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Abstract

Back-translation (BT) has been proven to be
effective in unsupervised domain adaptation of
neural machine translation (NMT). However,
the existing back-translation methods mainly
improve domain adaptability by generating
in-domain pseudo-parallel data that contains
sentence-structural knowledge, paying less at-
tention to the in-domain lexical knowledge,
which may lead to poor translation of unseen
in-domain words. In this paper, we propose an
Iterative Constrained Back-Translation ICBT)
method to incorporate in-domain lexical knowl-
edge on the basis of BT for unsupervised do-
main adaptation of NMT. Specifically, we ap-
ply lexical constraints into back-translation to
generate pseudo-parallel data with in-domain
lexical knowledge, and then perform round-trip
iterations to incorporate more lexical knowl-
edge. Based on this, we further explore sam-
pling strategies of constrained words in ICBT
to introduce more targeted lexical knowledge,
via domain specificity and confidence estima-
tion. Experimental results on four domains
show that our approach achieves state-of-the-
art results, improving the BLEU score by up
to 3.08 compared to the strongest baseline,
which demonstrates the effectiveness of our
approach. The codes and models are pub-
licly available at https://github.com/
zzzxiaohong/ICBT.

1 Introduction

Neural machine translation (NMT) has made break-
throughs in resource-rich domains (Bahdanau et al.,
2015; Vaswani et al., 2017), which requires abun-
dant in-domain parallel data (Koehn and Knowles,
2017). Unfortunately, there is no enough paral-
lel data for many domains, while the monolingual
corpus is much easier to obtain. Therefore, unsu-
pervised domain adaptation of NMT, which aims
to improve in-domain translation through out-of-
domain parallel corpus and in-domain monolingual

*Yufeng Chen is the corresponding author.

specifying the hong kong abundance com-
pany limited as a public unit in hong kong.

Translated source sentence
specifying the hong kong mortgage securi-
ties limited as a public sector in hong kong.

Target sentence with constraint Translated source sentence

Figure 1: An example of the English-Chinese trans-
lation task to illustrate the effect of constrained back-
translation (CBT) compared to back-translation (BT).
The red fonts indicate the ground truth of the term, and
the blue fonts show incorrect translation.

corpus (Chu and Wang, 2018), has been extensively
researched in recent literatures (Gulcehre et al.,
2015; Sennrich et al., 2016a; Dou et al., 2019a).

Among the existing techniques for unsupervised
domain adaptation of NMT, the data-based ones are
a significant part (Chu and Wang, 2018), which usu-
ally use the in-domain monolingual corpus to build
pseudo-parallel data, and then use the synthetic
data to fine-tune the pre-trained NMT model (Cur-
rey et al., 2017; Hu et al., 2019). Back-translation
(BT) (Sennrich et al., 2016a) is one of the most
basic data-based approaches. A series of studies on
improving BT have emerged in recent years. For
example, Wang et al. (2019) make better use of
the back-translated synthetic data by introducing
confidence estimation. Hoang et al. (2018) design
iterative BT through iterations of forward and back-
ward translation models to improve the translation
quality of single-round BT. And some work further
optimizes the iterative BT by filtering or selecting
the data (Dou et al., 2020; Kumari et al., 2021).
Although the above methods are proven to be effec-
tive, they only focus on reinforcing the sentence-
structural knowledge provided by BT when build-
ing pseudo-parallel data, which pay less attention
to in-domain lexical knowledge.

Daumé III and Jagarlamudi (2011) point out that
the mistranslation of unseen (out-of-vocabulary)
words accounts for a large proportion when trans-
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ferring to a new domain. As we all know that
a dictionary is a necessary aid to translate new
words properly, so it is important to introduce in-
domain lexical knowledge when generating pseudo-
parallel data. However, the existing BT-based meth-
ods also suffer from the problem of domain shift,
which leads to inaccurate translation of unseen in-
domain words. Take Figure 1 as an example, BT
incorrectly translates “4%4§ (mortgage)” to “abun-
dance”, which fails to introduce the lexical knowl-
edge “#%48-mortgage” to the pseudo-parallel data.

