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Abstract

Meta-learning has emerged as an effective ap-
proach for few-shot text classification. How-
ever, current studies fail to realize the impor-
tance of the semantic interaction between sen-
tence features and neglect to enhance the gen-
eralization ability of the model to new tasks.
In this paper, we integrate an adversarial net-
work architecture into the meta-learning system
and leverage cost-effective modules to build a
novel few-shot classification framework named
SaAML. Significantly, our approach can ex-
ploit the temporal convolutional network to
encourage more discriminative representation
learning and explore the attention mechanism
to promote more comprehensive feature expres-
sion, thus resulting in better adaptation for new
classes. Through a series of experiments on
four benchmark datasets, we demonstrate that
our new framework acquires considerable su-
periority over state-of-the-art methods in all
datasets, increasing the performance of 1-shot
classification and 5-shot classification by 7.15%
and 2.89%, respectively.

1 Introduction

Deep learning usually relies on a vast amount of
labeled examples to accomplish tasks. However,
this requirement is problematic for few-shot text
classification when only a few examples are avail-
able in novel classes, which leads to poor model
generalization for new tasks. Motivated by the fact
that humans can quickly recognize new knowledge
after learning a few examples, few-shot learning is
becoming a hot research topic.

Early studies exploit data augmentation and reg-
ularization procedures (Salamon and Bello, 2017)
to deal with the overfitting due to data sparse-
ness. More recent research mainly falls into two
approaches: (1) transfer-learning based methods
(Pan et al., 2019; Gupta et al., 2020), which trans-
fer and propagate knowledge attained from the
source domain to classify unseen examples in the

target domain. (2) meta-learning based methods
(Tong, 2019; Sun et al., 2019), which learn knowl-
edge by repeating lots of meta-tasks in a training
episode manner and leverage knowledge extracted
to briskly predict new samples during meta-testing.
Specifically, Bao et al. (Bao et al., 2019) incor-
porated distributional signatures of words into the
meta-learning framework to make impressive per-
formance. Han et al. (Han et al., 2021) first pro-
posed to introduce an adversarial domain adapta-
tion network to strengthen the generalization ability
of the meta-learning system.

Despite the remarkable progress of few-shot
classification approaches (Geng et al., 2019; Bao
et al., 2019; Han et al., 2021), most existing meta-
learning models still suffer tough challenges: ex-
ample diversity. Even examples in the same class
have various representations, bringing about the
difficulty of extracting generic features based on a
few training examples and the urgent demand for
strong adaptability of the model to new tasks.

In this paper, we propose a straightforward but
remarkably powerful framework to cope with the
above challenges. We deploy an adversarial net-
work architecture to train the meta-learning system
and create a novel framework Sentence-aware Ad-
versarial Meta-Learner (SaAML). Specifically, we
employ the temporal convolutional network (TCN)
(Bai et al., 2018) and the multilayer perceptron
network (MLP) to build the generator and discrimi-
nator, respectively. The model can grasp sentences’
inherent semantic information through the adversar-
ial training of the generator and the discriminator.
Then we artfully fuse the word embeddings and the
features of the generator to construct high-quality
discriminative sentence features. Moreover, we fur-
ther build a feature enhancer (FE) to leverage the
multi-head attention mechanism to fine-tune the
features of support examples and query examples,
aiming to create more compatible feature represen-
tations. Our research methodically develops how to
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better exploit the adversarial network architecture
and sentence-aware interaction knowledge to boost
few-shot text classification performance. The main
innovations of our research are as follows:

1) We analyze the limitation to the performance
of current meta-learning approaches and estab-
lish a novel system SaAML based on the ad-
versarial network architecture. And we com-
bine it with various meta-classification tech-
niques to handle the few-shot classification
dilemma.

2) We build the meta-learning system with more
cost-effective modules, .e.g., the temporal con-
volutional network (TCN), the semantic ex-
tractor (SE), and the feature enhancer (FE).
Then we jointly train the whole model in an
end-to-end fashion.

3) To evaluate the effectiveness and robustness
of the proposed model, we conduct massive
comparison experiments and ablation studies
on four datasets. The results indicate that our
new framework SaAML outperforms state-
of-the-art approaches with nearly 5.02% per-
formance improvement, and the proposed en-
hancement modules are more beneficial and
flexible.

