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Abstract

Probing studies have extensively explored
where in neural language models linguistic in-
formation is located. The standard approach
to interpreting the results of a probing classi-
fier is to focus on the layers whose representa-
tions give the highest performance on the prob-
ing task. We propose an alternative method
that asks where the task-relevant information
emerges in the model. Our framework consists
of a family of metrics that explicitly model
local information gain relative to the previ-
ous layer and each layer’s contribution to the
model’s overall performance. We apply the new
metrics to two pairs of syntactic probing tasks
with different degrees of complexity and find
that the metrics confirm the expected ordering
only for one of the pairs. Our local metrics
show a massive dominance of the first layers,
indicating that the features that contribute the
most to our probing tasks are not as high-level
as global metrics suggest.

1 Introduction

Probing neural language models aims at finding
evidence of learned linguistic structure in the mod-
els’ parameters by empirically testing hypotheses
about the learned representations (Hupkes et al.,
2018; Alain and Bengio, 2017). This is often done
by training a probing classifier on a diagnostic task
with the representations at different layers as the
input, and comparing task performance across lay-
ers. While probes are conceptually simple and
widely used, the methodology and in particular the
interpretation of the obtained results is subject to
ongoing discussion (Belinkov, 2022).

A classical pattern we often see when plotting
probing accuracy across layers is that for higher-
level linguistic tasks, the model aggregates informa-
tion over several layers until it reaches its highest
performance. Often, the curves start steep, flatten
out, and eventually drop again in the final layers.
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Figure 1: Heatmaps illustrating our results for syntactic
parent (P) and grandparent (GP) prediction (BERT-base,
en, layers 1-12): Global metrics peak in middle lay-
ers. Local contributions are concentrated in early layers.
(Darker shades indicate higher values.)
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In this paper, we zoom in on models’ relative in-
formation gains between one layer and the previous
one. By this, we aim to turn the focus of probing
away from information that is already present in
the non-contextualized embedding layer and focus
exclusively on information that needs context to be
retrieved. We also aim to make the contribution of
each layer to the model’s overall linguistic capabil-
ities explicit. We argue that under the hypothesis
that information in language models is structured
as in classical NLP pipelines (Tenney et al., 2019),
the depth at which information emerges is as im-
portant as the impact of that information on model
performance. When we think of language process-
ing as a pipeline, we are primarily interested in
where linguistic features emerge for the first time,
not how long they are passed on to later layers.

To formalize information gains, we modify the
conditional probing framework proposed by Hewitt
et al. (2021). Their method explicitly quantifies in-
formation that is not already present in a baseline
representation. We modify this method along two
lines: First, we make it local, by conditioning on
the respective previous layer instead of a global
baseline. Second, we report the results as a share
of total emergent information, across all layers of
the network. This makes layer contributions com-
parable across tasks, where the overall performance
may differ.
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We demonstrate how to use our framework in
practice, by applying it to two pairs of syntactic
probing tasks. Each pair is formed by tasks that
are structurally equal but for which we can rea-
sonably assume a natural order in which the rele-
vant linguistic representations emerge within the
models. The first pair compares predicting part-
of-speech (POS) tags that are the most frequent
for a word form (MFTs) to predicting tags that
are not (non-MFTs). Recent work has hypothe-
sized that non-MFTs may be best represented in
the deeper layers of a model such as BERT (Devlin
et al., 2019): Each layer’s contribution beyond the
information already present in the uncontextual-
ized layer is more significant for deeper layers, and
therefore POS information could be found later in
the model than previously assumed (Hewitt et al.,
2021). The second pair of tasks compares predict-
ing the position of a word’s dependency head (the
syntactic parent) to predicting the position of the
head’s head (the grandparent). Information for pre-
dicting grandparents has in previous work been
found in deeper layers than information for predict-
ing parents (Blevins et al., 2018). For each pair
of tasks, we test where the relevant information
emerges in the model, how the resulting pattern
compares to global metrics, and if the metrics re-
flect the expected order of tasks. Our results show
that while the expected hierarchy holds for the par-
ent vs. grandparent task, information for non-MFTs
emerges earlier in the model than for MFTs. This
contradicts previous expectations. Also, results on
seven independent monolingual BERT models in
different languages show that the orderings and
patterns we observe are not robust, which raises
questions about their generality, and about the va-
lidity of probing at large.