Aiming at the above issue, this paper focuses on
introducing lexical knowledge into pseudo-parallel
data from BT, and proposes a novel method named
Iterative Constrained Back-Translation (ICBT).
Specifically, assuming that in-domain monolingual
data on both source and target sides can be ob-
tained, we firstly impose lexical constraints (by
word replacement, as shown in Figure 1) on tar-
get data for the inference of back-translation. The
constrained words will be forced to translate, so
that the lexical knowledge is introduced. Then,
we utilize round-trip iterations to incorporate more
lexical knowledge into the pseudo-parallel data.

To exert more targeted constraints on BT, we
further propose two sampling strategies, one is to
select domain-specific words by domain difference,
and the other is to select poorly translated words in
BT by confidence estimation. During our BT pro-
cess, we preferentially constrain these two types of
words, so that more significant lexical knowledge
can be incorporated.

The main contributions of this paper can be sum-
marized as follows:

* We are the first to apply lexical constraints
to BT, and propose an Iterative Constrained
Back-Translation (ICBT) method to improve
the unsupervised domain adaptation of NMT.

* To create more targeted lexical constraints,
we propose two strategies for sampling con-
strained words, via domain specificity and
confidence estimation. Experiments show that
the two strategies are complementary.

* We conduct experiments on four domains
of the English-Chinese public datasets. The
experimental results show that our method
claimed improvement in all domains, with
a maximum of +8.45 BLEU scores over the
strongest baseline and a maximum of +32.33

BLEU scores over the unadapted model. Be-
sides, the translation accuracy of in-domain
lexicons is improved by up to 7.99%.

2 Related Work
2.1 Supervised Domain Adaptation of NMT

If a small number of in-domain parallel data can
be obtained, the domain adaptation of NMT can
be performed in a supervised manner. The easi-
est way is to directly fine-tune a model pre-trained
on an out-of-domain corpus with a small amount
of in-domain parallel data (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016). Based on
this, Khayrallah et al. (2018) add additional items
to minimize the cross-entropy between the out-
put word distribution of the model and the out-
of-domain model. Gu et al. (2019) model domain-
specific information and enhance the performance
of translation through adversarial training. Gu and
Feng (2020) address the catastrophic forgetting
problem of domain adaptation by freezing some
module or neuron.

2.2 Unsupervised Domain Adaptation of
NMT

Unlike in-domain parallel data, the in-domain
monolingual data is much easier to obtain, which
makes the research on unsupervised domain adap-
tation of NMT increasingly popular.

The unsupervised domain adaptation of NMT is
mainly divided into model-based and data-based
methods (Chu and Wang, 2018). Some model-
based approaches introduce language models (Gul-
cehre et al. (2015); Dou et al. (2019b)) or auto-
encoders (Cheng et al., 2016) for NMT models.
Other studies introduce domain and task embed-
ding learners during training (Dou et al., 2019a),
or extend back-translation with additional Domain-
Repaired models (Wei et al., 2020).

Among the data-based approaches, some studies
generate pseudo-parallel data by back-translation
(Sennrich et al., 2016a) and copy-based methods
(Currey et al., 2017). Alternatively, Aharoni and
Goldberg (2020) select domain-appropriate data
from a common corpus through a self-supervised
language model. In addition, some other studies
use in-domain lexical knowledge to help domain
adaptation. Hu et al. (2019) use lexical induction
to generate dictionary, and perform word-by-word
translation to generate pseudo-parallel data. Pour-
damghani et al. (2019) utilize word-by-word trans-
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Figure 2: The schematic of our proposed ICBT method at iteration k; Diono-in(-) represents the in-domain
monolingual corpus, Dpse-para-in (-) represents the in-domain pseudo-parallel sentence pairs, and X and Y represent

the source and target language, respectively.

lation to generate translationese, and then translate
translationese into fluent sentences.