2 Related Work

Few-shot text classification is a crucial application
scenario of few-shot learning in natural language
processing (NLP), which has obtained increasing
attention and research. Transfer learning (Gupta
et al., 2020), as a feasible approach to tackle few-
shot text classification, intends to make the knowl-
edge learned from the source domain more com-
patible with the target domain and reduce the shift
between different domains. For example, Tzeng
et al. (Tzeng et al., 2017) leverages the adversar-
ial domain adaptation framework to bridge the do-
main gaps without example constraints. Moreover,
with the rapid development of pre-trained language
models, it also exhibits excellent performance by
fine-tuning the representations of training exam-
ples, such as BERT (Devlin et al., 2018) and GPT-3
(Brown et al., 2020).

As the dominant program in few-shot text clas-
sification, meta-learning (Schmidhuber, 1987) sys-
tems develop rapidly and achieve great success.
Meta-learning approaches are mainly divided into

two categories: (1) Optimization-based methods,
which resort to “learning to fine-tune" strategy to
train the model. For example, (Finn et al., 2017;
Lee et al., 2019; Rajeswaran et al., 2019) develop
an optimization procedure of model parameter ini-
tialization to quickly obtain outstanding perfor-
mance after a small amount of gradient update steps
based on few-shot training examples.(2) Metric-
based methods, which complete the classification
task through a specific distance metric, .e.g., Match-
ing Network (Vinyals et al., 2016) is calculated
by the cosine similarity, while the Euclidean dis-
tance is the measure standard of Prototypical Net-
work (Snell et al., 2017). Relational Network (Sung
et al., 2018) and GNN Network (Yang et al., 2020)
utilize convolutional neural networks and graph
neural networks to learn metric functions dynami-
cally. Recently, Bao et al. (Bao et al., 2019) argues
that statistical information of sentences plays a vi-
tal role in classification tasks. Sun et al. (Sun
et al., 2021) subtly combines data augmentation
with meta-learning to generate more diverse sam-
ples, preventing model overfitting. Han et al. (Han
et al., 2021) is the first to explore the adversarial
domain adaptation network for the performance
improvement of meta-learning framework.

3 Preliminary

The few-shot text classification is usually viewed
as a N -way K-shot task. Firstly, the input of
the model is a set with multiple labeled examples,
including support set Ctrain and query set Ctest,
where Ctrain are disjoint from Ctest. Then the
meta-learner conducts the episode-based strategy
(Vinyals et al., 2016) to train a classifier on Ctrain.
Finally, the meta-learner accomplishes the goal to
predict new examples of Ctest with the classifier.

For the episode-based strategy, we randomly se-
lect N classes (N -way) from Ctrain, and then sepa-
rately sample K examples (K-shot) as the support
set S and P examples as the query set Q from each
of these chosen classes, which can be denoted as:

S = {(Xi, Yi)}N×K
i=1

Q = {(Xj , Yj)}N×P
j=1

(1)

where X is the input text sentence and Y is the
corresponding label. It is worth noting that the
same example sampling manner is implemented to
build the support set S and query set Q during meta-
training and meta-testing. We leverage the macro-
averaged accuracy across all testing episodes to
evaluate the performance of the meta-learner.
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Figure 1: The overall framework of SaAML

4 Our Approach

Our proposed SaAML is broadly built to pursue the
excellent performance of few-shot text classifica-
tion. The overall architecture of SaAML is shown
in Figure 1. First, we leverage the representation
generator with TCN as the core block to capture
comprehensive semantic information of sentences
and exploit the meta discriminator to strengthen the
learning ability of the model. Then, we contrive a
feature enhancer to further fine-tune the example
vectors with sentence-aware knowledge for more
consistent representations. Finally, we jointly train
all modules of SaAML with different schemes in
an end-to-end manner.

4.1 Representation Generator

The representation generator consists of a word
embedding encoder and a temporal convolutional
network (TCN) (Bai et al., 2018), as shown in Fig-
ure 1.

The word embedding encoder converts each
word into the embedding vector. We construct the
embedding vector v with d dimensions via fastText
(Joulin et al., 2016).

The goal of the temporal convolutional network
(TCN) (Bai et al., 2018) is to acquire more trans-
ferable feature information. TCN architecture is
very simple yet effective, covering some of the best
techniques of current convolutional networks, such
as 1D full convolution, causal convolution, and
dilated convolution, as shown in Figure 2. To be
specific, we exploit the 1D full convolution to make

the model’s output with the same length as the in-
put. We adopt the causal convolution to ensure
that the current result is only convolved with inputs
from now to earlier, with no “leakage” of knowl-
edge from the future to the past. Significantly, we
also utilize the dilated convolution to expand the
receptive field of the network and encourage the
result of richer semantic information.