2 Related Work

How linguistic information is distributed across
the layers of a neural model is one of the central
questions in the probing literature. The consen-
sus is that there is a hierarchical ordering of tasks.
Blevins et al. (2018) find a soft hierarchy of tasks
when probing different layers of recurrent neural
networks, from POS information being low in the
hierarchy, to syntactic parents, grandparents, and
great-grandparents. For their ELMo model, Peters
et al. (2018) find that parts-of-speech are better pre-
dicted from the first hidden layer and word senses
from the second. Tenney et al. (2019) probe BERT

for a range of different NLP tasks and find that
the layers that are the most predictive for each task
are ordered like a classical pipeline: from parts-of-
speech over syntactic dependencies, named entities
and semantic roles to coreference.

How probing experiments should be designed
and evaluated is subject to ongoing discussion.
Some authors argue for simple classifiers (Alain
and Bengio, 2017; Hewitt and Liang, 2019) to pre-
vent the probes from learning the task and mem-
orizing associations by themselves, while others
make the case for more expressive models (Pi-
mentel et al., 2020). While probes are most com-
monly evaluated using accuracy, recent work has
proposed the use of alternative metrics that mea-
sure the effort of learning (Voita and Titov, 2020)
or emphasize the performance early in the training
(Talmor et al., 2020). Kunz and Kuhlmann (2021)
propose to probe in an extrapolation setting, eval-
uating, among other setups, on the non-MFTs in
diagnostic POS tagging experiments.

3 A Taxonomy of Metrics

We start by categorizing methods along three di-
mensions: The first one (as proposed by Hewitt
et al. (2021)) concerns the relation of the base-
line and the representation: how much more in-
formation can we extract from the representation
than from the baseline (baselined probing), or how
much information is extractable from the represen-
tation that does not overlap with information from
the baseline (conditional probing).

The second dimension, proposed by us, concerns
the type of information intended to be measured: in-
formation relative to a non-contextualized baseline
(a global baseline), or information gain relative to
the previous layer (a local baseline). The local set-
ting challenges the view that a linguistic property’s
place in the model is the layer where most usable
information for it can be extracted. Instead, we
consider the layers where most usable information
is gained relative to the previous layer to reflect
the linguistic property’s place within the model’s
hierarchy. We formulate and test the local corre-
spondents of baselined and conditional probing in
Sections 3.4 and 3.5.

Thirdly, we modify the local metrics so that
they, in addition to the absolute reporting of the
results, also support the reporting of the relative
share that each layer contributes to the final per-
formance. While absolute numbers convey more
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information, relative numbers improve the compa-
rability of results across tasks. We modify our local
conditional metric from an absolute to a relative
metric in Section 3.6.

3.1 General Setup

We consider a standard setup where we train a
probe on a diagnostic task and evaluate it in terms
of accuracy. More specifically, we use datasets
D = {(zn, yn) }n. where each z,, is the representa-
tion of a neural language model at some specific
layer, and y,, is the gold-standard label. (In our
experiments, we use BERT.) By computing probe
accuracy for different layers of the same model, we
can compare layers in terms of how predictive they
are with respect to the diagnostic task.

3.2 Global Baselined Probing (GBP)

In this common setup we measure the difference
between the probe accuracy on a given layer /; and
the baseline layer [y — in BERT, this is the uncon-
textualized embedding layer. Thus we compute

GBP; = Acc(l;) — Acc(lp) (1)

As Hewitt et al. (2021) show, this can be inter-
preted as a difference between two quantities of
V-information (Xu et al., 2020), a theory of us-
able information under computational constraints.
More specifically, GBP; estimates the difference
in V-information between predicting the linguistic
property under consideration from /; and predict-
ing it from layer . This makes the difference in
the probe’s performance relative to the baseline
explicit. The baselined information measures the
amount of information gained over the baseline
without making assumptions about the structural
relation between [y and ;.

3.3 Global Conditional Probing (GCP)

This setup has been proposed by Hewitt et al.
(2021) with the intent to explicitly measure what
information a layer [; contributes beyond the in-
formation present in the baseline /g. Practically, it
entails computing the difference between the probe
accuracy on the concatenation of /; to [y and the
baseline layer:

GCP,L = ACC(Ui; lo]) — ACC(Z()) (2)

In the framework of Hewitt et al. (2021), this
measure is related to a conditional version of V-
information. More specifically, it estimates the

conditional V-information conditioned on prior in-
formation contained in the baseline.

