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Abstract

We examine the inducement of rare but severe
errors in English-Chinese and Chinese-English
in-domain neural machine translation by mini-
mal deletion of the source text with character-
based models. By deleting a single character,
we can induce severe translation errors. We
categorize these errors and compare the results
of deleting single characters and single words.
We also examine the effect of training data size
on the number and types of pathological cases
induced by these minimal perturbations, find-
ing significant variation. We find that deleting a
word hurts overall translation score more than
deleting a character, but certain errors are more
likely to occur when deleting characters, with
language direction also influencing the effect.

1 Introduction

Pathological machine translation (MT) errors have
been a problem since the field’s inception, and they
have been analyzed and categorized in the context
of both statistical (SMT) and neural machine trans-
lation (NMT). Recent work examines pathologies
in NLP models on classification problems: cases
in which the models make wildly inaccurate pre-
dictions, often confidently, when input tokens are
removed (Feng et al., 2018). Identifying these en-
riches our understanding of neural models and their
points of failure. MT pathologies take the form of
severe translation errors, the worst being halluci-
nations (Lee et al., 2019). These rare errors are
difficult to study precisely because they are rare.
In this paper, we examine severe errors induced
by minimal deletions by automatically extracting
translations with severe errors and manually cate-
gorizing them.

Previous work taxonomizes SMT errors (Vilar
et al., 2006) and analyzes their effects on trans-
lation quality (Federico et al., 2014). More re-
cently, Guerreiro et al. (2022) propose a taxonomy
of MT pathologies, of which hallucinations are a

category.1 They note the shortcomings of current
automatic detection methods, e.g., those based on
quality estimation and heuristics, and look for crit-
ical errors in naturalistic settings. They also pro-
pose DEHALLUCINATOR, which flags problematic
translations and replaces them with re-ranking.

Other work on Chinese-English (Zh-En) SMT ex-
amines tense errors caused by incorrectly translat-
ing了 (le) (Liu et al., 2011) and syntactic failures
caused by 的 (de). More recent work uses input
perturbation to argue that NMT models, including
those based on transformers (Vaswani et al., 2017),
are brittle: Belinkov and Bisk (2018) examine the
effect on NMT systems of several kinds of random-
ized perturbations by adding tokens, and Niu et al.
(2020) study subword regularization to increase
robustness to randomized perturbations. Raunak
et al. (2021) argue that memorized training exam-
ples are more likely to hallucinate, and Voita et al.
(2020) examine the contribution of source and tar-
get tokens to errors. Also related, Sun et al. (2020)
suggest that BERT is less robust to misspellings
than other kinds of noise, which can occur natural-
istically or through other errors (e.g., encoding).

While we expect targeted adversarial examples—
those explicitly designed to cause a system to
fail (Jia and Liang, 2017; Ebrahimi et al., 2018)—
to cause serious errors, we focus on the ostensibly
more benign case of in-domain En↔Zh NMT with
minimal deletions. Adding valid words introduces
distractors with which the MT system must cope,
while deleting words more often removes informa-
tion without explicitly introducing lexical distrac-
tors. Both are noise, but the latter is more naturally
framed as requiring recovery from missing infor-
mation, while the former introduces irrelevant and
misleading information. At the character level, this
distinction is less clear, since both adding and re-

1Guerreiro et al. (2022) note that the term “hallucination”
is overloaded and inconsistent; for this reason, we generally
avoid the use of this term here.
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moving characters requires that the model translate
despite unseen input substrings—minimally cor-
rupted inputs. Are minimal word or character cor-
ruptions more harmful to a purely character-based
NMT model? The answer is not obvious.

While most prior work examines western Euro-
pean languages, we examine translation between
Chinese and English, building upon work identify-
ing errors by observing change in BLEU (Papineni
et al., 2002) after perturbation (Lee et al., 2019).
But in contrast this prior work, which adds tokens,
we focus exclusively on single deletions to examine
minimal conditions—i.e., a missing character or
word, as in a typo or corruption—under which se-
vere errors are newly induced. For our purposes, a
severe error leads to a translation in which the orig-
inal meaning is unrecoverable, but there are others,
as well (Vilar et al., 2006). For our purposes, we
use WORD CHANGING to cover these cases.