Figure 2: The convolutional layer structure of TCN.

Given that the input is a sequence of word vec-
tors V = [v1,v2, · · ·,vm], where m is the number
of words in the sentence. The output of TCN is
a matrix hd×m = [h1,h2, · · ·,hm] with contex-
tual embeddings, as shown in Figure 3.The matrix
hd×m is then converted into the sentence vector hg

by a linear layer with softmax function.
Furthermore, the representation generator also

competes against the meta discriminator as much
as possible, so that the discriminator can not de-
termine whether the samples are from the source
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Figure 3: The TCN with dilation factors d = 1, 2, 4 and
filter kernel k = 2.

domain or the target domain. Only in this way can
more comprehensive features be created for better
classification performance, which is the core moti-
vation in building the representation generator and
meta discriminator.

4.2 Meta Discriminator
We consider the examples in the support set and
query set as the target domain, and the remaining
examples as the source domain. Definitely, we sam-
ple a subset of the same size as the query set from
the source domain as the source set. The discrimi-
nator comprises a three-layer feed-forward neural
network and a softmax function. The calculation
process is as follows:

Ŷ = softmax(MLP (hg)) (2)

where hg denotes the sentence vector of each exam-
ple from the representation generator. Ŷ ∈ {0, 1}
represents whether the example is from the query
set or the source set.

4.3 Semantic Extractor
The semantic extractor fuses the word embedding
from fastText and the representation vector from
the generator to create the more comprehensive
feature representation w for each example, which
can be expressed as:

w = V d×m · hg (3)

where V d×m = [v1,v2, · · ·,vm]. vm is the word
embedding vector and m is the number of words
in the sentence. hg denotes the sentence vector
generated by the representation generator.

4.4 Feature Enhancer
We construct the feature enhancer with the multi-
head attention mechanism (Vaswani et al., 2017)

and the MLP layer. The multi-head attention mod-
ule consists of multiple self-attention units. Each
self-attention unit has a powerful capability to catch
valuable feature information about the input, and
the knowledge learned by various self-attention
units from their respective perspectives can be in-
corporated in a concatenation manner, as shown in
Figure 4.

Figure 4: Details of the multi-head attention mecha-
nism.

Thus, we employ the multi-head attention mech-
anism to effectively grasp the feature interaction
between the representation sequences ws of sup-
port examples and the representation sequences wq

of query examples. We then leverage the MLP layer
with GELU(·) activation function (Hendrycks
et al., 2020) to produce the final support vector
sequences zs and query vector sequences zq. The
whole process above can be described as:

Esq = [ws,wq] (4)

Hsq = MHAttention(Esq ) (5)

zs, zq = GELU(MLP (Hsq)) (6)

where ws = [ws
1,w

s
2, ···,ws

k] and wq = [wq
1,w

q
2,

wq
3, · · ·,w

q
p]. The k and p represent the number of

examples in the support set and query set, respec-
tively. Esq is the concatenation result of ws and
wq. MHAttention(·) is actually the main com-
ponent of Transformer model (Vaswani et al.,
2017) and is used alone in our work to generate the
self-attention output Hsq. The final support vector
sequences zs = [zs

1, z
s
2, · · ·, zs

k] and query vector
sequences zq = [zq

1, z
q
2, · · ·, z

q
p].

The feature enhancer is very beneficial to boost
the feature correlation between support examples
and query examples and decrease the interference
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of noisy representations. With limited knowledge,
the model can create the class-level representations
that are more compatible with query examples and
the query representations that are more consistent
with support examples, and acquire fine general-
ization ability across various classification tasks
rapidly.

4.5 Classifier
We adopt the prototypical network (Snell et al.,
2017) with Euclidean distance as the classifier in
our framework, which enables the model to easily
solve the learning problem and efficiently acceler-
ate training convergence.

Therefore, the classifier generates the class-level
vector Cu for each class u based on support vectors
zs
i and measures the similarity probability, Dj ,

between the query vector zq
j and the class vector

Cu through the Euclidean distance function R(·, ·).

Cu =
1

K

∑
(zs

i ,Yi)∈Su

zs
i (7)

Dj =
eR(Cu,z

q
j )∑N

n=1 e
R(Cn,z

q
j )

(8)

where Su ⊂ S is the subset corresponding to class
u with the same label Yi in the support set S. And
K represents the number of examples in each class.