In this work, we focus on the data-based unsu-
pervised domain adaptation of NMT and propose a
method to improve the ability of back-translation
(BT) (Sennrich et al., 2016a) in domain adaptation.
There are several similar studies, Wang et al. (2019)
use confidence estimation to better handle the noise
of synthetic corpus, Hoang et al. (2018) generate
better synthetic parallel data by iterating forward
and backward translation models, and Kumari et al.
(2021) improve iterative back-translation by intro-
ducing classifiers to filter the synthetic data. But
they only focus on utilizing the sentence-structural
knowledge of BT and pay less attention to the use
of lexical knowledge from in-domain monolingual
data, which may lead to the mistranslation of un-
seen in-domain words.

3  Our Approach

The Iterative Constrained Back-Translation (ICBT)
method proposed in this paper aims to introduce
the lexical knowledge from monolingual data into
back-translation. In this section, we first describe
how to constrain back-translation and perform
round-trip iterations (§ 3.1), and then we intro-
duce two strategies for sampling more targeted con-
strained words (§ 3.2).

3.1 Iterative Constrained Back-Translation

3.1.1 Lexically Constrained Back-Translation

We perform lexical constraints by replacing target
constrained words with their source corresponding
words in the bilingual dictionary. When training
the constrained back-translation, the model learns
to directly copy the constraints into the translated
sentences, so that during the inference, constrained

words are forced to translate to their corresponding
words (Song et al., 2019).

Supposing that two in-domain (IND) mono-
lingual corpora (Dpono-in(X) and Dimono-in(Y))
and an out-of-domain (OOD) parallel corpus
(Dpara-out (X, Y) ) can be obtained in the unsu-
pervised scenario, we firstly constrain the target of
OOD parallel data to generate Dpara-out (X, Ye).
We use Dpara-out(X,Y) to train a source-to-
target forward translation model F T —y» and use
Dpara-out (X, Y¢) to train a target-to-source con-
strained back-translation model CBTgHZ.

Then, we match each target sentence y (y €
Diono-in(Y)) with the in-domain bilingual dictio-
nary V and select words to be constrained, thereby
generating Dp,ono-in(Yc). Since the dictionary
matches a large proportion of words, and too many
replacement words may destroy the syntactic struc-
ture of the sentence (see detailed analysis in § 5.3),
we limit the number of replacements per sentence
to n. If there are more than n matched words, they
will be randomly sampled n for replacement.

Finally, Dono-in (Y¢) is fed into the pre-trained
constrained back-translation (CBT) model for in-
ference. In this way, we can get the pseudo-parallel
data Dpse-para-in(X', Y), which will be used to
fine-tune the forward translation (FT) model.

Since the constrained lexicon pairs are integrated
into the inference results, the FT model can learn
the in-domain lexical knowledge. On the con-
trary, BT without constraints can hardly provide
in-domain lexical knowledge.

3.1.2 Round-Trip Iteration

To further encourage the integration of lexical
knowledge, we utilize an iterative translation pro-
cess, as illustrated in Algorithm 1. For intuitive-
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ness, we also show a schematic diagram of the
round-trip iteration in Figure 2.

The iteration starts with models (FT? Sy
CBTSc _,») pre-trained with out-of-domain par-
allel data, and takes the in-domain monolingual
data (Dpono-in(X) and Dmeno-in(Y)) as well as
the in-domain bilingual dictionary V' as input.
The CBT model is first fine-tuned with pseudo-
parallel data Dpse-para-in(X, Y7), and then the
FT model is fine-tuned with pseudo-parallel data
Dpse-para—in(X/7 Y) .

During iteration, CBT produces pseudo-parallel
data with in-domain lexical knowledge, which will
be integrated with sentence-structural knowledge
when fine-tuning FT. So that FT produces target
sentences more in line with the domain. And cor-
respondingly, there will be more domain-related
lexical constraints on these target sentences, which
is also beneficial for fine-tuning CBT.

and

Algorithm 1 Round-trip iterative training process

for ICBT

Input: pre-trained NMT models FTY Sy
CBT?/C _.z), 1n-domain monolingual data

Diono-in(X) and Diono-in (Y ), bilingual dic-

tionary V', maximum number of iterations K

and

Output: forward translation model FTff Ly
1: k=0;
2: for k < K do

3:  Fine-tune the CBT model:

4 Use FT® _y to infer Dmono-in(X) and cre-
ate the pseudo data Dpse-para-in (Y', X);

5:  Constrain on the target of the pseudo data
with V to generate Dpse-para-in( Y e, X);