2 Finding Candidates

We now describe the training of our NMT model,
method for extracting severe error candidates
(enumerations), and the results of this extraction.
For our extraction experiments, we begin by exam-
ining character deletion before repeating the same
experiments with word deletion. All experiments
are done in both directions and for two different
training data sizes (1M and 10M sentences), allow-
ing us to observe the effect of training data size,
translation direction, and deletion type.

2.1 Data and Models

We train character-based En↔Zh models on the
UN Parallel Corpus 1.0 (Ziemski et al., 2016) of
sentence-aligned UN parliamentary documents.

We train two models in each direction with Sock-
eye 2 (Hieber et al., 2020)—the first on the first
1M sentences and the second on 10M—to observe
the effect of training data size on severe errors. We
use the final 8,041 sentences as validation and test
data; the first 2,000 are test data.2

2We use a six-layer transformer with eight attention heads
and a feed-forward network of 2,048 hidden units, trained on
one 16GB Quadro P5000. Batch size is 256 and learning rate
is .0002, reduced by a factor of .9 after 8 unimproving check-
points. Training ceases when validation perplexity quiesces
for 20 checkpoints of 4,000 updates. While BPE has been
shown to have higher BLEU on several datasets, this is not
always the case (Cherry et al., 2018), and it can sometimes
cause anomalies in translation itself (Ataman et al., 2017;
Huck et al., 2017). We want to analyze the effect of deletion
under simple conditions without this added complexity.

      Characters Removed

Figure 1: Zh-En BLEU as function of characters re-
moved on valid sentences with 95% confidence inter-
vals. There is a linear relationship, with average BLEU
converging as more tokens are removed.

2.2 Identifying Error Candidates

On translated test sentences, if sentence-level BLEU

is above 0.5, the translation is considered valid.3

We translate valid sentences with one token miss-
ing, exhaustively trying every possible deleted to-
ken in every sentence. Perturbed sentences’ transla-
tions are called enumerations. If an enumeration’s
sentence-level BLEU is less than .1, it is a candi-
date error, as these precipitous drops are outliers in
the linear decline in BLEU as tokens are removed
(Figure 1). For a more detailed specification of
this process, see Algorithm 1, which is written for
clarity rather than efficiency.4

3 Experiments and Results

We now discuss our experiments and the results of
our enumeration extraction and the errors contained
therein. All results are summarized in Table 2, with
results on the same 2,000 test sentences.

3.1 Error Categorization

We manually categorize errors into four types in our
analysis: WORD CHANGING, INABILITY, MISSING

PARTS, and IRRELEVANT. Examples and descrip-
tions are in Table 1.5 What they have in common is

3We choose this because it is well above average BLEU for
all models, resulting in an enumeration set with high average
BLEU (Table 2), and few perturbed sentences reach this score
(Figure 1).

4Code is hosted on GitHub.
5MISSING PARTS differs from INABILITY in that what

is translated for MISSING PARTS is correct. IRRELEVANT
translations are readable but unrelated to the source, while

https://github.com/Shadoom7/HALLUCINATION_Research


5177

Error Type Example Description

WORD CHANGING Source: Occupational health and occupational risks.
Perturbed Source: Occupational heath and occupational risks
Reference: 职业

zhíyè
occupational

健康
jiànkāng
health

与
yǔ
and

职业
zhíyè
occupational

风险
fēngxiǎn
risks

Translation: 职业
zhíyè
occupational

道德
dàodé
ethics

和
hé
with

职业
zhíyè
occupational

危险
wéixiǎn
dangers

The model only mis-
translates the perturbed
word, leading to a sim-
ple error in which health
has been swapped with
the unrelated word
ethics (which is also
orthographically distant
in the source text).