4.6 Loss Function
The modules of our framework SaAML are trained
using different strategies, .e.g, we train the classi-
fier from scratch for each episode, while the repre-
sentation generator is optimized across all training
episodes. For each training episode, we first em-
ploy the source set and query set to update the
parameters of the meta discriminator. Next, we
update the parameters of the representation gener-
ator and classifier over the support set and query
set. The details of the loss function are introduced
below.

The classifier loss consists of cross-entropy loss
and difference loss. The difference loss aims to
maximize the distance between different class vec-
tors, making each class as directionally different as
possible, which is defined as:

LDL = λ
∑
i ̸=j

∥ CT
i Cj ∥2F (9)

where ∥ · ∥F is the Frobenius norm, and λ is the
hyperparameter and can be set to 10−3.

Thus, the classifier loss can be represented as:

LC = − 1

N

N∑
n=1

K∑
k=1

Yn,k log Pn,k + LDL (10)

where Pn,k indicates the probability that the n-th
query example is predicted to be the k-th label.
Yn,k denotes the ground-truth label. The K and N
are the number of categories and examples, respec-
tively.

It is standard practice to apply the cross-entropy
loss as the loss function for the discriminator.

LD = − 1

2n

n∑
k=1

[ (Y d
k log Ŷk

+ (1− Y d
k ) log (1− Ŷk))]

(11)

where Y d
k and Ŷk denotes the real class of the ex-

ample and the prediction result of the discriminator,
respectively. The n is the number of examples in
the source set or query set.

As for the loss function of the generator, it can
be regarded as the combination of the classifier loss
function and the discriminator loss function, which
are used to gain the final classification results and
confuse the discriminator, respectively.

LG = LC − LD (12)

5 Experiment

We investigate the performance of our proposed
SaAML against six existing well-established base-
lines through extensive experiments on four bench-
mark datasets. Furthermore, we also develop a
series of ablation studies to further illustrate the
effectiveness and robustness of SaAML.

5.1 Datasets
There are four few-shot text classification datasets
in our work, as expressed in Table 1.

Table 1: Details of the four benchmark datasets.

Dataset Avg. text length samples per class train/val/test classes

Amazon 140 1000 10 / 5 / 9

20 Newsgroups 340 941 8 / 5 / 7

HuffPost 11 900 20 / 5 / 16

Banking77 16 170 30 / 15 / 32

Amazon is a collection of 24 product categories
(He and McAuley, 2016) with 142.8 million
product reviews. Following the same approach
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Table 2: Mean classification accuracy on Amazon, HuffPost, 20 Newsgroups, and Banking77 datasets.

Amazon HuffPost 20 Newsgroups Banking77

Method 5-way 5-way 5-way 10-way 15-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 0.3965 0.4713 0.3572 0.4931 0.3384 0.4372 0.4691 0.6659 0.3672 0.5659

PN 0.3760 0.5214 0.3573 0.4474 0.3780 0.4535 0.4156 0.6975 0.3501 0.6393

IN 0.3491 0.4132 0.3874 0.4912 0.2876 0.3337 0.5291 0.6884 0.4553 0.6179

RRML 0.5022 0.7275 0.3610 0.4966 0.3760 0.5724 0.5256 0.8148 0.4694 0.7734

DS-RRML 0.6260 0.8112 0.4305 0.6350 0.5212 0.6830 0.6034 0.8373 0.5432 0.7900

MLADA 0.6842 0.8600 0.4502 0.6491 0.5961 0.7780 0.6055 0.8089 0.5513 0.7470

SaAML 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483 0.6235 0.8096

(Bao et al., 2019), we select 1000 reviews from
each category to establish the subset.
20 Newsgroups consists of about 20000 news
sentences evenly partitioned on 20 different topics,
which is from the news discussion boards (Lang,
1995).
HuffPost is extracted from the HuffPost articles
between the year 2012 and 2018 (Misra, 2018),
with news headlines in 41 categories.
Banking77 provides 77 classes of 13083 fine-
grained intents from the banking domain, proposed
by Casanueva et al. (Casanueva et al., 2020).