6:  Use Dpse-para-in(YL,X) to fine-tune
CBT} ,, = CBT.
Fine-tune the FT model:
Constrain on the target monolingual data
Diono-in (Y) with V' to get Diono-in (Yc);

9:  Use CBTZ:;lx to infer Diyono-in(Ye), and
get the pseudo data Dpge-para-in(X', Y);

10 Use Dpse-para-in(X’,Y) to fine-tune
FTF, = FTL:

1:  k=k + 1;

12: end for

13: return FTf_)y

3.1.3 Bilingual Dictionary Induction

Since the bilingual dictionary is required for lexi-
cal constraints, we obtain them through automatic

induction. Considering there are no IND parallel
corpora, we use unsupervised lexical induction to
create a bilingual dictionary.

Unsupervised lexical induction aims to extract
dictionaries from non-parallel data automatically.
The mainstream approach is to map the source and
target word embeddings to the same representation
space and find words with close distances in the
cross-lingual space as translation candidates.

In this paper, we first use Dpara-out(X,Y),
Dimono-in(X), and Dpono-in(Y) to train word em-
beddings in the source and target languages by
FastText (Bojanowski et al., 2017). Then we follow
Artetxe et al. (2018) to build cross-lingual embed-
ding representations by self-learning, and find the
nearest neighbors of the source and target word.

3.2 Constrained Lexicon Sample Strategy

In the lexical constraints process in § 3.1, matched
words are randomly sampled, which leads to some
common words (such as “the”, “she”, “this”) being
constrained. So we explore delicate strategies for
sampling constrained words, based on two stan-
dards: domain specificity (§ 3.2.1) and translation
confidence (§ 3.2.2).

3.2.1 Domain Specificity

As shown in the ICBT-DomainSpec method of Fig-
ure 3, we use masked language models (MLMs) to
calculate domain difference to help us judge the do-
main specificity of words. Specifically, we follow
Devlin et al. (2019) to train an out-of-domain MLM
(MLM,,;) and an in-domain MLM (MLM,,,) us-
ing the target of the out-of-domain parallel data
and the in-domain target monolingual data, respec-
tively. Assuming that the dictionary matches the set
of words w = {wy,wy, ..., wy} in the sentence
Y= {3/1, Y2, .- ’yn}(y € Dmono-in(Y))’ for each
word w € w, we perform the following operations:

mask _

* Mask y; (y; = w) in y to creat y
{y1, 92, -+, yi-1, (mask], yig1, - yn

* Feed y™*** into MLM,,; and MLMj;, re-
spectively, and obtain the outputs yf"“t and
yfi” of the two models. The probability of
predicting the [mask] position as word w is
defined as:

pa =logp (y{li] = wly™*) ()

where d represents domain, d € {dyyut, din }-
* Calculate the probability difference:

Ap = Pd;,, — Pdous 2
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Figure 3: Different word constraints sampling methods proposed in this paper. We introduced three forms, namely
ICBT-Base for baseline (§ 3.1), ICBT-DomainSpec for domain-specific words (§ 3.2.1), and ICBT-Confidence for
poorly translated words (§ 3.2.2). In the attention matrix, value w; ; represents the correlation between the i-th
word in the input sentence and the j-th word in the predicted sentence, for example, ws 5 represents the correlation
between the word “# % (which means exemption)” and the word “absolution” is 0.95.

We use Ap as the criterion for judging the do-
main specificity of the word w. A large Ap means
that the word has a strong domain specificity. When
constraining, we replace the top-n words with the
largest Ap.

3.2.2 Confidence Estimation

Confidence estimation is utilized to select words
that are poorly translated in the target monolin-
gual data (Dpyono-in(Y)) during back-translation
inference. Generally, these words also need to be
supplemented by lexical knowledge.