3.4 Local Baselined Probing (LBP)

Analogously to global baselined probing, we may
consider a local setup where the baseline is the
previous layer [;_;:

LBPi = ACC(li) — ACC(li_l) (3)

This quantity provides an estimate of how much
V-information is gained when taking the step from
l;—1 to l;. We posit that layers with high LBP val-
ues can be considered as layers where useful new
information emerges. Intuitively, LBP measures
the steepness of the slope, or the “jumps”, in tradi-
tional accuracy curves across layers.

3.5 Local Conditional Probing (LCP)

To complete the picture, we propose to apply con-
ditional probing to the local setting:

LCPZ‘ = ACC([li; li—l]) — ACC(li_l) (4)

The intention behind this metric is also to mea-
sure information gain with respect to [;_;, but we
account for exclusive information of [;_; that is
absent in ;. Similar to Hewitt et al. (2021), we
concatenate two layers and compare to scores on
one of them. Our approach differs in that we do
not compare to one static baseline layer (lp) but
dynamically to /;_; to track the information gained
across layers.

3.6 Emergent Information (EMI)

EMI (as well as EMI-BL in the next section) is
designed to make layer contributions compara-
ble across tasks that have different overall perfor-
mances. To represent relative information gains,
we calculate the LCP metric and divide it by the
LCP summed up over all L layers. As we focus on
gains, the metric will be zero whenever the result
is negative (as nothing is gained). For the sum we
also only consider layers where the LCP is positive.

LCP, = max (0, LCP;) 5)
LCP!
EMI = — ' (©)
> k=1 LCP;

We get relative gains that sum up to one. We
interpret the results as the layer’s contribution to
the overall emergent information within the model.
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3.7 EMI, Baselined Control (EMI-BL)

For ablation purposes we want to investigate the
effect of the conditioning in EMI. Therefore we
also employ a simplified version of EMI that uses
LBP instead of LCP:

LBP, = max (0, LBP;) 7)
LBP
EMIBL; = ——— (8)
Zk:l LBPk

The difference to EMI in Section 3.6 is the lack
of control for information that was already present
in the previous layer. We may underestimate the
information gain as information may have been
“forgotten” and replaced by new information when
transitioning to the next layer.

4 [Experiments

In our experiments, we apply the metrics defined
in the previous section to study the performance of
language models on two suitable probing tasks.

4.1 Probing Classifier

As our probe, we use a simple feed-forward net-
work with 64 hidden units and ReLLU activation,
and train it for 10 epochs using the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001. Our implementation uses PyTorch (Paszke
et al., 2019). We calculate the results for all metrics
based on the mean accuracy over 10 random seeds.

4.2 Language Representation Models

To test the robustness of our probing results and
to explore if the syntactic information is local-
ized in similar regions across models and lan-
guages, we include seven models in our analysis.
Apart from English BERT (Devlin et al., 2019),
we train probes on monolingual BERT models
in Czech (Sido et al., 2021), Finnish (Virtanen
et al., 2019), German (Chan et al., 2020), He-
brew (Seker et al., 2021), Swedish (Malmsten
et al., 2020) and Turkish (Schweter, 2020). The
languages are chosen to represent diverse fami-
lies: Indo-European/Germanic (de, en, sv), Indo-
European/Slavic (cs), Uralic (fi), Turkic (¢r), and
Afro-Asiatic/Semitic (he). All models are base
models with 12 layers, and accessed via the Hug-
gingface Transformers library (Wolf et al., 2020).!

'All code necessary to reproduce the results in this pa-
per, along with full numerical results, is available here:
https://github.com/jekunz/emergent_info

4.3 Data and Tasks

We consider two pairs of closely related syntactic
probing tasks. The training data for these tasks is
derived from 1,000 sentences randomly sampled
from the Universal Dependencies treebank (Zeman
etal., 2021).2

POS tagging We predict UPOS tags and evaluate
on two sets, the most frequent tags for a word form
(MFT) and tags that are not the most frequent for a
word form (non-MFT). We assume that:

Hypothesis 1 Models learn to predict non-MFTs
in deeper layers than MFTs.

Syntactic Ancestors Prediction We predict the
relative linear position of a token’s head (parent,
P) and its head’s head (grandparent, GP) in the
syntactic dependency tree. For practical reasons
we omit examples where the distance is larger than
15. For this task, our assumption is:

Hypothesis 2 Models learn to predict grandpar-
ents in deeper layers than parents.