5.2 Baselines

Six existing few-shot learning baselines are
adopted to compare with our proposed SaAML,
which are briefly introduced as follows:
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) is an optimization-based approach
to explicitly train model parameters such that the
model can produce great generalization on new
tasks after a few gradient update steps.
Prototypical Network (PN) (Snell et al., 2017)
is a metric-based method that employs the feature
average of support examples as the class vector
(prototype).
Induction Network (IN) (Geng et al., 2019)
constructs the class vector through the dynamic
routing algorithm based on capsule network and
leverages the relation module (Sung et al., 2018) to
learn the measure function.
Ridge Regression Meta-Learner (RRML)
(Bertinetto et al., 2018) exploits the ridge regres-
sion to obtain the class vector and develops proper
regularization to reduce model overfitting and
speed up model convergence.
Distributional Signature (DS) (Bao et al., 2019)
considers that the distribution signature is very
essential to catch more comprehensive feature

representations. Therefore, this meta-learning
framework achieves outstanding performance
when combined with distribution signatures, where
DS+RRML is the best method.
Meta-Learning Adversarial Domain Adaptation
Network (MLADA) (Han et al., 2021) explores
the adversarial network architecture to extract
sentence features, improving the generalization
and performance of meta-learning systems in
various scenarios.

In our study, we adopt the pre-trained fastText
(Joulin et al., 2016) as the embedding encoder in
all methods. TCN includes a total of four layers.
For each layer, the number of hidden units is 300
and kernel size is 2. The number of hidden units of
MLP in the discriminator is 256 and 128, respec-
tively. In the feature enhancer, the head number and
the feature dimension of the attention mechanism
are fixed as 6 and 300. For a fair comparison, 100,
100, and 1000 task episodes are randomly sampled
individually in each training, validation, and testing
epoch. Furthermore, we optimize model parame-
ters through the Adam algorithm (Kingma and Ba,
2014) with a learning rate of 1e− 5 and use early
stopping scheme when the performance on the val-
idation set fails to increase within 20 epochs. We
conduct all experiments on the NVIDIA Geforce
GTX 3090 GPUs server.

5.3 Experimental Results

We can obtain several valuable observations from
the comparison results of different baseline models,
and the results are depicted in Table 2. (1) Over-
all, our model SaAML creates an average accuracy
of 64.89% in 1-shot classification and 81.18% in
5-shot classification, substantially refreshing the
best performance on all datasets. Notably, it at-
tains a significant performance improvement of
5.73% over the state-of-the-art system MLADA
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(Han et al., 2021). (2) We find that SaAML gen-
erally outperforms 5-shot classification on 1-shot
classification, with an average accuracy improve-
ment of 7.15% in 1-shot classification and 2.89% in
5-shot classification. This is understandable since
the feature information available in low-shot scenes
is extremely deficient, especially for 1-shot clas-
sification, whereas SaAML is very competent in
leveraging the combination of the adversarial net-
work architecture and the feature enhancer to grasp
semantic information from a few examples, so that
it can address this challenge rapidly. (3) We also
notice that SaAML considerably improves the ac-
curacy of 20 newsgroups by nearly 8.84%, which is
better than other datasets in terms of performance
improvement. It clearly illustrates that the model
has a powerful feature learning ability and is more
compatible with long texts with rich information.
Besides, we have to acknowledge that the perfor-
mance improvement of SaAML on Amazon is not
apparent because of its affluent examples and di-
verse expressions. Note that the experimental re-
sults have 95% confidence intervals with variances
below 0.01.

5.4 Ablation Study

We perform massive experiments to explore the ef-
fectiveness and adaptability of various components,
.i.e., adversarial network (AN), temporal convo-
lutional network (TCN), semantic extractor (SE),
feature enhancer (FE) and difference loss (DL).
The ablation results are written in Table 3.

Firstly, we remove the setup of the adversar-
ial network (AN) architecture, which involves the
meta-discriminator and the source set. That is, the
discriminator no longer strengthens the features via
the adversarial training. In this way, the classifi-
cation performance of the model is significantly
weakened, which justifies the necessity and effec-
tiveness of adopting the adversarial network.

Secondly, we utilize the BiLSTM instead of the
TCN (Bai et al., 2018) to build the representation
generator. It is observed that the performance of
the model with TCN is superior to the model with
BiLSTM. This is because BiLSTM saturates at a
very early training stage due to optimization diffi-
culties, while TCN can capture the longer-distance
dependence of feature information.

Thirdly, we examine the role of the semantic
extractor (SE) and feature enhancer (FE) in perfor-
mance improvement. Obviously, the classification

accuracy of the model without the feature enhancer
drops by 12.30%. The model without the seman-
tic extractor also leads to the performance drop of
7.48%. It robustly demonstrates that the semantic
extractor can gain the richer semantics of the exam-
ples via a fusion manner, and the feature enhancer
can grasp the interaction knowledge between sup-
port examples and query examples.