As the ICBT-Confidence method shown in Fig-
ure 3, we first use a masked language model to
perform confidence estimation on words in source
translation data (Dpge-in(X')), following Zheng
et al. (2021). Specifically, OOD parallel data is
used to train an estimation model. We splice each
source and target sentence pair of the parallel data,
mask some words on the target, then feed them into
the estimation model, and minimize the following
loss function:

N
L==> logp (yy'|@n, y5;6)

n=1

3)

where y" is the masked part of the target sentence,
and y¢ is the unmasked part, x,, is the source sen-
tence, IV is the number of OOD parallel sentence

pairs, and @ is the model parameter.

During inference, the target monolingual sen-
tence ¥ (Y € Dmono-in(Y)) and the source pre-
dicted sentence x (x € Dpse_in(X’ )) are spliced
and fed into the pre-trained estimation model. The
estimation model calculates the probability that
words in x can be recovered after being masked.
The higher the recovery probability is, the higher
the confidence score of the word is, and vice versa.
In this way, the confidence score of each word in
the source predicted data is obtained.

Then we obtain the confidence score of each
word in the target monolingual data through the
attention mapping, which is obtained from the
penultimate layer (proved by Garg et al. (2019)
to be more inclined to learn alignment) of the back-
translation model. More specifically, for a sentence
x of the predicted data, the confidence score of
each word z; € x is denoted as s;;. The confi-
dence score s, of the word y; in the input sentence
y is calculated by:

N
Sy; = E :wl}j X Sz;
Jj=1

where N is the length of the predicted sentence
, w; ; is a value in attention mapping (see the
example at Figure 3), which is taken as the weight,
in other words, the contribution of each sz, to sy,.

“
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Education Laws Science Thesis Average

without iteration

Unadapted 10.52 2388  6.00 6.67 11.77
Back-Translation (Sennrich et al., 2016a) 12.71 32.70 6.62 11.22 15.81
Translationese (Pourdamghani et al., 2019) 12.79 32.61 6.27 11.18 15.71
CBT-Base (ours) 14.257 37.050 7.7t 12,12t 17.65
CBT-DomainSpec (ours) 14.65 38417 7.19" 12.48" 18.18
CBT-Confidence (ours) 14.307 38.117  7.23t  12.29f  17.98
with iteration

Iterative Back-Translation (Hoang et al., 2018) 14.63 47.56 8.25 13.31 20.94
CFIBT (Kumari et al., 2021) 14.84 4730  8.80 1279  20.93
ICBT-Base (ours) 1491t 4951t 8917  14.057  21.85
ICBT-DomainSpec (ours) 16.111  52.12F 8.62F 14761 22.90
ICBT-Confidence (ours) 16.36" 5279t 7.81T 1470t 22.92
ICBT-ALL (ours) 16.10f1  56.21t  8.50"  15.25"  24.02

Table 1: Comparative results of unsupervised domain adaptation on the English-Chinese translation task. News is
used as the out-of-domain data. "CBT-*" are our methods without iteration.  denotes the improvement over other

methods is statistically significant with p < 0.01.

Domain Train Dev | Test
News 1,252,977 | 1,664 | 1,357
Education 447,000 | 3,000 790
Laws 217,000 | 3,000 456
Science 267,000 | 3,000 503
Thesis 297,000 | 3,000 625

Table 2: Corpus statistics for our experiments.

After getting the confidence score of each word
in the target, we choose the top-n words that have
the lowest score and are in the domain dictionary
to be constrained.

4 Experiments

4.1 Setup

Datasets. We conduct our experiments on English-
Chinese datasets. The parallel corpus LDC! in
News domain is used as the out-of-domain dataset.
For in-domain dataset, we use the UM-corpus (Tian
et al., 2014), which provides parallel sentence pairs
in eight domains, and we choose four domains of
Laws, Education, Science, and Thesis to conduct
experiments. To obtain the in-domain development
set, we randomly sample 3K sentence pairs in each
domain. Data statistics are shown in Table 2. We
follow Hu et al. (2019) to construct a non-parallel
monolingual corpus for each domain. Specifically,
we randomly divide the parallel corpus into two

"https://www.ldc.upenn.edu/

equal parts, and take the source sentences of the
former part and the target sentences of the latter
part as our monolingual data.

Jieba? is used to segment Chinese data and
Moses? is used to segment English. And all En-
glish words are converted to lowercase. After that,
we segment words into subwords through Byte Pair
Encoding (Sennrich et al., 2016b) and construct
joint vocabulary for both languages.