Classically, we would also assume that the an-
cestors tasks come higher in the hierarchy than the
part-of-speech tagging tasks, which would give us
the following hierarchy of all tasks:

MFT < non-MFT < P < GP

However, as only the tasks in each pair are struc-
turally equal, we will analyze each pair of tasks
separately.

4.4 Ranking

To determine the hierarchical ordering of tasks
within the models, we need to reduce the metrics
across layers to a single comparable value. For that,
we employ two strategies:

Max Layer For all metrics, we report the layer
which maximizes the respective metric. When this
layer is deeper for a task 7" than for a task 7”7, we
say that 1" is higher in the hierarchy induced by the
model than 7”.

Early Contributions For the EMI metric, we
also report the contribution of layers 1, 1 + 2 and
142+ 3 to the overall gain. When this contribution
is higher for a task 7" than for a task 7", we say that
T is lower in the hierarchy than 7".
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GBP (& Accuracy) GCP LBP & EMI-BL LCP & EMI
MFT -MFT MFT -MFT MFT -MFT MFT -MFT
cs 4 6 4 6 3 2 3 2
de 6 11 8 10 4 1 4 1
en 4 7 10 8 2 1 1 1
fi 3 4 7 5 1 1 1 1
he 3 5 8 7 2 1 2 1
sV 3 5 11 6 2 1 2 1
tr 2 5 3 11 2 2 2 2
avg 3.6 6.1 7.3 7.6 2.3 1.3 2.1 1.3

Table 1: Part-of-speech tagging tasks. The numbers give the layer of maximum score across metrics and languages.
Bold marks the task (MFT or —MFT) that is higher in the hierarchy induced by the model.

GBP (& Accuracy) GCP LBP & EMI-BL LCP & EMI

P GP P GP P GP P GP
cs 5 8 5 8 1 2 1 2
de 9 9 9 9 2 2 2 2
en 5 6 5 7 1 1 1 1
fi 5 5 5 5 2 3 2 3
he 5 5 9 5 4 3 4 2
sV 7 6 7 7 2 1 2 1
tr 7 8 7 8 3 3 3 3
avg 6.1 6.7 6.7 7.0 2.1 2.1 2.1 2.0

Table 2: Syntactic ancestors prediction tasks. The numbers give the layer of maximum score across metrics and
languages. Bold marks the task (P or GP) that is higher in the hierarchy induced by the model.

5 Results

This section presents the results of our experiments.
We have structured our presentation around the two
ranking methods.

5.1

For each probing setup and language, we report
that layer which maximizes the respective metric in
Table 1 for the POS tagging task pair and Table 2
for the ancestors prediction tasks.

Max Layer

Global metrics Our results for the global met-
rics confirm the finding of Hewitt et al. (2021) that
the layers that maximize conditional probing ac-
curacy (GCP) are generally deeper than those that
maximize baselined accuracy (GBP).

Zooming in on the distinction between most fre-
quent and non-most frequent tags for the POS tasks,
however, exhibits an unexpected behavior: Hewitt
et al. (2021) suggest that for the non-MFTs, GCP
should be higher than GBP in deeper layers, and
the other way round for MFTs. Here we find that
in 4 out of 7 models, the layer with the highest

The treebanks for each language are: cs: PDT, de: GSD,
en: EWT, fi: TDT, he: HTB, sv: Talbanken, #r: Kenet. Lic:
CC BY-SA 4.0 (de, en, fi, sv, tr) / CC-BY-NC-SA 3.0 (cs, he).

GCP value on non-MFTs precedes the layer with
the highest value for MFTs. However, the average
over the models is higher for non-MFTs due to the
large margin between the layers in the #» model.
The highest scores of GBP on non-MFTs are con-
sistently in deeper layers than those for MFTs. The
exact layer in which the maximum scores are how-
ever varies greatly between models: for the MFTs,
it ranges between 2 (¢r) and 6 (de) and for the non-
MFTs between 4 (he) and 11 (de).

GCP differentiates less than GBP, with a margin
of 2.5 versus 0.3 (POS tagging) and 0.6 versus 0.3
layers (ancestors prediction) difference between
the lower-level and the higher-level task.