Finally, we investigate the importance of differ-
ence loss (DL). We find that difference loss can fa-
cilitate the orthogonality between different classes
and improve the performance on few-shot classi-
fication tasks. In addition, we further explore to
replace the fastText (Joulin et al., 2016) with the
BERT (Devlin et al., 2018) as the embedding en-
coder. It is regrettable that BERT does not bring
performance improvement but will increase the
model complexity. This indicates that in the few-
shot scenario, powerful BERT may lead to the over-
fitting of the model, resulting in performance degra-
dation.

6 Discussion

Our work follows the research idea proposed by
Han et al. (Han et al., 2021) to exploit the ad-
versarial network to catch feature representations.
However, the implementation structure of MLADA
(Han et al., 2021) is too simple to extract intrin-
sic sentence feature information and strengthen the
generalization ability of the model well. In contrast,
we upgrade the whole meta-learning framework
with more cost-effective modules. The experimen-
tal results in Table 2 illustrate that the performance
of our proposed SaAML is significantly better than
MLADA.

Specifically, we build the generator with the tem-
poral convolutional network (TCN) rather than bi-
directional LSTM (BiLSTM) to excavate the inher-
ent semantic knowledge of sentences. We also ex-
ploit the feature enhancer to grasp the rich feature
interaction between different sentence representa-
tions through the multi-head attention mechanism.
Moreover, we adopt the prototype network (PN)
based on the difference loss as the classifier, im-
proving the model’s discriminative ability. Overall,
our model SaAML can construct more comprehen-
sive transferable representations and accomplish
excellent performance.

In addition, we further discuss the adaptation
potential of the SaAML and MLADA. We adopt
RRML (Bertinetto et al., 2018) and PN (Snell
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Table 3: The ablation results on Amazon, HuffPost, 20 Newsgroups, and Banking77 datasets.

Amazon HuffPost 20 Newsgroups Banking77

Model 5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

-AN 0.6918 0.8470 0.4969 0.6764 0.7025 0.8302 0.6567 0.8360

-TCN 0.6966 0.8363 0.5057 0.6872 0.6745 0.8240 0.6789 0.8448

-SE 0.6108 0.7887 0.4683 0.6404 0.5589 0.7514 0.6456 0.8264

-FE 0.6005 0.7886 0.3773 0.5877 0.5443 0.7503 0.5646 0.6731

-DL 0.7075 0.8490 0.5065 0.6874 0.7043 0.8381 0.6837 0.8415

+BERT 0.6647 0.8340 0.4888 0.6815 0.5136 0.6737 0.6845 0.8526

SaAML 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483

Table 4: The results for inserting augmentation components into PN and RRML on different datasets.

Amazon HuffPost 20 Newsgroups Banking77

Model 5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN 0.3760 0.5214 0.3573 0.4474 0.3780 0.4535 0.4156 0.6975

MLADA-PN 0.5587 0.7220 0.3106 0.4632 0.5088 0.6453 0.4662 0.6055

SaAML-PN 0.7147 0.8637 0.5126 0.6944 0.7079 0.8430 0.6860 0.8483

RRML 0.5022 0.7275 0.3610 0.4966 0.3760 0.5724 0.5256 0.8148

MLADA-RRML 0.6842 0.8600 0.4502 0.6491 0.5961 0.7780 0.6055 0.8089

SaAML-RRML 0.6856 0.8422 0.4588 0.6605 0.6680 0.8062 0.6130 0.7859

et al., 2017) as the classifier to build the model,
respectively. As exhibited in Table 4, regardless
of whether RRML or PN is used as the classifier,
SaAML obtains some performance progress across
different datasets in contrast to the published origi-
nal model and MLADA. It reveals that our SaAML
has an enormous opportunity for updating diverse
meta-learning systems.

7 Conclusion

In this paper, we propose a novel meta-learning
framework Sentence-aware Adversarial Meta-
Learner (SaAML) to address few-shot text clas-
sification task. Exactly, under the architecture of
the adversarial network, we explore the representa-
tion generator with TCN as the core module to en-
courage more discriminative representation learn-
ing and exploit the feature enhancer to facilitate
more consistent and comprehensive feature expres-
sion, which exceedingly strengthens the adaptabil-
ity and generalization of SaAML for new classes.
We develop comprehensive experiments on four
benchmark datasets to demonstrate that the pro-
posed model gains substantial improvements over
existing state-of-the-art meta-learning approaches.
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