Models and Parameters. We implement the
Transformery,,s. (Vaswani et al., 2017) based on
the Fairseq (Ott et al., 2019) as our translation
model. BERT-base-Chinese* model is used as the
masked language model in the ICBT-DomainSpec
method. To get the in-domain model MLM;,, and
the out-of-domain model MLM,,,;, we fine-tune
the BERT on two kinds of data for 5 epochs re-
spectively. Moreover, we use multilingual BERT*
(mBERT) as the confidence estimation model for
the ICBT-Confidence method. For each method,
we conduct 3 iterations. SacreBLEU® python pack-
age is used to calculate the BLEU score.
Baselines. We compare our method with the fol-
lowing methods:

* Unadapted. The translation model is trained
on the out-of-domain training set and directly
evaluated on the in-domain test set.

https://github.com/fxsjy/jieba

‘http://www.statmt.org/moses/

4https ://huggingface.co
Shttps://github.com/mjpost/sacrebleu
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¢ Back-Translation (Sennrich et al., 2016a).
A method for generating in-domain pseudo-
parallel data from a target-to-source NMT
model and target monolingual data.

e Iterative Back-Translation (Hoang et al.,
2018). Both forward and backward translation
models are used for round-trip iteration to op-
timize and generate better in-domain pseudo-
parallel data.

* Translationese (Pourdamghani et al., 2019).
This method first uses word-by-word transla-
tion to generate translationese, and then gen-
erates fluent translation sentences using trans-
lationese. It improves translation performance
by introducing in-domain lexical knowledge.

e CFIBT (Kumari et al., 2021). Classifier mod-
els are introduced to filter pseudo-parallel data
generated by the back-translation, thereby op-
timizing the iterative back-translation.

4.2 Main Results

This paper introduces three forms of ICBT, namely
ICBT-Base (§ 3.1), ICBT-DomainSpec (§ 3.2.1),
and ICBT-Confidence (§ 3.2.2). To prove the com-
plementarity of our methods, we combine the data
obtained from both ICBT-DomainSpec and ICBT-
Confidence at each iteration to conduct experi-
ments (ICBT-ALL). Furthermore, we also compare
the performance of our method without iteration.
The experimental results are shown in Table 1.

Firstly, our proposed methods achieve optimal
results in all domains. The average of four do-
mains improves by up to 12.25 BLEU over the un-
adapted model and 3.08 BLEU over the strongest
baseline. The most considerable improvement is in
Laws, which improves by up to 8.45 BLEU over
the strongest baseline. We believe that it is because
Laws includes more terms needed to be supple-
mented, so the introduction of lexical knowledge
can bring a significant improvement.

Secondly, Translationese achieves comparable
performance to Back-Translation and has improved
in all domains compared with the unadapted base-
line, illustrating the benefits of introducing in-
domain lexical knowledge. Our method is better
than Translationese, which we believe is because
we fuse lexical knowledge and sentence-structural
knowledge through lexically constrained BT, while
Translationese uses knowledge separately.

—+— |BT ICBT-Base —8— ICBT-DomainSpec  —»— ICBT-Confidence

16 504

159 454

BLEU

1)

144 40

354

13

T T T T T T T T
iter-0 iter-1 iter-2 iter-3 iter-0 iter-1 iter-2 iter-3
Education Laws

9.0

8.51 144

134 /

=
@ 7.5
7.0 121

T T T T T T T T
iter-0 iter-1 iter-2 iter-3 iter-0 iter-1 iter-2 iter-3
Science Thesis

> 8.0
w

Figure 4: BLEU score of different methods according to
the number of iterations on the test sets of four domains.
IBT represents Iterative Back-Translation.

Thirdly, CFIBT achieves better performance
than iterative back-translation (IBT) in Education
and Science, and these two methods are comparable
on the whole. This is in keeping with the elabo-
ration of Kumari et al. (2021) on the performance
of CFIBT in high-resource scenarios. Our meth-
ods have the improvement over both approaches.
Compared to the case without iteration, our meth-
ods achieve more significant improvements over
others, implying that more lexical knowledge can
be incorporated through iterations.