Looking at the full plot, rather than just the max-
imal layer, we observe some variety across metrics
and languages. The example plots for en BERT in
Figure 2 (a-b) are in line with the general trend:
GCP peaks in deeper layers than GBP, but this
is not explained by the non-MFTs, as their curve
drops steeper with increasing layer index than the
curve for the MFTs. This observation holds for
most BERT models we used, except for c¢s and tr
where the scores on MFTs drop more in deeper
layers than those for non-MFTs (see Figure 3).
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Figure 2: Part-of-speech tagging, global (a—b) and local (c—d) metrics on the English data. Solid green line:
non-MFTs, dotted orange: MFTs, dashed blue: full development set (all tags).
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Figure 3: As opposed to en BERT and the other four
models, for c¢s and tr, the scores on MFTs in GCP drop
more over the layers than those for non-MFTs.

Local metrics Turning to the highest local in-
formation gain in Table 1 and 2, both LBP and
LCP show the biggest gains in the very first layers.
This shows that, while global metrics locate the
overall information peaks somewhere in the middle
of the model, only little new information actually
emerges at that point.

The differences in the empirical results between
LBP and LCP are small; specifically accounting
for information that is absent in the previous layer
does not result in a different pattern than the one we
obtain when using the baselines metric. This leaves
the choice between the two metrics to theoretical
or practical preferences.

The example curves for English BERT in Fig-
ure 2 (c—d) show a typical pattern for the drop
across layers in the part-of-speech tagging tasks.
The layer of highest information gain appears to be
the layer where contextual information is added
first. After this layer, the plots decrease more
slowly. Most languages follow this pattern, with
the notable exception of cs and ¢ that do not show
a steady decrease but go up first (see Figure 4).
For the ancestors tasks, the peak is often shifted to
the second or third layer, probably reflecting the
higher-level nature of those tasks compared to the
POS tasks. Figure 5 shows two examples, fi BERT
with and /r BERT without a clear hierarchy of the
parents versus grandparents task.

2.0
15
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0.0

-0.5

1234567 89101112

(a) LCP Czech

1234567 89101112

(b) LCP Turkish

Figure 4: For c¢s and tr BERT, the LCP plots exhibit a
pattern that deviates from that we observe for en BERT:
They do not decrease steadily.

We observe that for the local metrics, the sup-
posedly higher-level tasks do not have their highest
gains in later layers than the lower-level tasks. On
the contrary, the non-MFTs in LBP and LCP have
their average max layer at 1.3, while for MFTs,
where the accuracy starts off much higher, and
information gains are generally smaller, the corre-
sponding values are 2.3 and 2.1. For the ancestors
tasks, there is on average no difference between the
tasks. Hence, Hypotheses 1 and 2 are not confirmed
for the local metrics in the max layer rankings.

5.2 Early Contributions

As Hypotheses 1 and 2 about the order of tasks in
the model’s hierarchy were not confirmed when
looking at the layer with the maximal score, we
compare more expressive metrics from the emer-
gent information family in Tables 1 and 2.

N
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(a) LCP Finnish (b) LCP Turkish

Figure 5: Ancestors prediction, LCP: fi shows a later
peak for grandparents (orange), while tr BERT’s curves
show a similar pattern for both tasks.
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Layer 1 Layer 1+ 2 Layer14+2+43

MFT —MFT MFT -MFT MFT —MFT
cs 37.49 18.74 49.99 44.99 87.49 70.35
de 0.00 34.18 23.85 62.32 46.78 74.94
en 31.00 46.24 59.68 62.57 83.33 75.29
fi 44.07 55.28 58.12 71.87 76.30 84.31
he 39.31 37.93 89.74 74.94 97.15 89.69
sV 12.86 52.23 48.53 78.70 58.47 89.00
tr 0.00 3.08 48.22 37.07 80.20 52.03
avg 23.53 35.38 54.01 61.78 75.67 76.51

Table 3: Part-of-speech tagging tasks: Contribution of layer 1, 1 4+ 2 and 1 + 2 4 3 to the overall performance of
the probe. Bold marks the task (MFT or —=MFT) that is is higher in the hierarchy induced by the model (smaller
contribution of the lower layers).