INABILITY Source : Christian Peace Action Groups.
Perturbed Source: Christian PeaceAction Groups.
Reference: 基督教

jı̄dūjiào
Christian

和平
hépíng
Peace

行动
xíngdòng
Action

组织
zǔzhı̄
Groups

Translation: Christian Peaction Groups

Instead of outputting
Chinese, the model
copies English char-
acters, including the
nonsense word Peac-
tion.

MISSING PARTS Source: Residential institutions: services for children.
Perturbed Source: esidential institutions: services for children.
Reference: 寄宿

jìsù
Residential

机构
jı̄gòu
institutions

：
:
:

为
wèi
for

儿童
értóng
children

提供
tígōng
provide

服务
fúwù
services

Translation: 对
duì
for

儿童
er tóng
children

的
de
‘de’

服务
fúwù
services

Only some of the text
is translated. In this ex-
ample, though the trans-
lation is interpretable,
a substantial portion of
the text is entirely un-
translated.

IRRELEVANT Source: Maternal breastfeeding.
Perturbed Source: aternal breastfeeding.
Reference: 母乳

mǔrǔ
maternal

喂养
wèiyǎng
breastfeeding

Translation: 联合国
liánhéguó
UN

维持
wéichí
keep

和平
hépíng
peace

行动
xíngdòng
operation

经费
jı̄ngfèi
funding

的
de
‘de’

筹措
chóucuò
raise

This output is entirely
hallucinated and has no
apparent relationship to
the input.

Table 1: Examples and descriptions of triggers and error types found in low-scoring enumerations.

that the original meaning is unrecoverable, though
simple WORD CHANGING is not considered a pri-
ori severe in our analysis.

3.2 En-Zh 1M Training Sentence Results
There are 96 candidate severe errors among 14,722
enumerations: ten INABILITY, three IRRELEVANT

and five MISSING PARTS. The rest are WORD

CHANGING. We have 18 errors (.12%). 6

One possible reason for these errors is that the
model has insufficient training data to generalize.
We investigate by training on ten times the data.

INABILITY indicates a failure to generate readable output. It
is possible in principle to have many types of errors in one
bad translation, but we did not observe this.

6We also try removing sentences with English characters
on the Chinese side, leaving 831,941 sentences on which to
train. Translating these yields no INABILITY errors and leaves
BLEU largely unchanged, suggesting that the untranslated
named entities in the training data indeed cause INABILITY.
There are three MISSING PARTS and two IRRELEVANT out of
63 potential hallucinations. Test BLEU is largely unchanged,
and valid BLEU decreases only slightly.

3.3 En-Zh Model Trained on 10M Sentences

We use the same corpus and architecture but use
the first 10M instead of 1M parallel sentences to
train (En-Zh-10M). Validation perplexity is nearly
halved to 6.0 vs. the 1M model’s 11.5 Likewise,
BLEU on the test data increases by .08 to .4 (Ta-
ble 2), as expected. Unexpectedly, BLEU on enu-
merations drops by .16 with more training data,
much more than the .11 drop with 1M training
sentences, suggesting more training data counterin-
tuitively increases sensitivity to minimal character
deletions, despite initial BLEU being higher.

There are 119 candidates among the 30,079 enu-
merations: 33 INABILITY and no MISSING PARTS

or IRRELEVANT, giving a 0.11% probability of
severe errors, approximately the same as the 1M
model (0.12%).

The distribution of error types differs consid-
erably when training on more data: INABILITY

errors triple. We find that this is due to untranslated
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Model BLEU Deletion Valid BLEU
(Valid) Enum. BLEU