Finally, both ICBT-DomainSpec and ICBT-
Confidence achieve higher results than ICBT-Base.
We conclude that it is because more targeted con-
straints can introduce more lexical knowledge lack-
ing by models. ICBT-ALL achieves the best perfor-
mance and obtains more significant improvement
than ICBT-DomainSpec and ICBT-Confidence, es-
pecially in Laws. It shows that domain specificity
and confidence estimation are complementary.

5 Analysis

5.1 Impact of Iterations

To further investigate the impact of iterations, we
separately validate the models of each method after
each iteration. The variation of BLEU scores with
the number of iterations is shown in Figure 4.

Our methods show continuous improvement
over IBT and the improvement is larger in the later
iterations in general. We conjecture the main rea-
sons are as follows: 1) Lexical constraints as se-
mantic spatial anchors bring the lexical-level repre-
sentations closer (Lin et al., 2020). The alignment
of lexical-level makes sentence-level representa-
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Laws Thesis
BLEU Trans,.. | BLEU Transcc
BT 32770 79.85% | 11.22 44.39%
CBT | 37.05 82.58% | 12.12 49.71%
IBT 47.56  84.99% | 13.31 51.58%
ICBT | 49.51 88.46% | 14.05 59.57%

Table 3: Comparison of BLEU score and lexicon trans-
lation accuracy of BT and constrained BT. CBT and
ICBT are the base type of our methods (§ 3.1).

tions in BT also closer in semantic space, which
allows the model to transfer at both levels. 2) When
the sentence-level representations are aligned, more
in-domain lexicons can be generated, so that the
knowledge of the in-domain dictionary is more
fully utilized. 3) Lexical constraints increase the
diversity of constraints in the iteration. Thus in the
obtained pseudo data, the same target sentence may
correspond to different source sentences, which fur-
ther improves the robustness of the model.

5.2 Lexicon Translation Accuracy

To verify whether constrained back-translation re-
ally helps the translation of the in-domain lexicon,
we analyze the lexical translation accuracy. Con-
cretely, we extract the high-quality in-domain bilin-
gual dictionary from in-domain parallel data to act
as the testbed for lexical translation accuracy. For
each source word in the high-quality dictionary that
appears at the source of the test set, we consider
it to be successfully translated if its corresponding
target word occurs in the predicted data.

We conduct experiments in Laws and Thesis,°
comparing BT and CBT with and without iteration.
The comparison results are shown in Table 3. With
or without iteration, the lexicon translation accu-
racy of CBT is always higher than that of BT, with
a maximum of 3.47% in Laws and 7.99% in Thesis,
verifying the benefit of constraints. Besides, the im-
provement with iterations is more significant than
without iterations, which indicates that more lexi-
cal knowledge can be introduced through iterations,
so that more in-domain lexicons can be translated
correctly. We also present some cases of BT and
CBT in each domain in Appendix A.

®We focus on domains where there is room for improve-
ment. For Education and Science, BT can already achieve
high translation accuracy of lexicon, so we do not discuss.

—— Laws
39 4 —#— Education

Science
——
36 4 Thesis

12:— — \'Q.

1 2 3 5
Maximum number

Figure 5: The effect of the maximum number of con-
straints on the BLEU score.

5.3 Effect of Constraints Amount

Few constraints may not achieve the desired ef-
fect, while too many constraints may destroy the
syntactic structure of sentences. To validate this hy-
pothesis, we investigate the impact of the number
of constraints. Specifically, we vary the value of
the maximum number n of constraints per sentence
in the range of [1, 2, 3,5, 8]. For each value of n,
we perform CBT as described in § 3.1 and test on
each resulting FT model with the test set.

As shown in Figure 5, models can achieve a
high performance generally when n < 3. However,
when n = 1 or n = 2, the model is unstable.
For example, when n = 1, the model performs
slightly worse on Education and Science, and when
n = 2, it performs poorly on Laws. It is consistent
with our conjecture that the lexical knowledge can
not be introduced into the model enough when
there are few constrained words. When n > 3,
the performance deteriorates as the increase of n,
indicating that too many constraints may damage
the syntactic structure of sentences, thus making
the performance worse. With the above analysis,
we set n = 3 in other experiments in this paper.

