation quality in terms of BLEU and
lexical and grammatical cohesion accuracy on a
discourse-oriented contrastive test set. Further anal-
yses demonstrate the impact of cohesion device
type and masking strategy on translation quality.

8 Acknowledgement

The present research was supported by the Key
Research and Development Program of Yunnan
Province (Grant No. 202203AA080004-2). We
would like to thank the anonymous reviewers for
their insightful comments.

References
Guangsheng Bao, Yue Zhang, Zhiyang Teng, Boxing

Chen, and Weihua Luo. 2021. G-Transformer for
Document-Level Machine Translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3442–3455, Online.
Association for Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th
Annual conference of the European Association for
Machine Translation, pages 261–268, Trento, Italy.
European Association for Machine Translation.

Kenneth W. Church. 2000. Empirical Estimates of
Adaptation: The Chance of Two Noriegas is Closer
to p/2 than p2. In COLING 2000 Volume 1: The 18th

https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/2021.acl-long.267
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/C00-1027
https://aclanthology.org/C00-1027
https://aclanthology.org/C00-1027


5214

International Conference on Computational Linguis-
tics.

Christiane D. Fellbaum. 2000. WordNet : an Electronic
Lexical Database. Language, 76:706.

Michael A.K. Halliday and Ruqaiya Hasan. 1976. Co-
hesion in English. Routledge.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Federmann,
Xuedong Huang, Marcin Junczys-Dowmunt, William
Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo,
Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei
Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dong-
dong Zhang, Zhirui Zhang, and Ming Zhou. 2018.
Achieving Human Parity on Automatic Chinese to
English News Translation. CoRR, abs/1803.05567.

Xiaomian Kang, Yang Zhao, Jiajun Zhang, and
Chengqing Zong. 2020. Dynamic Context Selec-
tion for Document-level Neural Machine Translation
via Reinforcement Learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2242–2254,
Online. Association for Computational Linguistics.

Yunsu Kim, Duc Thanh Tran, and Hermann Ney. 2019.
When and Why is Document-level Context Useful
in Neural Machine Translation? In Proceedings of
the Fourth Workshop on Discourse in Machine Trans-
lation (DiscoMT 2019), pages 24–34, Hong Kong,
China. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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