(Enum.) ∆BLEU In. MP Irr. Total Errors

En-Zh-1M .32 Char 351 .77 14,722 .66 -.11 (-14.2%) 10 5 3 18 (0.12%)
En-Zh-10M .40 Char 506 .80 30,079 .64 -.16 (-20.0%) 33 0 0 33 (0.11%)
Zh-En-1M .39 Char 602 .73 11,093 .62 -.11 (-15.0%) 0 5 1 6 (0.05%)
Zh-En-10M .42 Char 714 .78 14,031 .67 -.11 (-14.1%) 0 1 0 1 (0.007%)
En-Zh-1M .32 Word 351 .77 2,521 .48 -.29 (-37.6%) 3 0 5 8 (0.32%)
En-Zh-10M .40 Word 506 .80 4,945 .54 -.26 (-32.5%) 7 0 2 9 (0.18%)
Zh-En-1M .39 Word 602 .74 6,666 .54 -.20 (-27.0%) 0 2 6 8 (0.12%)
Zh-En-10M .42 Word 724 .78 8,461 .58 -.20 (-25.6%) 0 1 9 10 (0.11%)

Table 2: Results of candidate extraction for minimal deletion, BLEU for each extracted set of sentences, and error
statistics in models, broken down into INABILITY (In.), MISSING PARTS (MP), and IRRELEVANT (Irr.). Valid
sentences with BLEU > 0.5 are extracted to create minimally perturbed enumerations; from these candidates, bad
translations are extracted based on BLEU decline post-perturbation (∆BLEU). Despite character deletion introducing
nonsense words into the input, word removal causes more of these severe errors. Surprisingly, despite Chinese
characters containing more information, English deletion causes substantially higher decline in BLEU.

words in the training data, all of which are named
entities.7 Since more training data contains more
untranslated named entities, INABILITY is more
likely in models trained on more data. We there-
fore train a model on the data where no English
appears in the references.

3.4 Zh-En Experiments

We examine Zh-En MT under the same character
deletion conditions as En-Zh. Since Chinese char-
acters contain more information than English let-
ters, we expect greater sensitivity to deletions on
Zh-En, but we do not find this (Table 2). Perturb-
ing En-Zh leads to consistently steeper declines in
BLEU, as seen in the valid vs. enumeration scores.

On the Zh-En model trained on 1M sentences,
BLEU drops by .11, from .73 for the 602 sentences
to .62 for the enumerations, whereas when trained
on 10M sentences, we have .67 BLEU on enumer-
ations, which is higher than that of the smaller
model. This is, notably, the opposite of the En-Zh
results, where more data decreased enumeration
BLEU. Both Zh-En experiments decrease by .11
BLEU on enumerations, suggesting that the model
with more training data is similarly robust to this
perturbation as the smaller model, unlike the En-
Zh case, in which the model trained on more data
is more sensitive to character perturbations. As
before, training models with more data decreases
Zh-En errors: on Zh-En model trained on 1M sen-

7By convention, sometimes named entities from English
are not translated into Chinese. Ugawa et al. (2018) attempted
to improve NMT with named entity tags to better handle
compound and ambiguous words, and other previous work
showed that contamination by another language (Khayrallah
and Koehn, 2018) and copies of source sentences in the target
training data can degrade NMT performance.

tences, we have 1 IRRELEVANT and 5 MISSING

PARTS (.05%) errors, while on when trained on10M
sentences, we have 1 MISSING PARTS (.007%). The
remaining errors are WORD CHANGING.

There are no INABILITY errors in the two Zh-En
experiments, which accords with the results from
En-Zh, suggesting that INABILITY is due to the
untranslated words in the training data. Since there
are no untranslated Chinese words on the English
side in the training data, we expect no INABILITY

for a Zh-En model.

3.5 Minimal Word Deletion
We now examine word deletion as a basis of com-
parison. Does the character NMT model better han-
dle the corrupted words caused by minimal char-
acter deletion, or is it more robust to whole word
deletion, which leaves coherent words but removes
more characters?8 We find that, in all cases, delet-
ing words leads to substantially lower BLEU than
deleting characters, and though still rare, confirmed
severe error rates also increase.

For En-Zh trained on 1M sentences, for instance,
BLEU for enumerations drops to 0.48 in comparison
to 0.66 when deleting characters, and these stark
differences in BLEU persist.

On En-Zh trained on 1M sentences, we have 3
INABILITY and 5 IRRELEVANT (.32% severe er-
rors). As expected, error rate increases consider-
ably vs. character removal (.12%).