Layer 1 Layer 1 + 2 Layer1+2+43

P GP P GP P GP
cs 46.78 14.90 73.39 68.02 79.10 81.30
de 8.68 3.94 50.06 3549 68.68 51.83
en 37.47 36.86 55.15 52.79 78.89 56.81
fi 24.51 11.46 58.41 34.77 74.39 68.28
he 0.00 0.00 16.90 25.74 27.46 51.48
% 21.14 39.31 60.33 49.60 77.65 66.61
tr 0.00 3.52 16.74 15.84 63.72 54.08
avg 19.79 15.71 47.28 40.32 67.12 61.48

Table 4: Syntactic ancestors prediction tasks: Contribution of layer 1, 14 2 and 1 + 2 + 3 to the overall performance
of the probe. Bold marks the task (P or GP) that is is higher in the hierarchy induced by the model (smaller
contribution of the lower layers).
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For the MFT tasks, we can confirm the finding
that when looking at the share of emergent infor-
mation from the very first layers, it is on average
higher for the non-MFTs for all three groupings of
layers, indicating that non-MFTs would be lower in
the hierarchy that MFTs. The difference however
fades out, from 11.85 percentage points difference
for layer 1 to only 0.84 points for layer 1 + 2 + 3.
For the ancestors tasks, the hierarchy continues to
be as expected both on average and in the vast ma-
jority of model-grouping combinations. For both
tasks we note that no layer grouping shows consis-
tent results across all seven models, indicating a
low robustness of the results.

Effects of Conditioning The average difference
between emergent information with or without con-
ditioning on the previous layer is 5.58 (POS) and
3.93 percentage points, which can in some scenar-
ios be considered as minor. For all values we exam-
ined in this section, the average difference between
tasks is 16.93 (POS) and 11.14 (ancestors) points,
making a trend change unlikely and a simplification
towards a baselined setup justifiable. Less distinct
tasks and their theoretical advantages may however
suggest the inclusion of the conditional accuracy.

6 Discussion

Where is a feature located? The results for the
different metrics show how it depends on the per-
spective which place within the model we assign
to a linguistic property. While the most overall
information is located in the middle layers, it is the
early layers that maximize the local metrics by a
huge margin, meaning that this is the place in the
model where most information either emerges or
becomes accessible.

The complementary use of both families of met-
rics, local and global, gives us a more holistic pic-
ture of how information is structured within the
model, as we argue that it it is not clear if a hi-
erarchy of tasks within the model should be de-
termined by where most information is added or
where most information is accessible overall. An
intuition supporting the former is the comparison to
a human-made pipeline model, where tasks would
naturally be placed where the information required
for them is added — for instance, where the POS
tagger is located, adding POS tags to the set of
features. In these pipelines, there is no notion of
how long information will be passed to higher-level
tasks.

Expected hierarchies do not generally hold We
see that when probing for MFTs versus non-MFTs,
the perceived natural hierarchy of tasks (Hypoth-
esis 1) does not hold for the local metrics, neither
in a coarse max layer analysis nor in the more
fine-grained early contribution setting, as shown
in Sections 5.1 and 5.2. In the plots of the global
metrics in Section 5.1 we see that non-MFTs often
show both steeper gains in the beginning and more
pronounced losses in the later layers, indicating
that it is more specialized contextual information
that the non-MFTs require, but that information
does not appear to emerge later than in the model
that for MFTs. We conclude that observations of
a clear hierarchy of tasks depend on the focus on
most usable overall information: They are already
weaker in the global conditional setup, and are in
one of two cases contradicted by local metrics.

The massive dominance of layer 1 and 2 in all
local metrics especially for the non-MFTs but even
for the parents and the grandparents tasks raises
questions about how high-level the information that
contributes the most to the overall performance on
the probing task actually is. As the very first possi-
bility of accessing contextual information already
presents the heaviest boost, the features that are
most crucial to solve the task appear to be surpris-
ingly shallow.

Probing results are not robust An interesting
point we noted across all metrics, but more dis-
tinctly for all local metrics as well as global con-
ditional probing, is that the results are not stable
across BERT models in different languages. We do
not consider the possibility to relate the different
distribution of information across models to lin-
guistic properties of the languages as we believe
that this is impossible with the relatively small set
of non-parallel models we analyze. Apart from
the language, they differ in several variables: most
importantly, the data they are trained on, but some
also in training details. However, we see it as an
exciting path for future research to explore what
causes a model to structure information in certain
ways, and if this has implication on the model’s
performance on downstream tasks or robustness.

Relevance As the differences between measuring
emergent information with and without condition-
ing on the previous layer are relatively small, one
could suggest that the information is present in a
similar form in ordinary accuracy plots across lay-
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ers: The slope of the curve can be used to estimate
it. But in practice, such interpretations do not ap-
pear to be obvious: Even though they can, as we
showed, shed a different light at probing results
when made explicit, previous work exclusively fo-
cused on the point of highest overall information.
A discussion on the relevance of the parts of the net-
work where information emerges has been absent
from the literature.