6 Conclusion and Future Work

This paper proposes a method for unsupervised
domain adaptation of NMT named Iterative Con-
strained Back-Translation (ICBT), in which lexical
constraints are applied to back-translation, aiming
to incorporate in-domain lexical knowledge into
synthetic parallel data from BT. Besides, we pro-
pose two strategies for sampling constraints to exert
more targeted constraints. We conduct experiments
on English-Chinese translation tasks in four do-
mains. The experiments show that our method can
introduce beneficial lexical knowledge to BT, thus
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achieving state-of-the-art results.

We believe that the lexical constraint is not only
suitable for unsupervised domain adaptation, but
also promising in the semi-supervised scenario
with a small amount of in-domain parallel corpus.
In the future, we will explore the application of lex-
ical constraints in supervised or semi-supervised
domain adaptation of NMT.
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A Case Study

We feed one case from each domain into the final
fine-tuned forward translation models of BT, CBT,
IBT, and ICBT for inference, and the obtained re-
sults are shown in Table 4. It can be seen that the
constrained BT outperforms the BT in the transla-
tion of in-domain words, no matter with or without
iteration. In the case of Education, the ordinary BT
translates “spring” to “# X, which does not fit the
current context. On the contrary, constrained BT
can correctly translate “spring” to “7% % . It shows
that lexical constraints can introduce in-domain lex-
ical knowledge into the synthetic pseudo-parallel
data.

From the cases of Laws and Thesis, the perfor-
mance of ICBT is stronger than that of CBT, and it
can translate more in-domain words. For example,
in the case of Laws, CBT only successfully trans-
lates “public office” into “~>F2”, but does not suc-
cessfully translate “appoint or remove”, which is a
strongly domain-specific expression. But through
iteration, the in-domain lexical knowledge and spe-
cific expressions are further enriched, so ICBT suc-
cessfully translates “appoint or remove” into “f£

%.”. In addition, ICBT can also learn the domain-
specific expression of translating “holders of public
office” into “/2 82 A B under the promotion of
lexical knowledge “/28%”, indicating that lexical
knowledge can not only bring alignment knowl-
edge, but also enrich the sentence-structural knowl-
edge of BT, so that the generated sentences are
more in line with the domain expression.
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Education
Source | deformation of a spring is linear with the force applied on it.
Reference | # % & T € 5w 2 L L8O 4FAH R &MXE -
BT HEREHW RAARG, A TEO AT -
CBT ME LM 5 RA Y HE & ALY .
IBT —AMEROEW E RN EC L NERZALE .
ICBT BEGEH E A AEC LG AE R &G .
Laws
Source | to appoint or remove holders of public office in accordance with legal procedures;
Reference | RB X A5 £ % AR AR
BT BRIRTALT BE R RAE NF LBTE FHAA
CBT | KRR ZTAESF 4 & LR 2R AR ;
IBT KRB RRARF RAE R ER ARG BHFAA,
ICBT | RE HXEARF L% NI AR
Science
Source | only when its melting-point temperature is reached does iron start to pass into a liquid.
Reference | A H % K& RE Li] B, A TR TR RK .
BT P\Z]— L & ahik é/J gl HT Z /\ﬁ é/d'(é]]ﬂ“ﬁ #HNES .
CBT SR NV e N f)"’( J’rﬁ #N R
IBT RA S g8y 2R RE K J B, BREG IS RN RAR
ICBT | A& % € &) kh RE X8 6, 44 & 4 E mhk
Thesis
Source | effect of exciting frequency on the residual stress of the vibrating solidification casting
Reference | # 4k M & f &ah s %4+ BA 20 89 %A
BT Fah 2R AR KD NE A /KA BERE RREHN 8 #-
CBT Fah ME 2 Ry BE EHHRA LN ‘T’ "1‘]
IBT A ME S s B HH BRR A 8 R
ICBT | #tdk M & at dkah B E %4 %A 2H 6 % vh

Table 4: The translation examples show the effect of constrained back-translation. We identify aligned words in red
and blue front.
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