On En-Zh trained on 10M sentences, we have
7 INABILITY and 2 IRRELEVANT. .18% of 4,945
enumerations are severe errors, also more likely
than with character deletion.

8We use THULAC (Sun et al., 2016) fast for Chinese
tokenization.
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Algorithm 1 Algorithm for Finding Candidates.
We describe the logic in three distinct steps for
clarity, though there is obvious potential for opti-
mization.
1: function RUN(test_sents)
2: valid← find_valid(test_sents)

. Find valid sentences with BLEU ≥ 0.5.
3: generate_enumerations(valid)

. Iterate over every character in every
valid sentence and try removing one
character at a time. These perturbed sen-
tences are enumerations.

4: candidates← find_candidates(valid)
. Keep the enumerations that have

sentence-level BLEU ≤ 0.1. We then
manually identify those with actual se-
vere errors and categorize them.

5: end function
1: function FIND_VALID(test_sentences)
2: for each sentence s in test_sentences do
3: s.bleu← bleu(s)
4: if s.bleu ≥ 0.5 then
5: valid.add(s)
6: end if
7: end for
8: return valid
9: end function
1: function GENERATE_ENUMERATIONS(valid)
2: for each valid sentence s in valid do
3: for each char index i in s do
4: enum← s.delete_char(i)
5: s.enums.add(enum)
6: end for
7: end for
8: end function
1: function FIND_CANDIDATES(valid)
2: for each sentence s in valid do
3: for each enum in s.enums do
4: new_bleu ← bleu(enum)
5: if new_bleu ≤ 0.1 then
6: candidates.add(enum)
7: end if
8: end for
9: end for

10: return candidates
11: end function

As with character deletion, increasing training
size increases INABILITY errors but decreases over-
all error probability. There are no MISSING PARTS

errors when deleting words on En-Zh.

3.6 Summary

We see substantial variation in errors, depending
on the kind of deletion and translation direction,
with INABILITY occurring exclusively on En-Zh.
We expect more BLEU decline on Zh-En, since
Chinese characters contain more semantic content
and source sentences are shorter, but we find the
opposite of this with word deletion. We also find
that while the models are more sensitive to word
deletion in terms of overall BLEU, this does not

lead to drastic increases in severe errors, suggest-
ing that these severe errors are unrelated to typical
MT errors, in line with arguments that hallucina-
tions should be considered separately from the typ-
ical MT errors (Guerreiro et al., 2022), due to the
unique patterns of heuristic-based methods when
attempting to detect them.

4 Conclusion and Future Work

We examine the effect of minimal deletions on
rare but severe MT errors on Chinese and English,
using outlier changes in BLEU after deletion to find
candidates.

We find that the error rate for the model with a
larger dataset is always lower, suggesting more data
can improve models’ performance against severe
errors. Removing single words is more likely to
cause severe errors but less likely to cause MISSING

PARTS in our models, despite character deletion in-
troducing invalid words. On En→Zh, we observe
none when removing words. With the important
caveat that these errors are already rare, limiting
the conclusions we can make, this may suggest that
Zh↔En models are better able to recover when
characters are missing, even if the substrings them-
selves have never been observed, despite not having
been trained with such noise. This is not obvious
for a character-based model. Nor is it obvious that
Zh→En models will be more robust to perturba-
tions than En→Zh, but this is what we find, espe-
cially for words, perhaps because English words
are simply longer. Furthermore, that ∆BLEU is not
predictive of significantly more severe errors sug-
gests that these errors are a different phenomenon
from typical MT shortcomings.

Further research is needed to determine the ef-
fect various variables on robustness with targeted
probes; future work can also determine how find-
ings generalize across more language pairs (po-
tentially typologies), tokenization schemes, and
architectures. Training models with missing source
words may increase robustness. For detection, un-
usually large disparities in length between source
and target could signal INABILITY or MISSING

PARTS errors, and vocabulary or semantic distance
checks could flag bad translations (e.g., WORD

CHANGING, INABILITY). It would also be instruc-
tive to examine the extent to which NMT robustness
to noise mirrors that of humans.
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