Apart from that, we argue that conditional prob-
ing has strong theoretical advantages, as it explic-
itly accounts for information in the baseline repre-
sentation, and that this makes basing the emergent
information metrics on it favorable.

Limitations The metrics we propose are de-
signed with the expectation that gains are succes-
sive. However, Transformer models can propagate
information via residual connections and thereby
let information “skip” layers. If this resulted in
pronounced oscillations of the information within
the model, it would weaken the meaningfulness of
the results of all local metrics.

The emergent information metrics have no ac-
count for loss of information over the layers of the
network. A related family of metrics that explicitly
models this would be the application of the local
metrics to the layers in inverse order.

All metrics in this paper are based on probe ac-
curacy. However, our setups can be easily adapted
to other metrics which have been shown to be more
robust towards design choices regarding the classi-
fier, such as minimum description length (Voita and
Titov, 2020), or metrics that reward fast learning
(Yogatama et al., 2019; Talmor et al., 2020).

7 Conclusion

We have collected and suggested metrics that model
the information distribution in a model’s layers
from different perspectives: globally and locally,
with or without conditioning on the baseline, and
looking at absolute and relative gains of informa-
tion. We used them on two pairs of probing tasks.
First, we tested whether information for POS tags
that are not the most frequent for a word is found
in deeper layers than general POS information and
found that while this is the case for overall informa-
tion measured by global metrics, local metrics high-
light that the most significant gains consistently
happen in the very first layers in particular for the
non-most frequent tags. For second task of pre-
dicting the syntactic parents versus grandparents

of a token, however, the expected hierarchy in the
model holds in the local setup at least in more fine-
grained relative metrics. These mixed results em-
phasize the additional insights that zooming in to
local information gains can give us into the model,
the task, and the probing methodology.

Probing experiments on seven monolingual
BERT models in different languages show that the
metrics’ behavior varies between models. While
it is currently not feasible to relate the differences
to specific properties of the models such as the
language or the domain of the training data, a con-
trolled training of parallel models where the ad-
ditional variables are controlled for may enable
such a comparison and is an insightful direction for
future work.
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A All results

For completeness, we present all plots across mod-
els and metrics as supplementary material in figure
6 for the POS tasks and in figure 7 for the ancestors
tasks. A brief summary of the material is provided
in the following paragraphs.

Global Metrics. The accuracy shows the same
highs and lows as the GBP setup, where the static g
baseline is subtracted from the accuracy. Compared
to GBP, the results in the GCP setup are slightly
shifted to later layers. For the POS tasks, the peak
is in the early middle layers, with the -MFT's peak-
ing a few layers later, indicating the need for more
contextual information. Across models we see a
large variation, most extremely visible in de, where
the scores increase until layer 11 for the MFTs, and
tr, where the drop for the MFTs is more distinct
than for other models. fi and he have a distinct peak
for the -MFTs in layer 4, then a decrease, and then
stabilize. The ancestors tasks often peak in the
early middle layers as well, with de being shifted
to notably later layers, and #r being relatively sta-
ble across all layers except the very first and last
layers. A later peak of the grandparent prediction
compared to the parent prediction is vaguely per-
ceptible in most plots, most prominently in the en
model.

Local Metrics. The metrics that measure the lo-
cal information gain have the most consistent pat-
tern for the -MFTs, with most information gener-
ally added in the very first layer. The pattern of
the curves appears to asymptotically approximate 0.
There are however two exceptions: the cs, but most
distinctly the ## model that gains relatively little in
the first layer and makes its biggest jump in the sec-
ond layer. We also observe in the accuracy curve of
these two models that the increase in the beginning

is less steep. In the ancestors tasks, the highest
layer is slightly later on average, often in later 2 or
3 (2.1 on average). In some models, such as c¢s and
fi, we observe a later peak for grandparents than
for parents, while for de, and se, it even is the other
way round. This underlines the lacking robustness
of our probing results across models in different
languages that are particularly prominent for the
local metrics. In all of the models we observe little
difference in the empirical results and patterns of
LBP and LCP, confirming our observations in Sec-
tion 6 that the choice between them can be either
arbitrary or based on theoretical preferences.
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Figure 7: Ancestors Experiments: Plots for all language/metric combinations. Blue: P; orange: GP.
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